
Chapter 6

Link Prediction using Information

Diffusion Perspective

In this chapter, an application is designed by leveraging the information

diffusion process. The community information of nodes is also utilized to

predict future links.

6.1 Introduction

The rapid development of online social networking sites, such as

Facebook, Twitter, and Sina Weibo, has attracted significant attention.

These networking sites not only focus on individuals making new friends

but also help share information or ideas over a network. Therefore, social

networks provide a platform for user interaction and information

dissemination. In the past several years, link prediction [167–170] has
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attracted considerable attention. Link prediction focuses on estimating the

likelihood of the existence of a link between two nodes based on the

available information. In addition to considering the factors for

relationship formation, link prediction is important for predicting the

growth of the network. Link prediction can potentially be applied to user

recommendation systems, network growth modeling, community

detection, interaction mining, and information diffusion.

Nowell and Kleinberg [167] used the network topology for link prediction

in a social network. Specifically, the network structure was modeled as a

homogeneous graph G(V,E), where V and E represent the set of nodes

and edges, respectively. Each node indicates a user in the network, and

each edge represents a relationship between individuals. Hasan et al.

[168] presented a classification-based approach for link prediction. They

used distinct features to estimate the likelihood of a future link and

compared the effect of different features. Several standard methods have

been used to define indexes for link prediction, such common neighbors

(CN) [169], Adamic/Adar [170], and resource allocation (RA) [171].

Furthermore, domain-specific applications of link prediction have been

investigated. However, most studies do not consider the utility and effect

of information diffusion in link prediction. Information diffusion occurs

when a network user starts retransmitting the information that has been

received from its neighbors. This, in turn, leads to an information

cascading phenomenon. Information dissemination provides an
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opportunity to users for propagating and receiving information to and

from a region of influence that is beyond the scope of their social circles.

Furthermore, this mechanism affects the formation of social links in the

network. For example, we consider three users x, y, and z on Twitter. At

the start of the diffusion process, x follows y (x ← y), and y follows z

(y← z), but x does not follow z. Let user y repost information posted by

user z. Then, there is a possibility that user x starts following user z if x

finds the information valuable.

Recently, the problem of predicting network evolution has been

considered from the information diffusion perspective [172, 173]. Zhou et

al. [172] presented a visibility model by incorporating the diffusion

process to address link prediction. Farajtabar et al. [173] directly explored

the diffusion process rather than analyzing its influence on link prediction.

In general, information diffusion in a network is modeled as a stochastic

process. Kempe et al. [11] presented two basic stochastic models:

independent cascade (IC) and linear threshold (LT) diffusion. The former

is the most suitable model for integrating information diffusion with link

prediction. In this model, an edge (x,y) is associated with a probability

p(x,y), which represents the possibility of a piece of information received

by x from its neighbors at time-stamp t being propagated at time-stamp

t + 1. To incorporate information diffusion into link prediction, diffusion

metrics, that is, information received by nodes, should be computed.

Chaoji et al. [174] claimed that directly optimizing such a metric is an
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NP-hard problem.

Owing to the complex nature of calculating such metrics (NP-hard

problem), approximation methods may incur an excessively high

computational cost. In addition to the accuracy of link prediction,

efficiency should be considered. Therefore, a community-based

framework can be useful for reducing the search space of the diffusion

process in link prediction. This community-based framework may also

improve prediction accuracy as well as efficiency. This improvement is

because the information flow paradigm is viewed as a collaborative

exercise based on closely linked groups instead of an individual user

[175]. The community of individuals plays a pivotal role in opinion

formation along with the individual’s neighbors. Therefore, community

information should be combined with neighbor information to perform

link prediction based on information diffusion.

This chapter addresses the link prediction problem from a new

perspective, based on the assumption that community structure

information combined with information dissemination may improve the

predictor. Previous prediction methods ignored the effect of information

diffusion on link creation and prediction. Being the first attempt to

incorporate community information and information diffusion into link

prediction, this study naturally suggests that effectiveness and efficiency

should be balanced. Accordingly, we present the community information
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based link prediction algorithm CLP-ID using information diffusion. The

contributions of this chapter can be summarized as follows.

• Exploring objective five, a link prediction algorithm CLP-ID is

presented by considering community information in addition to node

and link information. To improve the effectiveness of the algorithm

and provide a better quantization of community information, we

incorporate both the effects of positive as well as negative influence.

