
Chapter 3

Early Classification Approach for

Multivariate Time Series with

Sensors of Different Sampling Rate

In this chapter, we focus on to develop an early prediction approach to predict a class

label of an incomplete MTS by using a given labeled MTS dataset. We consider that

the MTS is generated from the sensors of different sampling rate, and thus it contains

unequal number of samples in its components.

3.1 Introduction

With the recent advancements in the technologies, sensor-based devices have become

an integral part of our life. These devices generate MTS data, which requires a clas-

sification approach to classify it in real-time. However, the challenge is to maintain a

desired level of accuracy by using only fewer data points of the MTS. In the era of In-

ternet of Things (IoT), the sensors can have different sampling rate in order to capture

finer and non-redundant measurements about the phenomenon being observed. As a

result, the generated MTS contains different number of samples in its components. An
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important example of having such MTS is autonomous vehicle which is equipped with

several sensors including accelerometer, gyroscope, temperature, light, and so on. These

sensors help to monitor the inside and outside environment of the vehicle, behavior of

driver [71], road environment [72], and traffic flow prediction [73].

Figure 3.1 illustrates an example scenario, where on-vehicle sensors are used to

classify the outside environment on the road, such as fog, to turn on the fog lights

of the vehicle. The sensors have different sampling rate. As early as the classifier

classifies the road as foggy using the MTS (generated by the sensors), the fog lights will

get turned on and the driver will also be notified. Early classification of the MTS is

therefore helping to avoid accidents that could occur due to poor visibility on the road.
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Figure 3.1: Illustration of the early classification for detection of the fog status on the
road. Point (a) shows an example, where the sensors equipped vehicle is approaching
a turn with heavy fog on the road. The fog lights of the vehicle get turned on as it
reaches near the turn, as shown by point (b).

As the MTS contains different length of components, its early classification becomes

a challenging task. We therefore focus on to solve the early classification problem for

such MTS by using a labeled training dataset. Here, the main problem is to estimate

the class-wise MRLs using training MTS dataset with the desired level of accuracy

(denoted by ααα) with 0 < ααα ≤ 1.
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3.1.1 Motivation

Literature indicates following limitations that motivated the work in this chapter.

• The existing work [22, 26, 28, 29] assume that the MTS contains only the compo-

nents of equal length which are generated by using the sensors of equal sampling

rate. In real-world applications such as intelligent transportation system, differ-

ent types of sensors are used to observe various environmental conditions such

as humidity, light intensity, temperature, etc. Since the different sensors measure

the changes in the different environmental conditions, it is inappropriate to record

such changes using the sensors of equal sampling rate.

• Another major limitation of the existing work [23, 26, 29] is that they do not use

correlation between the components of the MTS. In autonomous vehicles, different

types of sensor generate an MTS where components are correlated to each other.

Avoiding such correlation reduces the accuracy of the classifier.

Considering these limitations in the literature, this chapter proposes an early classifi-

cation approach for MTS and demonstrates its utility in road surface classification.

3.1.2 Major Contributions of the Work

The major contributions of this chapter are as follows.

• This chapter proposes an early classification approach, which builds an ensemble

classifier, to solve the early classification problem. It first estimates the MRL of

each component of MTS by using a GP classifier [42]. Later, the estimated MRLs

are used to classify an incomplete MTS.

• We utilize the correlation among the components to compute the class-wise MRLs.

The correlation influences the accuracy of the classification. The proposed ap-

proach predicts the class label of a time series and forwards it to a next classifier

to predict the class label of the next time series of the same MTS, and so on.

• Next, the proposed approach uses a variableααα, which helps to provide the earliness
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in the classification. This variable is considered during the estimation of the MRL

of the time series while building the classifier.

• Finally, we demonstrate an application of road surface classification using on-

vehicle sensors with different sampling rate. The performance of the ensemble

classifier is also evaluated on real-world existing datasets [13]. This work considers

accuracy, earliness, and F1 score as evaluation metrics to compare the proposed

approach with existing approaches [25,26,29].

The rest of the chapter is organized as follows: Next section states the assumptions

and defines the terms used in this work. Section 4.3 presents an early classification

approach for MTS. Next, the performance of the proposed approach is evaluated for

road surface classification in Section 3.4 and for existing datasets in Section 3.5. Finally,

Section 4.5 concludes this chapter.

3.2 Preliminaries and Problem Statement

In this section, we state the assumptions made about the early classification and define

the terms. We also define the problem statement with overview of the solution approach.

3.2.1 Preliminaries

This work considers a labeled dataset, denoted by D, which consists N number of

MTS. The dataset has l class labels. The class label of an MTS is denoted by Li, where

1 ≤ i ≤ l. The number of MTS of Li class label is denoted by Ni, where 1 ≤ i ≤ l and

N = N1 +N2 + · · ·+Nl. Each MTS in dataset D consists n time series (components).

Each MTS in D is the series of data points indexed in time order. The dataset with N

time series of Ci component is denoted by Di, where 1 ≤ i ≤ n. This work considers

following assumptions or constraints:

• The dataset D should have sufficient data points in MTS (i.e., complete MTS)

during building of the classifier.
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• Sampling rate of the sensors, that generated the time series of the MTS, should

be fixed (not dynamic) during the whole process of data collection.

Definition 3.1 (Component) A time series in MTS is called a component. It is an

ordered set of data points. Let C be an MTS that consists of n time series. Such n

time series are called as n components of the MTS. The ith component of C is denoted

by Ci, where 1 ≤ i ≤ n.

Definition 3.2 (Complete MTS) An MTS is said to be complete if each of its com-

ponents has M data points, where M denotes the maximum number of data points (i.e.,

full length) in the MTS of training dataset D. The jth complete MTS of D is given as

Cj = {Cj
1,C

j
2, · · · ,Cj

n} where Cj
i ∈ RM for 1 ≤ i ≤ n and Cj ∈ Rn×M . A complete

MTS can be achieved after the complete execution of the human activity.

