LIST OF FIGURES

i

Ξ

<u>Figure No.</u>	Title	<u>Page No.</u>
Figure 1.1	Increase in Indian road network throughout the years	02
Figure 1.2	Lengths of various categories of roads (in km) and their relative proportion	02
Figure 1.3	Status of solid waste generation in India	06
Figure 2.1	Mechanisms of rutting failure	31
Figure 2.2	Schematic representation of a creep and recovery cycle	34
Figure 2.3	Mechanism of fatigue cracking	41
Figure 2.4	Principle of applying (a) control stress (b) control strain during testing	44
Figure 2.5	(a) movement of bitumen molecule towards aggregate site (top image) (b) adsorption of bitumen to the aggregate site (middle image) (c) stripping of bitumen (bottom image)	49
Figure 2.6	SEM image of moisture sensitive dreg waste from paper industry showing geometrical irregularities (sharp edges)	58
Figure 2.7	Effect of hydrated lime on aggregate surfaces	71
Figure 3.1	Flow chart showing methodology of the study	91
Figure 3.2	Flow chart showing experimental program of phase 1	95
Figure 3.3	Flow chart showing experimental program of phase 2 and 3	101
Figure 3.4	Flow chart showing experimental program of Phase 4, 5 and 6 of the study	102
Figure 4.1	Relationship between void content and German filler test values	126
Figure 4.2	Particle size distributions of various materials	128
Figure 4.3	XRD diffractograms of various materials	135
Figure 4.4	Relationships between pH values and oxide contents	139-140
Figure 5.1	Adopted aggregate gradations for bituminous concrete mix	145
Figure 5.2	Phase diagram displaying volumetric properties of a bituminous mix	146
Figure 5.3	Marshall and volumetric properties of mixes with 4% filler	161

Figure 5.4	Marshall and volumetric properties of mixes with 5.5% filler	162
Figure 5.5	Marshall and volumetric properties of mixes with 7% filler	163
Figure 5.6	Marshall and volumetric properties of mixes with 8.5% filler	164
Figure 5.7	Variation of Marshall stability of bituminous mixes with filler contents	166
Figure 5.8	Variation of OBC of bituminous mixes with filler contents	168
Figure 5.9	Variation of VMA of bituminous mixes with filler contents	170
Figure 6.1	Line diagram of dynamic shear rheometer	179
Figure 6.2	Variation of stress and strain with time in a DSR test	181
Figure 6.3	Schematic representation of strain sweep test	184
Figure 6.4	Variation of stress and strain in strain sweep test of bitumen at 46°C	184
Figure 6.5	LVE Strain (%) limits for various mastics	185
Figure 6.6	Isothermal curves of bitumen	189
Figure 6.7	Isothermal curves of the complex shear modulus of mastics corresponding to 4% filler	190
Figure 6.8	Isothermal curves of complex shear modulus of mastics corresponding to 5.5% filler	190
Figure 6.9	Isothermal curves of the complex shear modulus of mastics corresponding to 7% filler	191
Figure 6.10	Isothermal curves of complex shear modulus of mastics corresponding to 8.5% filler	191
Figure 6.11	Isothermal curves of the phase angle of mastics corresponding to 4% filler	192
Figure 6.12	Isothermal curves of the phase angle of mastics corresponding to 5.5% filler	192
Figure 6.13	Isothermal curves of the phase angle of mastics corresponding to 7% filler	193
Figure 6.14	Isothermal curves of the phase angle of mastics corresponding to 8.5% filler	193
Figure 6.15	Complex modulus of various mastics at 10rad/s	195
Figure 6.16	Phase angle of various mastics at 10 rad/s	195
Figure 6.17	Black diagrams of bitumen and mastics	196-197
Figure 6.18	Variation of rutting parameters with frequency for bitumen	199

Figure 6.19	Variation of rutting parameters with frequency for mastics at 4% filler	200
Figure 6.20	Variation of rutting parameters with frequency for mastics at 5.5% filler	200
Figure 6.21	Variation of rutting parameters with frequency for mastics at 7% filler	201
Figure 6.22	Variation of rutting parameters with frequency for mastics at 8.5% filler	201
Figure 6.23	Rutting parameters of various mastics at 64°C and 10 rad/s	203
Figure 6.24	Variation of strain of bitumen during MSCR test	204
Figure 6.25	J_{nr} values of bitumen at different temperatures at 0.1 and 3.2 kPa stresses	205
Figure 6.26	J_{nr} values of mastics at different temperatures at 0.1 kPa stress	206
Figure 6.27	J_{nr} values of mastics at different temperatures at 3.2 kPa stress	207
Figure 6.28	Percentage Recovery (%) of bitumen and mastics at different temperatures at 0.1 kPa stress	208
Figure 6.29	Percentage Recovery (%) of bitumen and mastics at different temperatures at 3.2 kPa stress	209
Figure 6.30	Fatigue parameter of bitumen and mastics at 25°C	213
Figure 6.31	Variation of complex shear modulus and phase angle with frequency	215
Figure 6.32	Loading scheme during amplitude sweep test (AASHTO TP 101-14)	216
Figure 6.33	Variation of $(/G^*/(t))$ of bitumen with the strain	216
Figure 6.34	Curve fitting between integrity parameter and damage intensity of bitumen	217
Figure 6.35	Fatigue life of bitumen and mastics at different strain levels	220-221
Figure 6.36	Fatigue life of various mastics at 2.5% strain	221
Figure 6.37	Creep and recovery cycles of SD 4 and GL 8.5 mastics	222
Figure 6.38	Ageing Index of bitumen and mastics at 25 and 64°C	226
Figure 7.1	Marshall quotient values of various mixes	236
Figure 7.2	Deformation versus time curves of various mixes	236-237
Figure 7.3	Relationship between MQ and various mixes and mastic parameters	237-238
Figure 7.4	Relationship between permanent deformation in mixes	239-240

and various mixes and mastic parameters

Figure 7.5	Relationship between RMS and TSR of various mixes	246
Figure 7.6	Effect of filler content on mixing time of bituminous mixes	250
Figure 7.7	Effect of filler content on retained bitumen coverage of bituminous mixes	250
Figure 7.8	Line diagram showing loading set up of ITS determination	252
Figure 7.9	Variation of indirect tensile strength of mixes at 25°C with filler content	254
Figure 7.10	Variation of indirect tensile strength of mixes at 0°C with filler content	254
Figure 7.11	Variation of fatigue life of mixes with filler content	261
Figure 7.12	Variation of dry Cantabro loss of mixes with filler content	264
Figure 7.13	Variation of wet Cantabro loss of mixes with filler content	264
Figure 7.14	AI of various mixes corresponding to Marshall stability	269
Figure 7.15	AI of various mixes corresponding to Marshall Quotient	269
Figure 7.16	AI of various mixes corresponding to ITS	270
Figure 7.17	AI of various mixes corresponding to TSR	270
Figure 7.18	AI of various mixes corresponding to Cantabro loss	270
Figure 7.19	Variation of resilient modulus of mixes at 25°C with filler content	274
Figure 7.20	Variation of resilient modulus of mixes at 35°C with filler content	274
Figure 7.21	Relationship between resilient modulus and permanent deformation at 35°C	274
Figure 8.1	Section of bituminous pavement having granular base and sub-base showing locations of critical strain	281