
Chapter 4

Fault-Tolerant Early Classification

Approach for Multivariate Time

Series

The previous chapter presented an early classification approach for MTS which is gen-

erated by the sensors of different sampling rate. In some applications such as human

activity monitoring, the sensors have equal sampling rate but they may be faulty or

unreliable, thus generating the MTS with faulty data components. In this chapter, we

focus on to solve the early classification problem for such MTS.

4.1 Introduction

With the ubiquity of cheap and small-size sensors, obtaining fine-grained information

about any phenomenon became effortless. However, the correctness of the information

is heavily rely on the reliability of the sensors. Such reliability can be validated by using

the generated time series data [36]. A sensor is said to be faulty if it generates faulty

data due to an error with microprocessor or low battery [77]. If a component of MTS

is generated from such a faulty sensor then it may influence the accuracy of classifier.
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In addition, one can get highly accurate classification results by increasing the num-

ber of sensors, especially in human activity classification system. However, in resource

constrained environments such as smartphone and wearable (e.g., Fitbit [78], Bios-

trap [79]), it is desirable to use fewer sensors for activity classification but with main-

taining a desired level of accuracy. It suggests that some of the sensors can be omitted

if they contribute marginally to the accuracy [37]. We also consider these sensors as

faulty in this work, essentially they are irrelevant.

For example, the sensors in the human activity classification system generate an

MTS corresponding to an activity. The early classification of such MTS refers to pre-

dicting a class label of activity before its complete execution, with a marginal com-

promise of accuracy. The faulty data components may be introduced in the MTS

(corresponding to the ongoing activity) due to faulty sensors or unexpected motions.

Such faulty components can mislead the classification process, which in turn will result

in lower accuracy. In addition, the presence of faulty components is very common in

IoT applications, but there exists no early classification approach that can handle these

faulty data components of the MTS. Further, an MTS may also have some components

which neither contribute to earliness nor to accuracy and therefore can also be removed

during early classification.

In this chapter, we focus on early classification of MTS using a labeled MTS training

dataset. We consider that a new MTS (to be classified) can have some of its components

generated from faulty sensors. The problem is then two folds: first, identification of

faulty components in the new MTS and second, prediction of the class label without

waiting for complete MTS.

4.1.1 Motivation

There exists following major limitations in the existing work that motivated our work.

• Fault-tolerant: The existing approaches can not classify a new MTS correctly if
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any of its component is generated from a faulty sensor.

• Correlation: The existing work [23, 26, 32, 41] do not consider the correlation

between the components of MTS while predicting the class label of a new MTS.

This correlation can be quite informative for predicting the class label along the

progress of MTS.

• Earliness: In real-time applications such as human activity classification, it is

desirable to classify an MTS as early as possible with a desired level of accuracy.

The existing work [8, 21] require complete MTS to classify the human activities

and therefore do not provide any earliness.

• In addition, the existing work [21,29,80] use all components of MTS in classifica-

tion even when some of them do not provide any identifiable information about a

particular human activity. Such components increase the time complexity of the

classification model and also degrade the user experience.

4.1.2 Major Contributions of the Work

This work addresses the early classification problem for MTS with faulty components.

In particular, the major contributions of this chapter are as follows.

• This work proposes a Fault-tolerant Early Classification of MTS approach (FECM)

to classify an incomplete MTS. By fault-tolerant we mean that FECM can cor-

rectly classify the MTS even if some of its components are generated from faulty

sensors. FECM employs ARIMA model to identify the faulty component by

learning error thresholds using training dataset.

• The FECM uses MTS that is generated by multiple sensors where the compo-

nents have correlation among them. The FECM computes relevancy score of the

component using k-means clustering to arrange them in non-increasing order of

their relevancy scores. Such arrangement of components is used during estimation

of MRL and classification of new incomplete MTS.
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• Next, the FECM obtains a set of time series from a given MTS using Partial

ordered set, which are sufficient for the desired level of accuracy of the classifica-

tion. For providing the earliness during classification, FECM estimates the class

discriminating MRLs using GP classifier and k-means clustering. The GP is prob-

abilistic classifier which provides class probabilities against the MTS instances.

We propose a method to classify a given MTS by using the estimated MRLs.

• Finally, we demonstrate an experiment for human activities classification and

evaluate the performance of FECM using accuracy and earliness by using the

created dataset and two publicly available datasets. We considered eight human

activities during the experiment for creating the dataset. We also compared the

FECM with three existing approaches [22,25,29].

The rest of the chapter is organized as follows. Next section defines the terminologies

used in this work. Section 4.3 proposes the fault-tolerant early classification approach

to classify the MTS with Faulty components (MTF). Section 4.4 evaluates the perfor-

mance of the proposed approach on various human activity datasets and then compares

the results with existing approaches. Finally, Section 4.5 concludes the chapter.

4.2 Preliminaries

This section defines the terminologies that are required to understand our work. Let

D = {〈C1,L1〉 , 〈C2,L2〉 , · · · ,
〈
CN ,LN

〉
} be an MTS training dataset, where Cj de-

notes jth MTS and Lj denotes its class label, where 1 ≤ j ≤ N . We assume that the

dataset D has l different class labels, given as L = {L1, L2, · · · , Ll}. Each MTS in D

has n time series and consists of M data points.

Definition 4.1 (Sub-dataset) Let D be an MTS dataset which consists of N MTS

and each MTS has n components. A sub-dataset of D, denoted by DC, is a dataset

with all N MTS consisting of only C components, where C is a subset of components as
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C ⊂ {C1,C2, · · · ,Cn}. In addition, D−i denotes a sub-dataset with all N MTS having

n components excluding Ci.

Definition 4.2 (Faulty component) A component is said to be faulty if it is gener-

ated from a faulty sensor.

Definition 4.3 (Partial ordered set) A set P is said to be a Partial order set (Poset) [81]

over an inclusion relation “⊆” if following axioms hold for any elements x, y, z ∈ P:

• reflexivity: x ⊆ x.

• antisymmetry: if x ⊆ y and y ⊆ x then x = y.

• transitivity: if x ⊆ y and y ⊆ z then x ⊆ z.

4.2.1 ARIMA model

ARIMA model has been widely used in the framework of time series forecasting [82,83].

We use it for identifying a faulty time series in the new MTS during testing. It is

an Auto Regressive Moving Average (ARMA) model with d degree of differencing.

Moreover, ARMA model itself is a combination of two models: AR(p) and MA(q).