Definition 3.3 (MTS classification) For a given training dataset D with l class la-

bels L = L1, L2, · · · , Ll, the task of MTS classification is to learn a mapping function

h : Rn×M → L, where L ∈ L.

Definition 3.4 (Early classification of MTS) The task of early classification of MTS

is to estimate a class discriminating MRL using given training dataset D while main-

taining a desired level of accuracy ααα. Mathematically, it is defined as hf : Rn×f → L,

where L ∈ L and f ≤M .

Definition 3.5 (Earliness) As early classification model does not wait for the com-

pletion of MTS, earliness comes into existence. Such earliness is defined as the number

of data points (in percent) that are not used in the prediction. It is calculated as

E(%) =
M − f
M

× 100, (3.1)

where, M denotes the length of complete activity and f denotes the number of data

points of the ongoing activity (i.e., new MTS) that are used in the classification.
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Definition 3.6 (Accuracy) The accuracy of classification is defined as percentage

ratio of number of correctly classified MTS (denoted by Np) to the total number of

MTS in dataset D (denoted by N). It is mathematically given as

AD(%) =
Np

N
× 100. (3.2)

•MTS with components of Different sampling rate (MTD): The sampling rate

of a sensor is the number of data points taken per unit time. This work considers that

the components of an MTS in the given dataset D may not have the equal sampling rate.

Such MTS is called as Multivariate Time series with components of Different sampling

rate (MTD). Let λi be the sampling rate of the component Ci, where 1 ≤ i ≤ n. The

total data points taken or the length of Ci at time instance t is λi× t. The components

are arranged in decreasing order of their sampling rate as λ1 ≥ λ2 ≥ . . . ,≥ λn.

Figure 3.2 illustrates an example scenario of an MTD with n components in the

dataset D. Each component consists of M data points in the MTD and is arranged

from top to bottom in decreasing of their sampling rates. Part (a) of Fig. 3.2 illustrates

that the sampling rate of C1 component is more than the C2 component which are

generated by using gas sensor, temperature sensor, and so on. Part (b) shows that at

time instance t, the number of data points collected by different components, are not

same due to different sampling rate. Let mi denotes the number of data points taken

by the component Ci till time instance t, at sampling rate λi. We consider that the

component C1 consists of M data points at time instance t, i.e., m1 = λ1 × t = M .

However, the data points in C2 is m2 = λ2 × t = M λ2
λ1

, where m2 < m1 if λ2 < λ1. We

denote λ2
λ1

= λ2
1. The number of data points in C2 is Mλ2

1. Similarly, the component Cn

consists the least number of data points mn = Mλn1 . In the MTD, sensors aggregate

the temporal data at different sampling rate.
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Figure 3.2: Illustration of the components of an MTD. Part (a) shows MTD with
n components and each consists of M data points. Part (b) shows the length of the
components at the given time instance t.

3.2.2 Problem statement and overview of the solution

The early classification approach for MTS consists of various advantages in the field of

transportation system, as discussed in the introduction. The existing early classification

approaches for the MTS assumed that the sampling rate of all the components are equal.

However, such assumption is not suitable for real-life scenarios. This chapter therefore

proposes an approach for solving the problem: how fast an approach classifies a given

MTS with components of different sampling rate.

3.2.2.1 Problem statement

In this chapter, we solve the following problem: Consider a dataset D with N number of

MTD, where each MTD has n components of M data points. How do we predict the class

label of an incomplete MTD as soon as possible with ααα accuracy of the classification?

3.2.2.2 Overview of the solution

This work proposes an early classification approach to classify an incomplete MTD

with ααα accuracy of the classifier. The proposed approach first estimates the MRL of
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each component using the posterior probabilities obtained from GP classifier. Next,

the approach builds a classifier Hi using the estimated MRL of Ci, where 1 ≤ i ≤ n.

The classifier for labeling an incomplete MTD with ααα accuracy is therefore given as

H = {H1,H2, · · · ,Hn}. Finally, a method is proposed to classify the incomplete MTD

using the classifier H.

3.3 Early Classification of MTD

In this section, we propose an approach for early classification of an incomplete MTD

with desired level of accuracy ααα. The block diagram of the proposed approach with its

two phases is shown in Figure 3.3.

3.3.1 Building a classifier using MRL

This step builds a classifier by using the given labeled MTS dataset D. The input and

the output of this phase are as follows:

Input: A labeled dataset D of N MTS which consists n time series Cj
i of length M ,

where 1 ≤ i ≤ n and 1 ≤ j ≤ N .

Output: A ensemble classifier which consists the MRLs for early classification of D.

This phase computes the MRL and builds the classifier for early classification of D as

shown in Figure 3.3.

3.3.1.1 Compute MRL

The main focus of this step to compute the MRL of the MTD for each class with ααα

accuracy. The MRL of an MTD is effectively the MRL of the nth component (i.e.,

Cn). The earliness is only possible when the classifier does not use the full-length

time series. The proposed approach uses GP classifier for MRL estimation as it is well

suited for time series modeling. It considers a time series Cj
i of M data points for

computing the posterior class probabilities. In the proposed approach, GP uses a joint
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normal distribution to model a time series for computing the posterior probabilities.

