List of Figures

1.1	Illustration of difference between traditional classification and early classific	ation
	approaches for time series	2
1.2	Illustration of an early classification approach for MTS	3
3.1	Illustration of the early classification for detection of the fog status on	
	the road	22
3.2	Illustration of the components of an MTD	27
3.3	Block diagram of the proposed approach for building the classifier and	
	predicting the class label of an incomplete MTD	29
3.4	SensorTag location on the vehicles during experiment	40
3.5	Illustration of the experimental results of the proposed approach for road	
	surface dataset using $\boldsymbol{\alpha} = 0.9.$	41
3.6	Impact of equal and different sampling rate components on the MRL. $$.	42
3.7	Illustration of the tradeoff between accuracy and earliness for PEMS-SF	
	and HHAR	46
3.8	Impact of different sets of sampling rate on accuracy and earliness	47
3.9	Comparison of the proposed approach with existing approaches using F_1	
	score metric	49
3.10	Confusion matrices for HHAR dataset using Ω_1	50
3.11	Impact of $\boldsymbol{\alpha}$ on the earliness for PEMS-SF dataset using Ω_1	51
4.1	Block diagram of the FECM	60
4.2	Overview of learning phase of the FECM	61
4.3	Illustration of Hasse diagram for a power set. Part (a) illustrates an	
	example of Hasse diagram for a power set of $O = \{1, 2, 3, 4\}$. Part (b)	
	shows the coloring of the Hasse diagram based on relevancy of nodes	64
4.4	Computation of class discriminating MRLs for the MTS	68
4.5	Pruning of relevant sub-datasets using accuracy and earliness	69

xii List of Figures

4.6	Identification of faulty components in a new MTF	71
4.7	Overview of prediction of class label of an MTS $\mathbf{C}^{p,s}$	74
4.8	Illustration of selected components for different datasets in FECM	79
4.9	Performance evaluation of FECM on different activities at $\pmb{\alpha}=0.9.$	80
4.10	Fault tolerance capability of the FECM with varying number of faulty	
	components in the training data using different datasets	81
4.11	Impact on the accuracy and earliness of the FECM with varying number	
	of faulty components in the testing data	83
4.12	Accuracy comparison between FECM and existing approaches along the	
	progress of MTS	86
4.13	Illustration of execution time difference for the different datasets	87
5.1	Overview of the traditional classifier with ZSL	93
5.2	Block diagram of SECM	94
5.3	Illustration of attribute learning for given single component dataset \mathcal{D} .	97
5.4	Experimental setup for data collection using NodeMCU and Raspberry	
	Pi from washing machine	103
5.5	Accuracy and earliness results using varying number of attributes in the	
	time series	105
5.6	Performance of SECM for seen classes (i.e., faults)	106
5.7	Impact of unseen classes on accuracy and earliness of SECM	107
5.8	Precision, recall, and F_1 score results for unseen class labels	108
5.9	Performance results of sensitivity analysis of SECM	108
5.10	Performance results of SECM on the existing datasets	110