
References

[1] A. Bagnall, J. Lines, A. Bostrom, J. Large, and E. Keogh, “The great time series

classification bake off: a review and experimental evaluation of recent algorithmic

advances,” Data Mining and Knowledge Discovery, 2017, vol. 31, no. 3, pp. 606–

660.

[2] P. Esling and C. Agon, “Time-series data mining,” ACM Computing Surveys, 2012,

vol. 45, no. 1, pp. 1–34.

[3] G. Chen, G. Lu, W. Shang, and Z. Xie, “Automated change-point detection of eeg

signals based on structural time-series analysis,” IEEE Access, 2019, vol. 7, pp.

180 168–180 180.

[4] B. Liu, J. Li, C. Chen, W. Tan, Q. Chen, and M. Zhou, “Efficient motif dis-

covery for large-scale time series in healthcare,” IEEE Transactions on Industrial

Informatics, 2015, vol. 11, no. 3, pp. 583–590.

[5] G. He, Y. Duan, G. Zhou, and L. Wang, “Early classification on multivariate time

series with core features,” in Proc. DEXA, 2014, pp. 410–422.

[6] S. M. Idrees, M. A. Alam, and P. Agarwal, “A prediction approach for stock market

volatility based on time series data,” IEEE Access, 2019, vol. 7, pp. 17 287–17 298.

[7] J. Yin, Y.-W. Si, and Z. Gong, “Financial time series segmentation based on

turning points,” in Proc. ICSSE, 2011, pp. 394–399.
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