The posterior probability of Cj
i using M data points for all class labels, is given by

ρi,j,M = {ρ(i,j,M,1), ρ(i,j,M,2), · · · , ρ(i,j,M,l)}. (3.3)

Let the MRL of time series Cj
i is f , which is obtained as

min
f

F(f) = f, s.t. ααα× ρi,j,M,q ≤ ρi,j,f,q, (3.4)

where, 1 ≤ f ≤ M and 1 ≤ q ≤ l. Equation 3.4 is shown as condition 1 in Figure 3.3

for the all the classes. The GP classifier is a probabilistic classifier which applies the

GP prior and Bayes’ rule to model the time series. Let X denotes a time series of length

M as X = {x1,x2, · · · ,xM} and xk ∈ Ra, where a represents the number of variables

in a time series. GP computes the posterior probability of a time series X for class Lq

using Bayes’ rule as follows

P

(
Lq
X

)
=

M∏
k=1

P (xk
Lq

)P (Lq)

P (xk)
, (3.5)

where, P (Lq) and P (xk) are prior and marginal probabilities (can be obtained from

the given dataset), respectively. Now, the class label Lq of the time series X can be

obtained as

argmax
Lq

{
P

(
Lq
X

)}
, 1 ≤ q ≤ l. (3.6)

For a time series Cj
i , ρi,j,M,Lq and ρi,j,f,Lq can be obtained using Equation 3.5 with M

and f data points, respectively. By substituting ρi,j,M,Lq and ρi,j,f,Lq in Equation 3.4,
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the condition can be expressed as

ααα

f∏
k=1

P
(

xk
Lq

)
P (xk)

×
M∏
k=f

P
(

xk
Lq

)
P (xk)

≤
f∏
k=1

P
(

xk
Lq

)
P (xk)

. (3.7)

On simplification,

ααα
M∏
k=f

P

(
xk
Lq

)
−

M∏
k=f

P (xk) ≤ 0. (3.8)

The GP classifier considers a time series as a finite set of random variables which are

the outcome of a stochastic process. As it uses a joint normal distribution to model the

posterior probabilities for each time series in the dataset, the likelihood term P
(

xk
Lq

)
can be written as

P

(
xk
Lq

)
=

1√
(2π)a|Σ|

e−
1
2

(xk−µ)TΣ−1(xk−µ), 1 ≤ k ≤M, (3.9)

where, Σ is a covariance matrix and |Σ| is its determinant. The covariance matrix Σ

is computed over training time series instances. An entry in the matrix represents a

covariance between two time series of the training dataset. By substituting P (xk
Lq

) from

Equation 3.9 into Equation 4.11, we get

ααα
(M − f)√
(2π)a|Σ|

e−
1
2

∑M
k=f (xk−µ)TΣ−1(xk−µ)

︸ ︷︷ ︸
term1

−
M∏
k=f

P (xk)︸ ︷︷ ︸
term2

≤ 0. (3.10)

As we can not compute the gradient of the above expression, the proposed approach
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uses an empirical search method to find f that satisfies the inequality. Moreover, the

difference between term1 and term2 in Equation 3.10 is always increasing with increase

in f . We therefore preferred binary search to solve the inequality.

3.3.1.2 Build classifier

The objective of this work is to solve early classification problem where a classification

model is build to classify an incomplete MTD as early as possible while maintaining ααα

accuracy. This step builds an ensemble classifier H using the estimated MRL from the

previous step. The ensemble classifier H consists of n classifiers (i.e., H1,H2, · · · ,Hn)

corresponding to n components of the MTD as shown in Figure 3.3. Let Di denotes a la-

beled dataset of all the time series of ith component only, where 1 ≤ i ≤ n. The proposed

approach uses GP to construct a classifier H1 for D1 using full-length time series, and

use the estimated MRLs for constructing remaining classifiers (i.e., H2,H3, · · · ,Hn).

As the MRL is computed separately for each time series, the proposed approach

finds a class representative MRL for each Lq class, where 1 ≤ q ≤ l. Let Rq is an

array of MRL of all the time series of ith component that belong to Lq. The class

representative MRL for Lq can be computed as

MRLi,q = argmin
f

(
1

Nq

Nq∑
j=1

(ααα− αi,j,f,q)

)
, (3.11)

where, f = Rq[k] and 1 ≤ k ≤ Nq. Further, αi,j,f,q denotes the estimated accuracy

that is obtained using the MRL of Cj
i , and it can be computed as αi,j,f,q =

ρi,j,f,q
ρi,j,M,q

.

Algorithm 3.1 illustrates all the steps for building the ensemble classifier using the

MRL of the given dataset D.

Furthermore, the proposed approach builds a Hidden Markov Model [74] as Λ =

(A,B, π), where A,B, π denote a state transition matrix, an observation matrix, and
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the initial state distribution, respectively. The model Λ is built using the training

dataset D and the ensemble classifier H. The proposed approach uses the model Λ

in prediction phase to obtain the hidden state sequence for the observations of an

incomplete MTD. In our case, states correspond to the class labels and observations

correspond to the components of the MTD. Let the set of states, denoted by S, is

given as S = {S1, S2, · · · , Sl} and the set of observations, denoted by O, is given as

O = {C1,C2, · · · ,Cn}. The transition matrix A = {axy} is l × l with

axy = P (state Sy at t+ 1 | state Sx at t). (3.12)

To compute axy,

a) Find the state Sx as

Sx = argmax
Lq

{
P

(
Lq

Cj
i,mi

)}
, 1 ≤ q ≤ l. (3.13)

b) Obtain the MRL m′ for observation Cj
i+1 using Hi+1 for state Sx as m′ = Hi+1[Sx].

c) Obtain the state Sy for Cj
i+1,m′ using Equation 3.13. At this point, state transition

probability from Sx to Sy for jth time series using Ci+1 observation is given as

axy = avg
∀(Sx→Sy)

{
P

(
Sy

Cj
i+1,m′

)}
. (3.14)

As the observation matrix B and initial state distribution π use the data points of an

unseen MTD, we compute these matrices during the prediction phase.