AR(p) model expresses an observation of a time series at time t as linear polynomial of

past p observations and a random error εt. Unlike AR(p), MA(q) model considers past q

prediction errors instead of the observations. The ARMA(p, q) model is mathematically

expressed as

xt =

p∑
i=1

φixt−i +

q∑
j=1

ϕjεt−j + εt, (4.1)

where, φ1, φ2, · · · , φp and ϕ1, ϕ2, · · · , ϕq are the model parameters, which can be es-

timated from past data and εt ∈ N (µ, σ2). Equation 4.1 can also be written as

φ(B)xt = ϕ(B)εt for brevity, where B is a backshift operator as Bxt = xt−1. Adding
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differencing d into ARMA(p, q), we get the ARIMA(p, d, q) model as

φ(B)(1−B)dxt = ϕ(B)εt, (4.2)

where, (1−B)d denotes the d degree of differencing.

•Parameter estimation: ARIMA model uses Maximum Likelihood Estimator (MLE)

to estimate the parameters from the past data (i.e., training data). Let xxx = {x1, x2, · · · , xT}

is a set of T observed data points and θθθ = {φ1, φ2, · · · , φp, ϕ1, ϕ2, · · · , ϕq} is a set of

ARIMA model parameters to be estimated. The joint probability function of observing

xxx is given as f(xT , xT−1, · · · , x1;θθθ). The MLE uses a log-likelihood function, which is

defined as follows

L(θθθ|xxx) = f(xT , xT−1, · · · , x1;θθθ). (4.3)

To estimate θθθ in parameter space ΘΘΘ, the MLE is given as

θ̂θθ = argmax
θθθ∈ΘΘΘ

L(θθθ|xxx) (4.4)

As L(θθθ|xxx) is continuous for all θθθ, we can obtain the maximum likelihood estimate θ̂θθ by

solving

∂L(θθθ|xxx)

∂θθθ
= 0. (4.5)

Now, the parameters of ARIMA model can be estimated from the past data using

Equation 4.5.

4.2.2 Kernel Density Estimation (KDE)

It is non-parametric method for data smoothing problem on a finite sample. KDE [65]

estimates a probability density function of outcomes of a stochastic process. Let X =
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{x1, x2, · · · , xn} be random sample drawn from unknown probability density function

f̂ . The kernel density of f̂ at x∗ can be estimated as

f̂h(X = x∗) =
1

nh

n∑
i=1

K

(
x∗ − xi
h

)
, (4.6)

where, K(·) is a kernel function and h > 0 is a smoothing parameter. We consider Gaus-

sian kernel to approximate the sample X, where the optimal choice of h is 1.06σn
1
5 [84]

and kernel function is given as

K

(
x∗ − xi
h

)
=

1√
2πσ

e−
(x∗−xi)2

2h2
. (4.7)

Substituting kernel function from Equation 4.7 into Equation 4.6, we get x∗ as a rep-

resentative data point of X.

4.3 Fault-tolerant Early Classification of MTF

This section proposes a Fault-tolerant Early Classification of MTS approach to predict a

class label of a new incomplete MTF . For a given MTS training dataset D, we consider

that all the MTS are complete and do not have any faulty component. However, a new

MTS (i.e., MTF), which is to be classified, can have faulty components.

4.3.1 Overview of FECM

The FECM consists of two major phases: learning and testing. In learning phase,

FECM builds a set of classification models using the given training activity dataset in

an offline manner. Each model learns class discriminating MRLs and error thresholds

corresponding to each component of the MTS during this phase. Once the models

are built, they utilize the learned MRLs to classify a new MTF (corresponding to an

ongoing activity) before its complete execution in an online manner during testing
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phase. The testing phase first identifies the faulty components using learned error

thresholds and then classifies the MTF by selecting a suitable classification model from

the set. Figure 4.1 illustrates the block diagram of the FECM.
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Figure 4.1: Block diagram of the FECM.

4.3.1.1 Learning phase

The main objective of this phase is to construct a set of classification models by estimat-

ing the class discriminating MRLs using GP classifier and k-means clustering. FECM

first finds the relevant sub-datasets using a combination of components and then builds

a separate classification model for each relevant sub-dataset. Learning phase consists

of four major steps: obtaining relevant sub-datasets, estimating MRLs, pruning of rel-

evant sub-datasets, and estimating error thresholds. The steps of learning phase are

discussed in Sections 4.3.2, 4.3.3, 4.3.4, and 4.3.5 in detail. Figure 4.2 illustrates an

overview of learning phase of FECM. Further, Algorithm 4.1 illustrates all steps of

learning phase of the FECM. The input and output of this phase are as follows:

Input: An MTS training dataset D = {〈Cj,Lj〉 : 1 ≤ j ≤ N} that consists of N

labeled MTS with a class label Lj ∈ L, where L is a set of all class labels. Each MTS

has n components, i.e., Cj = {Cj
1,C

j
2, · · · ,Cj

n}.
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Output: A set of classification models KKK = {K1,K2, · · · ,Kr}, where each model Ki

is trained using a relevant sub-dataset for 1 ≤ i ≤ r and a set of error thresholds

corresponding to n components, i.e., ξξξ = {ξ1, ξ2, · · · , ξn}.
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Figure 4.2: Overview of learning phase of the FECM.

4.3.1.2 Testing phase

This phase predicts a class label of a new MTF while maintaining a desired level of

accuracy (ααα). It consists of two steps: identifying faulty components in the MTF and

class label prediction. The FECM first identifies the faulty components in the MTF

and removes them from the MTF. It then selects one of the constructed model from KKK

to classify the new MTF using the estimated MRLs. The selection of an appropriate

classifier depends on the number of relevant components present in the new MTF.
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As FECM uses only one classification model at a time, it can not take advantage of

ensemble learning where multiple models are combined to improve the performance.

The steps of testing phase are described in Sections 4.3.6 and 4.3.7. Algorithm 4.2

illustrates all steps of testing phase of the FECM.

4.3.2 Obtaining relevant sub-datasets using Poset

This section obtains the relevant sub-datasets of a given dataset D using Poset. For the

dataset D, there exists total 2n possible sub-datasets. If n is large, there will be large

number of sub-datasets. Not all of these sub-datasets can provide the desired level of

accuracy ααα even by using complete MTS. FECM first computes the relevancy score of

the components of the MTS and then arrange them in non-increasing order of their

relevancy scores. The FECM employs k-means clustering to compute relevancy score

of the components. The relevancy score of a component Ci can be computed as

S(Ci) = AD −AD−i , (4.8)

where, AD and AD−i are the accuracy that can be obtained by applying k-means

clustering on D and D−i datasets, respectively, and k is equal to the total number

of class labels in the respective dataset. The FECM uses correlation based similarity

measure to find the nearest cluster. The similarity between any two MTS X, Y ∈ D,

is given as

Sim(X, Y ) =
1

n

n∑
i=1

M∑
k=1

(x
(k)
i − µXi)(y

(k)
i − µYi)√

M∑
k=1

(x
(k)
i − µXi)2

M∑
k=1

(y
(k)
i − µYi)2

,

where, µ and M denote expected mean and length of MTS, respectively. Now, the order

of components in the MTS is given as O = {1, 2, · · · , n}. For any two elements a, b ∈ O
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corresponding to components Ca and Cb, respectively, if a > b then S(Ca) ≤ S(Cb).

