LIST OF TABLES

S. No.	Details	Page No.
	Chapter 1	
Table 1.1	Summary of homogeneous, heterogeneous, and enzyme catalysts used in transesterification	19
Table 1.2	Additional methods adopted in transesterification reaction for methyl ester production	22
Table 1.3	Comparative study of various homogeneous and heterogeneous catalysts employed in FAME production from non edible feedstocks	25
	Chapter 2	
Table 2.1	Physicochemical properties of feedstocks	34
Table 2.2	Physicochemical properties of methyl esters derived from non-edible feedstocks	53
	Chapter 3	
Table 3.1	Fatty acid composition of methyl esters inferred from GC-MS	78
Table 3.2	An illustration of physicochemical properties of FAME produced from <i>Madhuca longifolia</i> oil feedstock	82
	Chapter 4	
Table 4.1	Fatty acid composition of fatty acid methyl esters derived from <i>Milletia pinnatta</i> oil obtained from GC-MS	105
Table 4.2	Physicochemical properties of fatty acid methyl esters derived from <i>Milletia pinnata</i> oil feedstock	108
	Chapter 5	
Table 5.1	Composition profile of methyl ester derived from <i>Schleichera oleosa</i> oil inferred from GC- MS	131
Table 5.2	Comparative study of physicochemical properties of <i>Schleichera oleosa</i> oil and <i>Schleichera oleosa</i> oil methyl ester	134
	Chapter 6	
Table 6.1	An illustration of level of variables chosen in Central	139

Composite Design (CCD) for FAME conversion

- **Table 6.2**An illustration of experimental runs formulated by Central139Composite Design (CCD) for methyl ester production with
six center points and α value of 1.68179168179
- Table 6.3BET surface area analysis of Sr-Ti mixed metal oxide151catalysts
- **Table 6.4**Estimated regression coefficient of transesterification for
methyl ester production using Sr-Ti mixed metal oxide as
solid catalyst154
- **Table 6.5**Analysis of variance for methyl ester production using Sr-Ti155mixed metals oxide as solid base catalyst
- **Table 6.6**Confirmatory experiments for methyl ester production159employing Sr-Ti mixed metals oxide as heterogeneous solid
catalyst
- **Table 6.7**Physicochemical and fuel properties of methyl esters168produced from mahua oil with ASTM standards

Chapter 7

- **Table 7.1**Comparison of optimum values of process parameters178studied in all four objectives
- **Table 7.2**An illustration over compatibility check of all prepared179catalysts with individual feedstocks
- **Table 7.3**Comparison of determined values of kinetic and
thermodynamic parameters along with E-Factor and TOF180