3.3.2 Predict a class label of MTD

The previous phase builds a classifier H which consists the required class-wise MRLs for

the MTS. This section predicts a class label of an incomplete MTD by using the built

classifier H. The incomplete MTD Cp consists n number of time series with different
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Algorithm 3.1: Building classifier using MRL

Input: A labeled dataset D of N MTD with l labels, the MTD has n time series
where each consists of M data points and associated with λi, where
1 ≤ i ≤ n;

Output: Classifiers for the dataset D ;
1 Construct H1 for D1 using GP classifier.
2 for component i← 2 to n do
3 for label q ← 1 to l do
4 for time series j ← 1 to Nq do

/* Posterior probabilities of Cj
i [M ] using GP */

5 ρi,j,M = {ρ(i,j,M,1), ρ(i,j,M,2), · · · , ρ(i,j,M,l)}.
6 L = 1, R = M.
7 while L ≤ R do

8 f =
⌊

(L+R)
2

⌋
.

/* Posterior probabilities of Cj
i [f ] using GP * /

9 ρi,j,f = {ρ(i,j,f,1), ρ(i,j,f,2), · · · , ρ(i,j,f,l)}.
/* Let Γf is L.H.S. of Equation 3.10 */

10 if ((ααα× ρi,j,M,q > ρi,j,f,q) or (Γf > 0)) then
11 L = f + 1.

12 else if (ρi,j,M,q < ρi,j,f,q) then
13 R = f − 1.

14 else
15 fi,j,q = f.
16 break.

/* Compute MRL of Cj
i as fi,j,q */

17 Rq[j]← fi,j,q.

18 Compute MRLi,q for Lq class using Equation 3.11.

/* The classifier for ith component */
19 Hi = {MRLi,L1 ,MRLi,L2 , · · · ,MRLi,Ll}.

/* The classifier for the dataset D */
20 H = {H1,H2, · · · ,Hn}.
21 return H.
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sampling rate. The ith component of an incomplete time series is denoted as Cp
i , where

1 ≤ i ≤ n. The time series of an incomplete MTD are indexed in non-increasing order

of sampling rate. The proposed approach starts prediction as soon as Cp
1 gets M data

points. Prediction starts from Cp
1 and ends at component Cp

n. Later, it uses Viterbi

algorithm [75] to find the maximum probable sequence of class labels from Cp
1 to Cp

n.

Finally, the class label that appears maximum times in the sequence is assigned to the

given MTD. The complete procedure is shown in Algorithm 3.2.

3.3.2.1 Label prediction of Cp
1

Different from the existing works, the proposed approach considers correlation among

the components of an incomplete MTD while predicting its class label. The correlation

is achieved by forwarding the predicted class label of ith component to predict the class

label of (i+ 1)th component. The approach uses full length of Cp
1 for prediction of class

label by using H1. The predicted class label of Cp
1 is given as

G1 = argmax
Lq

{
P

(
Lq

Cp
1,m1

)}
, 1 ≤ q ≤ l, (3.15)

where, Cp
1,m1

is first component of the MTD with m1 number of data points, m1 =

Mλ1
1 = M , and G1 ∈ {L1, L2, · · · , Ll}.

3.3.2.2 Label prediction of remaining time series of Cp
i

Let predicted class label of Cp
i−1 is given by Gi−1, where Gi−1 ∈ {L1, L2, · · · , Ll} and

i ≥ 2. The sampling rate of the next time series (Cp
i ) is less than the previous time

series Cp
i−1. Therefore, Cp

i consists only mi data points, where mi = Mλ1
i . Here, a

classifier has two options either wait for more (maximum M −mi) data points or start

predicting the class label with mi without any further delay. To obtain the earliness,
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the classification is started with only mi data points. Let m′ denotes the required data

points to predict the class label Gi−1 for time series Cp
i . From Algorithm 3.1, the data

points m′ is equal to Hi[Gi−1]. If mi < m′ then classifier Hi waits and collects the

required data points for class label Gi−1. After receiving the required data points (m′),

the classifier Hi predicts the class label (Gi) of Cp
i,m′ using Equation 3.15. This process

is repeated until all the components of an incomplete MTD are classified. We call this

process as class forwarding method.

Since the obtained sequence of predicted class labels (i.e., G1, G2, · · · , Gn) may not

be the most probable sequence, the proposed approach uses Viterbi algorithm to find

the most probable sequence of class labels. It considers the posterior class probabilities

for all l classes for all the n components and constructs an observation matrix of the

model Λ. As each class label corresponds to a state in the hidden markov model, the

set of states are denoted as S = {S1, S2, · · · , Sl}. For an incomplete MTD Cp, the

observation matrix B = {by(i)} is l × n with

by(i) = P (observation i at t | state Sy at t)

= P

(
Cp
i,m′

Sy

)
. (3.16)

The initial state distribution π = {πx} is 1× l with

πx = P (state Sx at t = 0)

= P

(
Sx

Cp
1,M

)
. (3.17)

Now, given model Λ = (A,B, π) and an observation sequence O = {Cp
1,C

p
2, · · · ,Cp

n},

the objective is to find a most probable hidden state sequence that most likely generated

the observation sequence O. Obtaining such state sequence needs to check all possible

state sequences. Viterbi algorithm can efficiently find them.
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Let G = {G1, G2, · · · , Gn} be the most probable sequence of class labels obtained

using Viterbi algorithm. Now, the predicted class label Lp of Cp can be given as

Lp = Lq,

s.t. ∀
1≤q′≤l,q′ 6=q

count(Lq,G) ≥ count(Lq′ ,G). (3.18)

where, count(Lq,G) counts the number of occurrences of class label Lq in vector G.