With the help of relevancy scores, the FECM constructs a Hasse diagram of a Poset

of all possible subsets (i.e., 2n), where each node corresponds to a sub-dataset (i.e.,

a combination of components). In the Hasse diagram, FECM evaluates each node for

its relevancy and assign a color accordingly, i.e., ‘white’ if node is relevant and ‘red’

otherwise. A node is said to be relevant with C components, if ADC ≥ αααAD holds,

where ααα is desired level of accuracy. Procedure 1 illustrates the steps for assigning a

color to the nodes in the Hasse diagram (from top to bottom).

Procedure 1: Color node()

1. Initially assign ‘white’ color to all nodes.

2. Compute accuracy AD.

3. For each node (set of C components):

4. If node is ‘white’

5. Compute accuracy ADC .

6. If ADC ≥ αααAD:

7. No color change.

8. Else:

9. Assign ‘red’ to node and its descendants.

After coloring, the sub-datasets that correspond to ‘white’ nodes, are called as relevant

sub-datasets. Let R denotes a set of all relevant sub-datasets obtained after coloring,

i.e., R = {R1, R2, · · · , Rz}, where z � 2n. The FECM builds a classification model for

each of the z relevant sub-datasets.

Example: Let a dataset has four components (C1,C2,C3, and C4) represented as O =

{1, 2, 3, 4}. Hasse diagram for all possible subsets of O over an inclusion relation “⊆” is

shown in part (a) of Figure 4.3. Initially, all nodes are of ‘white’ color. After coloring,

the nodes (representing relevant sub-datasets) remain ‘white’ and others become ‘red’

as shown in Part (b) of Figure 4.3. This step is shown at Lines 1− 5 in Algorithm 4.1.
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Figure 4.3: Illustration of Hasse diagram for a power set. Part (a) illustrates an
example of Hasse diagram for a power set of O = {1, 2, 3, 4}. Part (b) shows the
coloring of the Hasse diagram based on relevancy of nodes.

4.3.3 Estimating class discriminating MRL

This step uses GP [42] classifier and k-means clustering to compute class discriminating

MRLs for the given dataset. Let S ∈ R be a relevant dataset with s components and

Si is sub-dataset of S with only Ci component, where 1 ≤ i ≤ s. The FECM first

computes the class discriminating MRLs for each component separately and later it

computes MRLs for the MTS by utilizing the correlation between the components.

4.3.3.1 Computation of MRL for an individual component

Let Xf ∈ Si denotes a time series with f data points and f equals to M for a complete

time series. The objective of an early classifier is to learn a mapping Xf → L using

given dataset, where L is ground truth class label and f(≤ M) is the MRL of time

series X. For each time series X ∈ Si, we perform following steps to obtain the MRL:

(a) The FECM uses k-means clustering to obtain the compact groups of similar time
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series using full length (M), where k denotes the number of classes in the dataset, i.e.,

k = l. Let a cluster corresponding to Lq class label is denoted by Gq and the confusion

matrix of l × l, obtained after clustering, is denoted by B. A prior probability of class

label Lq by using B is given as

p(Gq) = B[q][q]. (4.9)

The probability that the time series Xf belongs to cluster Gq, is given as

p(Gq|Xf ) =
δq∑l
k=1 δk

, (4.10)

where, δq = Ḡ − dq and Ḡ is an average of distances from Xf to all the l clusters and dq

is the distance from Xf to cluster Gq, and is given as

Ḡ =
1

l

l∑
q=1

dist(Xf ,Gl) and dq = dist(Xf ,Gq).

The function dist(Xf ,Gq) uses only first f data points to compute the similarity. We

consider euclidean distance as similarity measure but any other distance metric such as

dynamic time warping [85], can be easily incorporated here.

(b) In this step, FECM uses GP classifier to model a time series as outcome of stochastic

process and to obtain class posterior probabilities using given dataset Si. Let hf is a

GP classifier such that hf : Rf → L. The posterior probability of class Lq for a time

series Xf can be obtained using Baye’s rule as follows

p(Lq|Xf ) =

f∏
k=1

p(Lq) · p(x(k)
f |Lq)

p(x
(k)
f )

, (4.11)

where, p(x
(k)
f ) and p(Lq) are marginal and prior probabilities that can be estimated
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using Si, respectively. Further, the likelihood term p(x
(k)
f |Lq) is given as

p(x
(k)
f |Lq) =

1√
2πσ

e−
(x

(k)
f
−µ)2

2σ2
. (4.12)

(c) We define a measure Ff to estimate the relative accuracy that can be obtained using

f data points of the time series instead of using all M data points. Using Equations 4.9,

4.10, and 4.11, we define the relative accuracy of a time series Xf belonging to ground

truth class label Lq as

Ff =
p(Lq|Xf ) · p(Gq|Xf )

ααα · p(Gq)
, (4.13)

where, ααα is a desired level of accuracy given by user. The utility function U(·) that

optimizes a tradeoff between relative accuracy Ff and earliness E , is given by

U(Xf ) =
2×Ff × E
Ff + E

, where E =
M − f
M

. (4.14)

At this point, we can compute the MRL of a time series X ∈ Si as given in following

expression

MRL = argmax
f
{U(Xf )}. (4.15)

The FECM computes a representative MRL for each class label Lq using obtained

MRLs (using Equation 4.15), where 1 ≤ q ≤ l. For a dataset Si, let Nq is number of

time series that has class label Lq. Using Equation 4.15, the vector of learned MRLs

for the class label Lq is given by Vq = {v1, v2, · · · , vNq}. The FECM uses KDE [65]

to estimate a class representative MRL by considering Vq as a random sample. Using

Equation 4.6, we get v∗ as a representative MRL for Lq class label. Next, FECM stores

the representative MRLs for Si dataset into a vectorMi = {fi,1, fi,2, · · · , fi,l}. Finally,
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the class discriminating MRLs for the dataset S, are given asWWW = {M1,M2, · · · ,Ms}.

This step is illustrated at Lines 6− 24 in Algorithm 4.1.