3.3.3 Complexity Analysis

Time complexity: As a separate classifier is constructed for each component, all the

classifiers can be constructed simultaneously. That means step 2 can be removed from

the calculation of time complexity of the Algorithm 3.1. Now, the time complexity of

Algorithm 3.1 is mostly depends on two for loops, one while loop, and GP classifier.

The for loop at third and fourth steps run l and Nq times, respectively. The while

loop runs log2(M) times and the computation of posterior probabilities takes O(N3)

using GP. The computational complexity of GP can be approximated to O(p2N) by

selecting a subset of p MTD from N and p � N [42]. Therefore, time complexity of

Algorithm 3.1 can be given as O(N2). Now, given the model Λ = (A,B, π), the time

complexity of Algorithm 3.2 can be given as O(n × nl2), where nl2 is computational

time of Viterbi algorithm. Since n and l are very small, they can be taken as constant.

Space complexity: In Algorithm 3.1, GP computes the posterior class probabilities

for each time series for all the components. Moreover, these probabilities are computed

using varying number of data points (i.e., from 1 to M). Hence, the space complexity

of Algorithm 3.1 is O(N × n× l×M) = O(MN), as {l, n} << N . After construction,

the ensemble classifier H needs N ×n× l2 space. The model Λ takes l2 +nl+ l space to

store its matrices. As H and Λ are given as input to Algorithm 3.2, its space complexity

is given as O((N × n× l2) + (l2 + nl + l)) = O(N).
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Algorithm 3.2: Predict a class label of MTD

Input: The vector of the classifiers H using Algorithm 3.1 and an incomplete
MTD Cp;

Output: Predict class label Lp of Cp
i , where 1 ≤ i ≤ n;

1 H1 predicts the class label G1 for Cp
1, when m1 = M .

2 for component i← 2 to n do
/* The available data points of Cp

i */
3 mi = max{Mλ1

i ,mi−1}.
/* MRL to predict Gi for Cp

i */
4 m′ = Hi[Gi−1].
5 if (m′ ≤ mi) then
6 Hi predicts the class label Gi for Cp

i using GP.
7 else

/* Collect more data points */
8 Wait till mi is equal to m′.
9 Hi predicts the class label Gi for Cp

i using GP.

/* Given model Λ and O = {Cp
1,C

p
2, · · · ,Cp

n} */
10 Obtain G using Viterbi algorithm [75].
11 Predict class label Lp of Cp from G using Equation 3.18.
12 return Lp.

Function Viterbi Alg(Λ,O):
begin

for each state x = 1 to l
δ1(x) = πxbx(C

p
1).

ψ1(x) = 0.
for each time step t = 1 to n− 1

for each state y = 1 to l
δt+1(y) = max

1≤x≤l
[δt(x)axy]by(C

p
t+1).

ψt+1(y) = argmax
1≤x≤l

δt(x)axy.

Ŝn = argmax
1≤x≤l

δn(x).

for t = n− 1 to 1
Ŝt = ψt+1(Ŝt+1)
Ŝ← append(Ŝt)

return Ŝ
end
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3.4 On-Road Experiment and Results

This section evaluates the proposed early classification approach for road surface clas-

sification. We discuss the experimental setup to collect the sensory data using a Sen-

sorTag kit and a smartphone. The sensory data is proprocessed to create a dataset

that consists only the complete MTS. Next, the approach uses this dataset to train the

ensemble classifier H. Finally, the classifier H is evaluated using accuracy, earliness,

and F1 score.

3.4.1 Prototype

This work uses a SensorTag kit (i.e., CC2650STK) and a smartphone (i.e., Samsung

Galaxy Alpha). The SensorTag kit comes in small package that includes ten sensors,

such as, accelerometer, gyroscope, light, temperature, and so on. The SensorTag runs

on battery power which lasts for months to year. It uses iBeacon technology based

low energy Bluetooth for the transmission of sensory data. It also provides an app

for Android based smartphone to customize the setting of the sensors, such as turn

on/off and sampling rate. The provided app receives the sensory data and stores in a

file (i.e., csv). This experiment considers four sensors including accelerometer, light,

temperature, and humidity from SensorTag kit with a sampling period 500ms, 1500ms,

1000ms, 1200ms, respectively. The GPS coordinates are also recorded along the data

of sensors using smartphone.

3.4.2 Dataset creation

In this experiment, we collect the sensory data of four types of road surface: rough (S1),

uneven (S2), bumpy (S3), and smooth (S4). The experiment is carried out with eight

participants using two vehicles (i.e., bike and car). SensorTag location on the vehicles

is shown in Figure 3.4. The driving activity is performed by 8 participants on 4 types

of road surfaces. Each participant performs the activity 12 times on each road surface
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using 2 vehicles. Therefore, total number of MTD is 8×12×4×2 = 768, i.e., N = 768.

The sensor readings are taken three times a day to observe the influence of environment

light on the driving pattern. The number of used sensors are 4, which correspond to 4

components (time series, n = 4) of MTD. The driving activity is performed on different

lengths (i.e., 0.5 km to 2 km) of road. We found that the data points collected for 1

km length of road (with an average speed of 20 ∼ 30 km/hr) are required for successful

classification. The full length is obtained as M = distance
speed of vehicle

×no. of samples/second.

For example, in 3 minutes (180 seconds), the maximum number of data points that

can be collected from the sensors, are as follows: 360 = 180×2 for accelerometer, 120 =

180× 2/3 for light, 180 = 180× 1 for temperature, and 150 = 180× 5/6 for humidity.

Due to variation in the speed of vehicles, the minimum number of data points, that are

obtained in each of the time series of the MTD, is 110 (i.e., M = 110). The created

dataset is referred as road surface dataset. We preprocess the road surface dataset for

cleaning the random errors and missing values using binning and imputation [76].

SensorTag

Figure 3.4: SensorTag location on the vehicles during experiment.

3.4.3 Evaluation metrics

This work uses following evaluation metrics:

• Accuracy: We calculate the accuracy using Equation 3.2.

• Earliness: It is calculated using Equation 3.1.

• F1 score: This work defines F1 score to study the impact of earliness on accuracy
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of the early classifier. It is mathematically expressed as

F1 =
2× Accuracy × (1− MRL

M
)

(1− MRL
M

) + Accuracy
. (3.19)

• Confusion matrix: The confusion matrix in this work, is a table that is used to

describe the performance of the proposed approach on the given labeled dataset.

The confusion matrix is used to understand the class-wise performance of the

proposed classifier H.

3.4.4 Results

The proposed early classifier (i.e., H) is evaluated on the road surface dataset. The

dataset is divided into two parts with 70% and 30% MTD for training and testing,

respectively. The classifier H is built using 10× 5 cross-validation method.
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Figure 3.5: Illustration of the experimental results of the proposed approach for road
surface dataset using ααα = 0.9.

In road surface dataset, the order of the four components in the MTD is C1 (ac-

celerometer), C2 (temperature), C3 (humidity), and C4 (light). The normalized sam-

pling rate of the components are {1, 0.5, 0.4, 0.3}, which are normalized with respect to

the maximum sampling rate (i.e., accelerometer). Here, the ensemble classifier H ob-
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tains the 90.4% accuracy using only 52.1% data points of the MTD and the computed

F1 score is 0.70 using Equation 3.19. Figure 3.5 shows the tradeoff along the progress

of the MTD with an interval of 10% in part (a) and the confusion matrix using ααα = 0.9

in part (b). It can be clearly observed from part (a) of Figure 3.5 that the ensemble

classifier H is able to achieve around 85% accuracy with an earliness of more than 45%

at all settings of ααα. The road surface dataset has four classes and each class has 56

MTD in the testing part. It is clear from part (b) of Figure 3.5 that the bumpy class

gets maximum accuracy and the MTD of bumpy class has never predicted as smooth.

3.4.4.1 Impact of equal and different sampling rate

This work evaluates the impact of equal and different sampling rate components on

the MRL of proposed approach using road surface dataset and an existing PEMS-SF

dataset [13]. Let MRLeql and MRLdif denote the MRL of the MTS with equal and

different sampling rate components, respectively. Figure 3.6 illustrates the impacts of

sampling rate on the MRL of the proposed approach at ααα = {0.5, 0.6, 0.7, 0.8, 0.9}. The

approach requires smaller MRLdif than MRLeql for both the datasets at all ααα. Its is

also observed that the difference between MRLdif and MRLeql increases with ααα. It

indicates that the improvement in performance of the approach with different sampling

rate components is more than the equal sampling rate components.
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Figure 3.6: Impact of equal and different sampling rate components on the MRL.
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3.5 Results on Existing Datasets and Discussions

This section evaluates the performance of the proposed approach using the existing

labeled datasets which are publicly available in [13]. First, the existing datasets are de-

scribed in detail. These datasets are used to evaluate the performance of the proposed

work by using the performance metrics, discussed in Section 3.4.3. Later, the pro-

posed work is compared with the existing recent work including MSD [26], Optimizing

Accuracy and Earliness (OAE) [25], and DMP+PPM [29].

3.5.1 Dataset

This work uses freeway occupancy (called as PEMS-SF ), Heterogeneity Human Activity

Recognition (HHAR), and Gas Mixtures Detection (GMD) datasets, which are available

in the UCI repository [13].

3.5.1.1 PEMS-SF dataset

It is created by the California Department of Transportation to study the freeway

occupancy rate of car lanes in the area of San Francisco bay. The dataset consists

of the measurements collected over the period of 15 months. Total 963 sensors were

deployed at different locations of highways. The sensors collect 144 data points each

day, which forms MTD. The number of sensors work as the components of MTD.

The proposed approach considers ten random sensors as ten components of MTD, i.e.,

n = 10. The collected data points from each sensor in a day is equal to the length of

the time series, i.e., M = 144. Each measurement represents the occupancy rate of a

car lane and normalizes to [0, 1]. The dataset contains 440 MTD (N = 440) with the

labeled as the day of the week.
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3.5.1.2 HHAR dataset

This dataset is created to understand the impact of heterogeneities of the used sensors

on human activity classification. It consists of six different activities standing (A1),

sitting (A2), walking (A3), stair up (A4), stair down (A5), and biking (A6). Each

activity is performed by nine participants in a specified manner. The activities are

recorded using two motion sensors (accelerometer and gyroscope) of smartphones and

smartwatches. The number of used sensors are the four components of MTD, i.e.,

n = 4. The continuous readings of sensors are preprocessed to fix the length of full

time series to 500 data points, i.e., M = 500. After preprocessing, the dataset contains

20000 MTD, i.e., N = 20000.

3.5.1.3 GMD dataset

This dataset consists the temporal data of eight sensors monitoring the mixture of

Ethylene with Carbon Monoxide or Methane at different level of concentrations in a

wind tunnel. The proposed approach uses the reading of eight gas sensors as eight

components of MTD, i.e., n = 8. The dataset contains 30 configurations of mixture

using four levels of concentrations (i.e., zero, low, medium, and high). Each mixture

is recorded for five minutes with ten samples per second, which makes a time series of

length 3000. The dataset is first preprocessed and then 18 different configurations are

considered in this experiment, i.e., l = 18. The measurements taken in first and last

one minute are removed from the time series, which reduced the length to 1800 data

points, i.e., M = 1800.