4.3.3.2 Computation of MRL for MTS with all components

In this step, FECM computes the MRL for MTS considering all the components at

once by utilizing the correlation between the components. Let C be an MTS with s

components, i.e., C = {C1,C2, · · · ,Cs}. For each MTS C ∈ S with true class label L,

FECM performs following steps to compute MRL:

(a) FECM starts prediction from component C1 by considering f data points (i.e.,

estimated MRL obtained using M1 for L class label).

(b) For i = 1 to s:

• GP classifier hf , which is trained over dataset Si using first f data points,

predicts the class label L̂i.

• Forward L̂i to next component Ci+1.

• Compute minimum required data points to predict class label L̂i using Ci+1

as f =Mi+1[L̂i].

(c) Repeat Step (b) till predicted class label L̂i is not obtained for all the components,

i.e., 1 ≤ i ≤ s.

(d) The MRL of C is obtained using only those components whose predicted class

label is L and number of data points used to predict L becomes the MRL of C.

Figure 4.4 illustrates the computation of class discriminating MRLs for the MTS

using all components at once. Such MRLs for the dataset S are obtained as MMMS =

{f1, f2, · · · , fl} using Equation 4.6 and accuracy AS.

4.3.4 Pruning of relevant sub-datasets using MMMS and AS

There may exist multiple suitable groups of components (i.e., relevant sub-datasets)

that can provide the desired level of accuracy ααα. The FECM therefore builds a Hasse
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Figure 4.4: Computation of class discriminating MRLs for the MTS.

diagram of those suitable groups and selects the most suitable group of components

using the Hasse diagram. The most relevant sub-dataset is obtained by pruning the

other sub-datasets based on accuracy and earliness. In part (a) of Figure 4.5, let S

and S′ are two relevant sub-datasets corresponding to nodes in Hasse diagram and S

is parent node of S′. A sub-dataset S can be pruned if avg(MMMS
′) < avg(MMMS) and

AS
′ ≥ AS, as depicted by ‘green’ color in Hasse diagram in part (b) of Figure 4.5. As

the number of components in S is more than S′, pruning S can save many computations

during the classification of a new MTS. This pruning process is carried out for all the

nodes, which eventually provides the most relevant sub-dataset.

Let Rprun(⊆ R) denotes the set of remaining relevant sub-datasets, given as Rprun =

{R1, R2, · · · , Rr}, where r(≤ z) denotes the number of relevant sub-datasets in Rprun.

For each relevant sub-dataset Ri ∈ Rprun, FECM builds a classification model Ki =

{WWW i,MRi}. Further, for whole training dataset D, the set of classification models is

given as KKK = {K1,K2, · · · ,Kr}. This step is shown in Algorithm 4.1.
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Figure 4.5: Pruning of relevant sub-datasets using accuracy and earliness. Part (a)
shows a Hasse diagram obtained from part (b) of Figure 4.3 after removing ‘red’ color
nodes. Part (b) illustrates pruning of nodes using accuracy and earliness.

4.3.5 Estimating error threshold

The objective of this step is to estimate an error threshold ξ corresponding to each

component of MTS using training dataset D. Such error threshold can be estimated

by modeling the time series using ARIMA model [83]. The maximum permissible error

threshold ξi in component Ci is given as

ξi = max
1≤j≤N,1≤k≤M

{εjk}, (4.16)

where, εjk denotes an error that is the difference between kth actual and predicted

observations of jth time series using ARIMA model. In this way, the FECM can compute

the error thresholds for whole dataset D as ξξξ = {ξ1, ξ2, · · · , ξn}. This step is shown at

Lines 29− 31 in Algorithm 4.1.

4.3.6 Identifying faulty component

In this step, FECM uses the estimated error thresholds ξξξ to identify the faulty compo-

nents of a new MTF. Let Cp = {Cp
1,C

p
2, · · · ,Cp

n} be a new MTF. The FECM considers

the learned MRL M1 to know the right time (i.e., sufficient data points) to start the

prediction of class label. In addition, it also helps to avoid premature or needless predic-
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Algorithm 4.1: Learning phase
Input: A labeled dataset D of N MTS with l labels. Each MTS has n complete components

of length M and a class label L ∈ L;
Output: A set of classification models KKK = {K1,K2, · · · ,Kr};

/* Obtaining relevant sub-datasets */
1 for i← 1 to n do
2 Compute relevancy score S(Ci) using Equation 4.8.

3 Arrange components in non-increasing order of relevancy score.
4 Construct a Hasse diagram of set of components using ⊆.
5 Obtain relevant sub-datasets using Procedure 1 as R = {R1, R2, · · · , Rz}

/* Estimating MRL and pruning of relevant sub-datasets */
6 for i← 1 to z do

/* Number of components in Ri is s */
7 for j ← 1 to s do
8 Obtain confusion matrix B using k-means clustering.

/* Gq is a group corresponding to class Lq ∈ L */
9 Compute p(Gq) using Equation 4.9.

/* U is matrix of N ×M */
10 for f ← 1 to M do
11 Construct GP classifier hf : Rf → L.
12 for k ← 1 to N do

/* Xk,f is kth time series of length f */
13 Compute p(Gq|Xk,f ) using Equation 4.10.
14 Compute p(Lq|Xk,f ) using hf using Equation 4.11.
15 Compute utility U(Xk,f ) using Equation 4.14.
16 Append U [k, f ]← U(Xk,f ).

17 for k ← 1 to N do
18 MRL(Xk) = argmax

f
{U [k, f ]}.

19 Append V ← MRL(Xk).

/* Vq is a set MRLs for Lq class */

20 fj,q = f̂h(Vq = v∗), using Equation 4.6.
21 Mj = [fj,q] for 1 ≤ q ≤ l.
22 AppendWWWi ←Mj .

/* Consider all components of Ri at once to compute MRLs */
23 ComputeMMMRi

using steps given in Section 4.3.3.
24 Compute accuracy ARi .

/* Pruning a sub-dataset from R using Hasse diagram */
/* Consider a node S′ ∈ R with parent node S ∈ R */

25 if (avg(MMMS′) < avg(MMMS) & AS′ ≥ AS) then
26 Remove sub-dataset corresponding to node S from R.

/* Consider Rprun(⊆ R) is a set of remaining sub-dataset */
27 Rprun = {R1, R2, · · · , Rr}, where r ≤ z.
28 KKK = {K1,K2, · · · ,Kr}, where Ki = {WWWi,MRi

} and 1 ≤ i ≤ r.
29 for i← 1 to n do
30 Compute error threshold using ARIMA as given in 4.3.5 ξi = max

1≤j≤N,1≤k≤M
{εjk}.

31 ξξξ = {ξ1, ξ2, · · · , ξn}.
32 return KKK and ξξξ.
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tions. As soon as Cp
1 gets min{M1} data points, FECM checks for faulty components

before starting the actual classification. FECM first fits ARIMA(p, d, q) model to each

time series of the new MTF and then uses the fitted ARIMA(p, d, q) model to predict

the next w data points, where w is a window of minimum number of data points that

are to be considered for error checking. A suitable window size can be learned from

the training dataset using a method given in [86]. Later, if the difference between the

observed and predicted data points is greater than the estimated error threshold then

the respective time series can be marked as faulty component of the MTF.
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Figure 4.6: Identification of faulty components in a new MTF.

Let mi denotes number of data points at time t in Cp
i ∈ Cp. Let x denotes a vector

of next w observed data points after time t as x = {x(t+j) : 1 ≤ j ≤ w}. Similarly, let

x̂ denotes a vector of w predicted data points after time t, using fitted ARIMA(p, d, q)

model, as x̂ = {x̂(t+j) : 1 ≤ j ≤ w}. Now, if ξi < ‖x− x̂‖2 holds then Cp
i is marked as

faulty component. Figure 4.6 illustrates the process of faulty component identification

using ARIMA model. This step is shown at Lines 3− 7 in Algorithm 4.2.

4.3.7 Class label prediction

FECM predicts the class label of the MTF without considering the faulty components.

Let Cp,s denotes the new MTS Cp (corresponds to an ongoing activity) with s relevant
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Algorithm 4.2: Testing phase

Input: A set built classification models KKK and error thresholds ξξξ using
Algorithm 4.1 and a new MTF Cp = {Cp

1,C
p
2, · · · ,C

p
n} with n components;

Output: Predicted class label L̂;

/* Number of arrived data points in Cp
1 at t is m1(≤M) */

/* Obtain learned MRLs M1 for Cp
1 using KKK */

1 if min{M1} = m1 then
2 while Cp is not complete do

/* Identifying faulty component */
3 for i← 1 to n do
4 Learn parameters p, d, q of ARIMA for Cp

i at t.

5 Predict next data point x̂(t+1).

/* Observed data point at t+ 1 is x(t+1) */
6 if ξi < (x(t+1) − x̂(t+1)) then
7 Cp

i is faulty component and remove it from Cp.

/* Class label prediction */
/* New MTS after removing faulty components is Cp,s */

8 Select suitable classification model Ks ∈ KKK for ααα accuracy.

9 Select components from Cp,s required for Ks.
/* Obtain Mi from Ks, 1 ≤ i ≤ s */

10 Compute m′ = min{M1} and L = argmin
Lq

{M1}.

11 for i← 1 to s do
12 if m′ < mi then

13 Predict label (L̂i) of Cp,s
i using GP classifier.

14 else
15 Wait for more data points and go to Line 2.

16 if L̂i == L then

17 Compute m′ =Mi+1[L̂i] and L = L̂i.
18 Append LLL ← L.

19 else
/* Find next minimum MRL of {M1} */

20 Go to Line 10.

21 Find L̂ = argmax
L
{LLL} and break.

22 return L̂.
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components, where s ≤ n. Let Ks is the selected classification model from KKK based on

the number of selected components in Cp,s. We propose a method to utilize the cor-

relation between the components by forwarding a class label between the components.

In this method, the classification model Ks uses GP classifier (hmi) to estimate a class

label (L̂i) using Cp,s
i , where mi denotes the number of data points in Cp,s

i at the time

of prediction. Let m′ is the estimated MRL which is required to predict a class label

L. The method consists of following steps:

1. Compute m′ = min{M1} and L = argmin
Lq

{M1}.

2. For i = 1 to s:

• If m′ < mi then predict the class label of Cp,s
i otherwise wait for more data

points. Let L̂i denotes a predicted class label.

• If L̂i == L then update m′ = Mi+1[L̂i] for next component and L = L̂i.

Otherwise find the next minimum MRL to avoid the cumulative effect of

wrong prediction and go to step 1.

3. Find a class label (L̂) that is predicted by majority of components and assign it

to Cp,s. Next, the earliness can be obtained using the number of data points used

for prediction.

Figure 4.7 shows the method to predict the class label of an MTS. Further, this step

is illustrated at Lines 8 − 21 in Algorithm 4.2. After the prediction, the model waits

for full length of the MTS and again predicts the class label. If the predicted class

labels using MRL and full length are same then the MTS is segmented from ongoing

activity and assigned with the predicted class label. On the contrary, if the predicted

class labels are not same then discard collected data from ongoing activity and restart

the prediction of class label with forthcoming sensory values.
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4.3.8 Complexity Analysis

Time complexity: In Algorithm 4.1, as classification models can be built for each

sub-dataset parallelly, the for loop at Line 6 can be removed. The time complexity is

mainly depend on Lines 11, 13, and 30. At Line 11, the computational complexity of GP

classifier is O(N3), which can be approximated to O(p2N) where p(� N) is a subset

of N MTS [42]. As Line 11 is inside two for loops (excluding loop at Line 6), its time

complexity is O(s×M×p2N) = O(MN) as s� {M,N}. Similarly, the time complexity

of Lines 13 and 30 can also be obtained as O(MN). In sum, the time complexity of

Algorithm 4.1 can be given as O(MN). The time complexity of Algorithm 4.2 depends

on mainly ARIMA model and a for loop at Line 11. As ARIMA takes O(M) time,

the Line 4 runs O(M × n ×M) = O(M2) times, as n � M . Similarly, Line 11 runs

O(M) = M × s× l times, as {s, l} � M . Now, time complexity of Algorithm 4.2 can

be given as O(M2). The total time complexity of FECM is therefore O(MN +M2).
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Space complexity: In Algorithm 4.1, if all the classification models are constructed

parallelly then the space required to store all relevant sub-datasets is O(d × N ×M),

where d(� 2n) denotes the number of relevant sub-datasets out of 2n possible sub-

datasets. Now, since all the classification models are given as input to Algorithm 4.2,

its space complexity will also become O(dNM). The total space complexity of FECM

is therefore O(dNM).

4.4 Experimental Evaluation

In this section, we carry out the experimental evaluation to validate the performance

of FECM by giving answer to following questions:

• What are the selected components of MTS for different datasets using FECM?

(Section 4.4.2.1)

• What is the activity wise performance of FECM using accuracy and earliness

metrics? (Section 4.4.2.2)

• What is the impact of faulty components on the performance of FECM (Sec-

tions 4.4.2.3 and 4.4.2.4)

• How efficiently can FECM classify the activities compared to existing approaches?