3.5.2 Experimental results

This section presents the experimental results of the proposed approach on the three

above mentioned datasets. These datasets have different number of components as

discussed in Section 3.5.1. Each dataset is divided into two parts with 70% and 30%
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MTD in training and testing, respectively. The proposed approach employs a standard

10 × 5−fold cross-validation method to train the classifier H for all the datasets. In

5−fold cross-validation, the dataset is divided into 5 equal parts (folds) where 4 of them

are used for training and remaining 1 is used for validating the trained classifier. With

4 parts for training and 1 part for validation, there are total 5 possible combinations

on which the classifier is trained and validated. This process is repeated 10 times in

10× 5−fold cross-validation and the resultant classifier is used for testing.

The proposed approach considers different sampling rate for each component to

evaluate the performance. This work uses four different sets of the sampling rate,

denoted as Ω1, Ω2, Ω3, and Ω4. The set Ω1 and Ω2 consist equal gap between sampling

rate of two consecutive component, and set Ω3 and Ω4 have varying gap. The set Ω2

and Ω4 also have some components with identical sampling rate. Table 3.1 shows the

different settings of sampling rate taken in the implementation.

Table 3.1: Sets of sampling rate setting for the used datasets.

Dataset Set of sampling rate (Ω)

PEMS-SF

Ω1 = {1, .95, .90, .85, .80, .75, .70, .65, .60, .55}
Ω2 = {1, .90, .80, .80, .70, .70, .60, .60, .50, .40}
Ω3 = {1, .85, .80, .75, .65, .60, .50, .45, .35, .30}
Ω4 = {1, .90, .70, .55, .55, .45, .35, .35, .30, .20}

HHAR
Ω1 = {1, .90, .80, .70}, Ω2 = {1, .80, , 80, .60}
Ω3 = {1, .80, .70, .45}, Ω4 = {1, .60, .60, .35}

GMD

Ω1 = {1, .95, .90, .85, .80, .75, .70, .65}
Ω2 = {1, .90, .80, .80, .70, .70, .60, .50}
Ω3 = {1, .85, .80, .75, .65, .60, .50, .45}
Ω4 = {1, .90, .70, .55, .55, .45, .35, .35}

3.5.2.1 Tradeoff between accuracy and earliness

To analyze the tradeoff between accuracy and earlinesss, this work computes the accu-

racy of the ensemble H along the progress of the MTD. An interval of 10% of MTD

is chosen to compute the accuracy at ααα = {0.9, 0.8, 0.7, 0.6} for PEMS-SF and HHAR
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datasets, as depicted in parts (a) and (b) of Figure 3.7, respectively. It is clear from

Figure 3.7 that the performance of the proposed approach degrades consistently as the

value of ααα decreases for all the datasets. At 60% length of the MTD, HHAR dataset

obtains maximum accuracy (i.e., (74 ∓ 7.5)%) among all the datasets for all values of

ααα, as shown by ‘green’ oval. An interesting event occurs between 30% to 40% length

of MTD as shown in part (b), where accuracy is suddenly increased around 21.8%. It

indicates that the proposed approach finds better correlation for the MTD with less

number of components.
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Figure 3.7: Illustration of the tradeoff between accuracy and earliness for PEMS-SF
and HHAR.

3.5.2.2 Impact of the set of sampling rate

We discuss the accuracy and earliness results of the proposed approach on three datasets

with four sets of sampling rate. Parts (a) and (b) of Figure 3.8 illustrate the accuracy

and earliness results at ααα = 0.9, respectively. In part (a) of Figure 3.8, at Ω2, PEMS-

SF and GMD datasets obtain almost same accuracy as both have more number of

components than HHAR dataset, which is shown by ‘green’ rectangle. Later, at Ω3,

since the number of data points in MTD of GMD dataset is much higher than PEMS-

SF dataset, the GMD dataset improves its accuracy very fast and even obtains better

accuracy than HHAR dataset, as shown by ‘brown’ rectangle. In part (b) of Figure 3.8,
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the earliness of PEMS-SF dataset shows maximum improvement from Ω2 to Ω3 (i.e.,

5.1% = 9.1% − 4.0%) while other datasets show nearly uniform variation for different

sets of sampling rate.
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Figure 3.8: Impact of different sets of sampling rate on accuracy and earliness.

3.5.3 Performance comparison

This section compares the performance of the proposed approach with the existing

work including MSD [26], OAE [25], and DMP+PPM [29]. Table 3.2 illustrates the

accuracy and earliness results on PEMS-SF (M = 144), HHAR (M = 500), and GMD

(M = 1800) datasets using ααα = 0.9. The following points are observed from the table:

• The proposed approach outperforms the existing approaches on accuracy and

earliness metrics at both sets of sampling rate. This is because the approach

utilizes correlation between the components of the MTD, which helps to achieve

better accuracy using less data points. At Ω1 for PEMS-SF dataset, the MSD is

able to obtain nearly equal accuracy compared to the proposed approach with a

marginal difference (i.e., 1.44% = 90.37%−88.93%), but it uses more data points.

• The results show a substantial drop in the accuracy of the existing approaches

from Ω1 to Ω4. For example, the OAE shows the maximum drop (i.e., 14.0% =

82.15%−68.15%) in accuracy for PEMS-SF dataset while the proposed approach

shows only 2.37% drop. It suggests that the performance of the proposed ap-
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proach degrades marginally even when there exists a large difference between the

sampling rate of first and last components.

• The proposed approach provides better results for HHAR dataset compared to

other datasets. The proposed approach achieves 89.15% accuracy by using only

215 (i.e., 57% earliness) data points.

Table 3.2: Illustration of accuracy and earliness results using ααα = 0.9.