(Section 4.4.3.1)

• What is the execution time difference between FECM and the existing approaches?

(Section 4.4.3.2)

4.4.1 Datasets

The FECM uses following datasets to evaluate and compare the performance of FECM.

• Human Activity Classification (HAC) dataset: An experiment is conducted to

collect human activities using smartphones.

• Existing datasets: Daily and Sports Activities (DSA) [13], HHAR [13], and NTU

RGB+D [87].
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4.4.1.1 HAC Dataset

We conduct an experiment to create a dataset using onboard sensors of a smartphone.

An Android application is developed to record the activities for 30 participants (10

female and 20 male) of age between 20 and 35. There are total eight activities considered

in this experiment including standing while talking (A1), sitting on sofa (A2), sitting on

floor (A3), lying on bed (A4), lying on floor (A5), walking downstairs (A6), walking

upstairs (A7), and eating (A8). The participants perform each of these activities

continuously in a predefined manner at sampling rate 100 Hz. We have used the onboard

sensors of Motorola Moto X smartphone to collect activity data of participants. The

activity data is collected using three smartphones worn on the wrist, waist, and thigh.

Table 4.1 illustrates the type of onboard sensors of smartphones that are selected to

place on different body parts. In this experiment, the participants are directed to

perform 100 repetitions of each activity. As result, a dataset is created that consists of

total 24000 (i.e., 30× 8× 100) MTS with their ground truth labels. a dataset

Table 4.1: Type of onboard sensors of smartphone on different body parts.

Position on
body

Onboard Sensors Abbreviation
No. of

components

Waist 3-Axis Accelerometer
Acc wax,
Acc way,
Acc waz

3

Wrist 3-Axis Gyroscope
Gyr wix,
Gyr wiy,
Gyr wiz

3

Thigh
3-Axis Accelerometer,

Pressure,
Temperature

Acc thx,
Acc thy,
Acc thz,

Press, Temp

5

• Preprocessing: As user is continuously performing the different activities, it be-

comes extremely important to spot the beginning point of an activity. Such spotting is

done by utilizing the fact that the fluctuation in sensory values is higher when user is
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performing the activity. The fluctuation in the sensory values is measured by comput-

ing the variance of a sliding window of last 10 data points (obtained from the ongoing

activity). If the variances of any two subsequent windows differ more than a user-

defined value then start point of that window indicates the beginning of the activity.

The FECM can also identify the end point of the activity using this sliding window.

As each activity lasts for different duration, the MTS corresponding to it consists of

different number of data points. This work therefore uses least and most significant

values of the shorter activities for making the length of all the activities equal [86].

We first determine the minimum length of MTS that can provide nearly full accuracy

(i.e., 100%) for all the activities. k-means (k = 8) clustering is used to determine such

length. In our experiment, full accuracy is achieved using first 900 data points of the

MTS. We, therefore, keep only first 900 data points of the MTS in the created dataset

and discard the remaining data points.

4.4.1.2 Existing Datasets

DSA dataset consists of MTS data of 19 different human activities with their ground

truth class labels. As multiple sensors are used to record the activity, an MTS is gen-

erated corresponding to the activities. Five units of motion sensors are used on five

different body parts. FECM uses MTS of five motion sensors as follows: gyroscopes

(i.e., Gyr1, Gyr2, and Gyr3) on torso, left arm, and right arm, respectively and ac-

celerometers (i.e., Acc1 and Acc2) on left and right legs, respectively. FECM includes

following activities from DSA dataset: sitting (B1), standing (B2), lying on back (B3),

lying on right side (B4), rowing (B5), jumping (B6), and playing basketball (B7).

Next, HHAR dataset was created to understand the impact of heterogeneous na-

ture of mobile sensing devices for human activity classification [88]. Each activity was

recorded by using two sensors (i.e., accelerometer and gyroscope) from many devices

including eight smartphones and four smartwatches from different manufacturers. The
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dataset consists of MTS of six different activities including sitting (C1), standing (C2),

walking (C3), stair up (C4), stair down (C5), and biking (C6). As the dataset con-

tains the activities that are performed in many different orientations of smartphones

and smartwatches, FECM includes the MTS of accelerometer and gyroscope both from

smartphone (i.e., Gyr1 and Acc1) and smartwatch (i.e., Gyr2 and Acc2) for perfor-

mance evaluation.

Further, NTU RGB+D dataset contains video data of various human activities

which was collected by using the depth cameras. This dataset also contains MTS

observations on motion angles of different human skeleton joints. As three dimensional

coordinates are recorded for the skeleton joint by three different cameras, the MTS

consists of nine components as C1,C2, · · ·C9. In our experiments, we consider following

10 different activities from this dataset: drink water (D1), eat meal (D2), brush teeth

(D3), brush hair (D4), drop (D5), pick up (D6), throw (D7), sit down (D8), stand

up (D9), and clapping (D10).

4.4.2 Results

This section presents the experimental results of the proposed approach using different

datasets. The datasets are divided into two parts with balanced class distribution:

training with 70% MTS and testing with 30% MTS. FECM uses standard 10-fold

cross-validation method in learning phase. Input parameters for different datasets are

given in Table 4.2.

Table 4.2: Input parameters of FECM for different datasets.

Dataset N Ntrain Ntest n M l
HAC 24000 16800 7200 11 900 8

DSA [13] 3360 2352 1008 15 125 7
HHAR [13] 20000 14000 6000 12 1200 6

NTU RGB+D [87] 8000 5600 2400 9 1000 10
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4.4.2.1 Selection of components

The FECM uses Hasse diagram (as shown in Figures 4.3 and 4.5) to obtain the most

suitable group of components that can provide ααα accuracy. Figure 4.8 shows the group

of components that are selected from MTS for learning MRLs for different datasets at

ααα = {0.5, 0.6, 0.7, 0.8, 0.9}. At a particular value of ααα, the components that are not

selected from the MTS, are either faulty or not required for ααα accuracy. For example,

for HAC dataset at ααα = 0.9, the components C1,C2,C3,C4,C5,C7,C9, and C10 are

sufficient to provide the ααα accuracy. The other components C6,C8, and C11 are not

required for ααα = 0.9. We observe from the Figure 4.8 that C6 and C8 are not selected

for any ααα, which indicates that they are the faulty components. We consider ααα = 0.9

for the further results. Further, as the components are arranged in increasing order

(starting from C1) of their relevancy score, the same set of components from different

datasets may be used to achieve the desired level of accuracy.
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Figure 4.8: Illustration of selected components for different datasets in FECM.