Dataset Approach
Ω1 Ω4

Accuracy Earliness (MRL) Accuracy Earliness (MRL)

P
E

M
S

-S
F

M
=

14
4 MSD 88.93% 11.3% (128) 76.90% 21.3% (113)

OAE 82.15% 13.5% (125) 68.15% 25.5% (107)
DMP+PPM 76.45% 16.2% (121) 65.48% 32.9% (97)

Proposed 90.37% 20.3% (115) 88.0% 54.0% (66)

H
H

A
R

M
=

50
0 MSD 84.19% 12.0% (440) 67.13% 25.6% (372)

OAE 83.12% 16.2% (419) 71.12% 28.6% (357)
DMP+PPM 84.41% 18.6% (407) 72.21% 34.4% (328)

Proposed 92.25% 30.0% (350) 89.15% 57.0% (215)

G
M

D
M

=
18

00 MSD 85.21% 13.6% (1555) 71.35% 23.1% (1384)
OAE 80.13% 17.6% (1483) 68.26% 29.7% (1265)

DMP+PPM 79.57% 20.6% (1429) 69.0% 37.8% (1120)
Proposed 91.32% 29.8% (1264) 88.92% 56.0% (792)

3.5.3.1 F1 score

The proposed approach is also compared with the existing approaches using F1 score for

all the datasets. The F1 score is computed using Equation 3.19 and the results using

Ω1 and Ω4 are illustrated in parts (a) and (b) of Figure 3.9, respectively. It can be

clearly observed from the results that the proposed approach consistently performing

better than the existing approaches. In part (a) of Figure 3.9, existing approaches

hardly achieve F1 score more than 0.30 whereas the proposed approach obtains 0.45

(for HHAR dataset), which clearly indicates that the proposed approach is able to

maintain better balance between accuracy and earliness. Moreover, as the sampling

rate of last component is decreased, as in Ω4, the proposed approach outperforms the

existing approaches with a substantial difference, as shown in part (b) of Figure 3.9.
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Figure 3.9: Comparison of the proposed approach with existing approaches using F1

score metric.

3.5.3.2 Confusion matrix

We present the confusion matrices for HHAR testing dataset only, as shown in Fig-

ure 3.10. The reason for choosing this dataset is that it provides better comparison

states among the different classification approaches. This dataset has six class labels,

i.e., A1 to A6 as standing, sitting, walking, stair up, stair down, and biking. Each class

has equal number of MTD, i.e., 1000. Figure 3.10 shows that the accuracy is highest

(i.e., 98.5%) for A6 class. This is because, the activity A6 consists many identifiable

patterns in the MTD which can be easily differentiated from other class MTD. The

result also illustrates that the proposed work provides the highest accuracy in all the

classes. It is also observed that all the existing approaches show maximum confusion

between the MTD of first two classes (i.e., standing and sitting).

3.5.3.3 Impact of desired accuracy level (ααα)

Next, we analyze the impact of the level of accuracy on the earliness for PEMS-SF

dataset as it has maximum number of components in the MTD. Figure 3.11 illustrates

the results among MSD, OAE, DMP+PPM, and the proposed approach. The earliness

of the proposed approach is computed at ααα = {0.5, 0.6, 0.7, 0.8, 0.9}. This result is
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(c) DMP+PPM Approach
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Figure 3.10: Confusion matrices for HHAR dataset using Ω1.

obtained using Ω1 set of sampling rate for PEMS-SF dataset. It is clear from the result

that the proposed approach consistently performs better than the existing approaches

for different settings of ααα.

3.5.3.4 Execution time

Finally, the proposed approach is compared with existing approaches based on the

execution time. Let Tpro and Text denote the execution time of the proposed and one

of the existing approaches [25, 26, 29], respectively. Table 3.3 illustrates that how fast

the proposed approach is than the existing approach, which is computed as Text−Tpro
Text

(in %). The experiment is carried out 100 times using Ω1 and ααα = 0.9, and an average

execution time is taken for comparison. It is observed from the Table 3.3 that the
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Figure 3.11: Impact of ααα on the earliness for PEMS-SF dataset using Ω1.

proposed approach is faster than the existing approaches. It also illustrates that MSD

takes 17.3% more time than the proposed approach for PEMS-SF. This is because the

MSD does not use correlation between components of the MTS.

Table 3.3: Illustration of execution time comparison for different datasets.

Existing approach
Dataset

PEMS-SF HHAR GMD
MSD 17.3% 13.4% 15%
OAE 10.9% 7.4% 13.2%

DMP+PPM 4.9% 8.2% 6.1%

3.6 Conclusion

In this chapter, we proposed an approach for early classification of an incomplete MTD

while maintaining the desired level of accuracy. The MRLs are estimated for each class

label using a probabilistic classifier. The estimated MRLs are used to build an ensemble

classifier. The built classifier uses a class forwarding method to predict the class label of

an incomplete MTD. Finally, the performance of the proposed approach is evaluated for

early classification of the road surface in the intelligent road transportation system. The

experimental results illustrated that the proposed approach achieves better results than

the competitive methods on existing datasets from other domains. Although our focus
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in this chapter is on the early classification of MTD, the approach can be adjusted to

other applications such as gas leakage detection, similarity analysis in driving patterns,

and disease diagnostics.

This chapter mainly focused on handling the components of different sampling rate

while classifying an incomplete MTS. We utilized the posterior class probabilities for

learning the MRLs that helped in building a class forwarding method from highest to

lowest sampling rate component. This method inherently incorporated the correlation

in the early decision of class label. In the next chapter, we work on the early classifi-

cation of MTS in the presence of faulty sensors. We discuss the identification of faulty

data components by using the training data. These components not only degrade the

earliness of the classifier but misguide the learning process also, which may result in

poor classification accuracy.

Publication

• Ashish Gupta, H. P. Gupta, B. Biswas, and T. Dutta, “An early classification ap-

proach for multivariate time series of on-vehicle sensors in transportation,” IEEE Trans-

actions on Intelligent Transportation Systems, vol. 21, no. 12, pp. 5316-5327, 2020.