4.4.2.2 Performance on different human activities

We evaluate the activity wise performance of FECM at ααα = 0.9, using the selected

components (shown in Figure 4.8). Figure 4.9 illustrates the obtained accuracy and

earliness results for various considered activities using different datasets. Part (a) of

Figure 4.9 shows that FECM is able to obtain the desired level of accuracy (i.e., 90%)
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for all activities except A4 and A5. It indicates that these activities have less dis-

tinguishable patterns in their MTS. FECM achieves highest accuracy (i.e., 93.3%) for

A1 activity with 33.9% earliness and the highest earliness (i.e., 38.2%) is obtained for

A2 activity. On the other hand, FECM provides both lowest accuracy (i.e., 84.3%)

and lowest earliness (i.e., 20.3%) for A5 activity. We can make Similar observations

about DSA, HHAR, and NTU RGB+D datasets, as shown in parts (b), (c) and (d) of

Figure 4.9, respectively.
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Figure 4.9: Performance evaluation of FECM on different activities at ααα = 0.9.

4.4.2.3 Fault tolerance capability of FECM during training

Figure 4.10 illustrates the fault tolerance capability of the FECM with varying number

of faulty components in the training data. The performance of FECM is evaluated on

four datasets (i.e., HAC, DSA, and NTU RGB+D in parts (a), (b), and (c), respec-

tively). We considered six variations of the each dataset based on the different length

of MTS, which are given as 0.5M, 0.6M, 0.7M, 0.8M, 0.9M, and M , where M denotes

the full length of MTS and 0.7M denotes 70% length of MTS (for instance). Faulty
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Figure 4.10: Fault tolerance capability of the FECM with varying number of faulty
components in the training data using different datasets.

components are taken from high end of relevancy order (i.e., C1,C2, · · · ). For example,

if number of faulty components is four then it means C1,C2,C3, and C4 are faulty in

MTS. We observe following points about Figure 4.10:

• As first component C1 is most relevant in the MTS, it causes maximum drop in

the accuracy of FECM for all the variations if C1 is faulty (as shown in part (a)).

• NTD RGB+D dataset shows lower accuracy compared to other datasets for all

the variations as it has lesser number of components (i.e., 9).

• The accuracy of FECM is worst when it is trained using the dataset with 0.5M

length of MTS. It indicates that higher the incompleteness lower the accuracy,

irrespective of number of faulty components.

Part (d) of Figure 4.10 shows the impact of faulty components on the earliness of the
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FECM when training dataset consists faulty components in the MTS. It is clear from the

figure that earliness drops very fast when first few components are faulty in the MTS.

For example, earliness drops around 18% when only first three components are faulty for

DSA and NTU RGB+D datasets and after that it decreases gradually. It indicates that

the first three components are very informative for learning class discriminating MRLs.

Further, the number of data points in the training MTS with faulty components also

affects the earliness and thus FECM achieves better earliness for HHAR than others.

4.4.2.4 Fault tolerance capability of FECM during testing

We conducted an experiment to evaluate the performance of FECM with varying num-

ber faulty components in the testing data. The experiment is carried out using the

training dataset with complete MTS. Based on the relevancy order of components, the

FECM is evaluated for following cases:

• Case 1 (faulty components are taken from high end of relevancy order):

Figure 4.11 demonstrates the impact of faulty components on the performance of FECM

when only testing dataset consists of the faulty components in the MTS. Parts (a) and

(b) show that the FECM obtains (95 ± 2)% accuracy with (29 ± 1.5)% earliness for

all the datasets if there is no faulty component in the MTS. In part (a), as faulty

components only exist in the testing MTS, the FECM is able to obtain more than 33%

accuracy with even ten faulty components which is (11±5)% if training MTS also have

these faulty components (as shown in Figure 4.10). Similar observations can be made

about part (b) of Figure 4.11. We observe that NTU RGB+D dataset shows a 13.1%

drop in the accuracy when fourth component also becomes faulty along with previous

three, as illustrated in part (a) of Figure 4.11. It indicates that the fourth component

has significant identifiable information. The proposed approach can handle up to n− 1

faulty sensors. However, the accuracy and earliness both start decreasing rapidly when

more than 3 most relevant sensors are faulty.
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Figure 4.11: Impact on the accuracy and earliness of the FECM with varying number
of faulty components in the testing data.

• Case 2 (faulty components are taken from low end of relevancy order): In

this case, the performance of FECM is evaluated using different datasets by taking faulty

components from low end of relevancy order (i.e., Cn,Cn−1, · · · ). For n = 15, if number

of faulty components is four then it means components C15,C14,C13, and C12 are faulty.

Table 4.3 illustrates the obtained results using different datasets with increasing number

of faulty components. It is interesting to observe that the FECM is able to maintain

an acceptable level of accuracy (90.5 ± 2.2)% and earliness (29.2 ± 1.1)% even when

two components are faulty in the testing MTS. Another interesting observation is about

NTU RGD+D dataset with eight faulty components, where the FECM is able to achieve

35.7% accuracy using only first component C1 (as faulty components are removed from

the testing MTS). We can make similar observations about other datasets also.

4.4.3 Comparison with existing approaches

In this section, the FECM is compared with four existing early classification approaches

for MTS including MCFEC [49], MD-MPP [22], OAE [25], and DMP+PPM [29]. We

considered these approaches for performance comparison as they are widely used for

early classification of MTS data and have shown good performance. In [22] and [29],
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Table 4.3: Performance of FECM on increasing the number of faulty components in
the testing MTS. [A: Accuracy and E : Earliness]

Number of faulty
components

HAC dataset DSA dataset HHAR dataset NTU RGB+D dataset
A E A E A E A E

2 91.3% 29.3% 90.7% 28.1% 92.7% 30.4% 88.3% 30.2%
4 84.1% 26.5% 85.1% 24.2% 85.2% 27.4% 75.6% 25.4%
6 69.4% 18.4% 74.3% 17.3% 71.7% 20.3% 55.7% 18.2%
8 54.9% 12.6% 59.6% 10.2% 62.4% 14.1% 35.7% 8.4%
10 37.2% 9.1% 43.3% 8.4% 48.3% 11.2% - -
12 - - 38.4% 7.7% 32.2% 8.2% - -
14 - - 32.8% 6.6% - - - -

although MD-MPP and DMP+PPM are evaluated on MTS of video data but these

approaches can equally work for other domain data also.

Table 4.4: Comparison of FECM with existing approaches on accuracy and earliness
metrics using different datasets at ααα = 0.9.

Dataset Approach
Using selected components
(faulty components excluded)

Using all components
(faulty components included)

Accuracy Earliness (MRL) Accuracy Earliness (MRL)

HAC

MCFEC [49] 61.8% 6.2% (844) 53.7% 4.7% (857)
MD-MPP [22] 72.5% 8.3% (825) 60.3% 6.3% (843)

OAE [25] 73.3% 10.5% (805) 64.1% 7.5% (832)
DMP+PPM [29] 68.1% 13.2% (781) 57.9% 8.9% (820)

FECM (Proposed) 94.2% 24.2% (682) 90.1% 17.1% (746)

DSA

MCFEC [49] 57.6% 5.6% (118) 51.2% 4.2% (120)
MD-MPP [22] 69.1% 6.2% (117) 61.1% 4.3% (120)

OAE [25] 72.7% 6.2% (117) 59.7% 5.5% (118)
DMP+PPM [29] 66.2% 7.2% (116) 59.2% 6.8% (116)

FECM (Proposed) 91.7% 19.1% (101) 89.3% 13.2% (108)

HHAR

MCFEC [49] 60.3% 9.5% (1086) 54.7% 5.5% (1134)
MD-MPP [22] 73.2% 11.3% (1064) 63.2% 7.1% (1115)

OAE [25] 76.5% 13.3% (1041) 67.5% 9.6% (1085)
DMP+PPM [29] 69.1% 14.7% (1024) 58.2% 10.3% (1076)

FECM (Proposed) 93.7% 25.2% (898) 89.9% 18.3% (980)

NTU
RGB+D

MCFEC [49] 56.2% 7.3% (927) 52.9% 5.1% (949)
MD-MPP [22] 67.9% 7.4% (926) 60.5% 5.7% (943)

OAE [25] 69.7% 8.1% (919) 56.7% 6.2% (938)
DMP+PPM [29] 65.2% 8.4% (916) 60.2% 7.8% (922)

FECM (Proposed) 90.5% 19.9% (801) 88.3% 14.2% (858)

Table 4.4 shows comparison of FECM with existing approaches on the accuracy

and earliness metrics at ααα = 0.9. The comparison is carried out for following cases: 1)

Using selected components of MTS (i.e., excluding faulty components) and 2) Using all

components of MTS (i.e., including faulty components). The number of faulty (or not
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selected) components are varying in different datasets as shown in Figure 4.8. It is clear

from the table that FECM outperforms the existing approaches on both accuracy and

earliness metrics in both the cases for all the datasets. That means FECM can better

classify an MTS with ααα accuracy even when MTS have faulty components. We observe

that the performance of MCFEC approach is worst on both evaluation metrics (i.e.,

accuracy and earliness) for all the datasets. An interesting observation in the table is

that there exists a substantial degradation (i.e., 12 ± 5%) in the accuracy of existing

approaches if faulty components are included. For HAC dataset, OAE provides better

accuracy than MD-MPP and DMP+PPM, i.e., 73.3% when only selected components

are used and 64.1% when all components are used. On the other hand, DMP+PPM

gains better earliness than MD-MPP and OAE in both the cases. The FECM shows

better earliness for NTU RGB+D dataset but worse accuracy when compared with

DSA dataset.

4.4.3.1 Accuracy comparison along the progress of MTS

We compare the accuracy results along the progress of the MTS using selected com-

ponents only, as shown in Figure 4.12. FECM beats all the existing approaches on

accuracy as time elapses. FECM shows a substantial increment in the accuracy when

compared with existing approaches. In part (a) of Figure 4.12, the increment in the ac-

curacy of FECM is from 4% to 26% approximately while the existing approaches show

nearly same accuracy along the progress of MTS. In part (b) of Figure 4.12, FECM

performs approximately similar to OAE and MD-MPP upto the length of 30% of MTS

but accuracy increases rapidly thereafter. Maximum increment in the accuracy (i.e.,

16.1%) occurs from 40% to 50% length of the MTS. FECM is able to achieve an ac-

curacy of 88.5% using only 70% data points of the MTS. For DSA dataset, MCFEC

performs worst among all the approaches while MD-MPP and OAE achieve nearly same

accuracy along the progress of MTS. Further, similar observations can also be made
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about HHAR and NTU RGB+D datasets.
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Figure 4.12: Accuracy comparison between FECM and existing approaches along the
progress of MTS.

4.4.3.2 Execution time

In this result, we compare the execution time of FECM with existing approaches. Let

execution time of any X approach is denoted as TX. The execution time difference

(Tdiff ) is computed as TY−TFECM

TY
(%), where Y denotes an existing approach. Figure 4.13

illustrates the average Tdiff (100 executions) between FECM and existing approaches

for the different datasets at ααα = 0.9. Part (a) of Figure 4.13 shows the comparison of

execution time difference using selected components and part (b) of Figure 4.13 shows

the comparison using all components. It can be clearly observed from the figure that

execution time of all existing approaches is more than the FECM, as Tdiff is positive
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in all the cases. Moreover, FECM is significantly faster than the existing approaches

when only selected components are used, as shown in part (b).
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Figure 4.13: Illustration of execution time difference for the different datasets.

4.5 Conclusion

In this chapter, we proposed a fault-tolerant early classification approach to classify

the MTS. Unlike existing work, the proposed approach is able to classify an MTS even

when it has some faulty components. FECM constructs a set classification models by

estimating the class discriminating MRLs using GP classifier and k-means clustering.

The models use ARIMA model to identify the faulty components in the new incomplete

MTS. The FECM also selects minimum number of components from the MTS, which

can provide the desired level of accuracy. Our experimental results showed that the

FECM is able to achieve the desired level of accuracy while providing significant ear-

liness, especially in the human activity classification system. FECM outperformed the

existing approaches on all the used datasets. We believe that our research can be used

in health care for early prediction of diseases and fall detection using activity data. This

work motivates further research to develop a feature based early classification approach

for time series data.

Here, the MTS is allowed to have some of its components as faulty and we mainly
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focused on handling the faulty components. The previous and current chapters assumed

that new MTS (to be classified) should belong to one of the seen class label. It essentially

means that the classification model can classifies the new MTS correctly only if it

belongs to seen classes for which training instances were available. However, having the

MTS instances of all possible class labels in the training dataset may not be feasible in

some applications. For example, in industrial and domestic monitoring, the machines

or appliances can undergo several faults during its lifetime but having the information

about all types of faults is not practically possible. In the next chapter, we focus on

to develop an early classification approach that can classify an MTS even if it belongs

to an unseen class label. It improves the adaptability of the approach for industrial

applications where unseen faults may occur in the appliances at any time.
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