• A community detection algorithm is proposed to decompose a vast

social network into small chunks. The algorithm detect these chunks

by considering influence probabilities among the users when

assigning community label to users. The independent cascade model

is adopted to incorporate information diffusion.

• A probabilistic method is presented to compute the likelihood score of

target links based on the assumption that different common neighbors

work independently.

• Furthermore, the working of CLP-ID is explained with an example

graph. The theoretical complexity of the algorithm is also discussed.

• The experimental result of the proposed algorithm is discussed along

with the state-of-the-art algorithms and validate it against different

performance metrics. The resulting analysis demonstrates the

superiority of the proposed algorithm.
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6.2 Proposed Approach

This section presents the CLP-ID algorithm, which adopts a

community-based framework from an information diffusion perspective

for link prediction. The CLP-ID algorithm can be summarized in three

steps as follows. First, a community detection algorithm is used to

discriminate between different clusters of the network based on the

information diffusion between nodes. Secondly, we incorporate the

importance of an individual node’s community into the evolving network

structure. Finally, we a probabilistic model is used to predict future links

among users.

6.2.1 Identification of Community Structure

The main objective of the community detection algorithm (CD) is to

divide the network into sub-networks, and then incorporate the

community importance to identify future links. The individuals in a

particular community have more influence on each other because they

have frequent contact. The information diffusion process is viewed as a

collaborative process in closely related groups as in a community rather

than an individual. Therefore, community information in addition to

individual information is also pivotal for predicting future links. The CD

algorithm comprises two phases: partition and combination. In the

partition phase, the network is divided into communities based on
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information diffusion. In the combination phase, unstable communities

that are not sufficiently isolated are merged with other suitable

communities.

6.2.1.1 Partition phase

To propagate the influence spread, we adopt an IC diffusion model.

Initially, every node has a distinct community label. In the CD algorithm,

the influenced neighbors of each node are obtained under the IC model.

Then, the algorithm iteratively updates the labels of each node based on

information diffusion under the IC model. The CD updates the label of a

node x based on its influenced neighbors’ labels as in [176]. The label of

node x can be updated as follows.

Definition 6.2.1. (Community label [176]). Given a node x ∈V , the set of

its neighbors is N(x)= {y1,y2, . . . ,yn}, and the community set of neighbors

is C← {N.C1,N.C2, . . . ,N.Cl}, where l is the number of communities to

which the neighbors belongs. N.C j denotes the set of neighbors that have

the same community label j and are influenced by x. Then, the community

label of node x is determined as follows:

CL.x← argmax1≤ j≤l

{
1− ∏

yi∈N.Ci−1
j

(1− p(x,yi))
}

(6.1)
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6.2.1.2 Combination phase

In this phase, communities identified in the partition phase are

re-examined and merged based on their stability. The algorithm identifies

unstable communities according to their detachability index. A

community with detachability less than a threshold θ is considered

unstable, that is, it is not able to isolate itself from other communities.

The detachability index is defined in the context of influence probabilities,

as in the case of isolability [177], by considering the connection strength.

The detachability index can be calculated as follows.

Definition 6.2.2. (Detachability). The detachability of a community

defines the quality or degree of being detachable or able to isolate itself

from the rest of the network. The detachability of any community Ci is

defined in the context of influence probability as follows:

D(Ci)←
∑u,v∈Ci p(u,v)

∑u,v∈Ci p(u,v)+∑u∈Ci,v/∈Ci
p(u,v)

(6.2)

Each unstable community is merged with other suitable and stable

communities. Algorithm 15 presents the pseudocode of the CD

algorithm.
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6.2.2 Incorporation of Community Importance

The influence of an individual node x in associated community nodes

(which belong to the same community) is higher than that of nodes

belonging to different communities. Therefore, to incorporate the

importance of associated community in link prediction, we use a

community index for any node pair (x,y) [178]. The community index

CI(x,y) can be computed as follows:

CI(x,y) =


+
|Cx|
|V | , if CL.x =CL.y

− |Cx|
|V | , otherwise

(6.3)

where, Cx denotes the community to which node x belongs. Incorporating

the community information in link prediction ensures a positive influence

on the scores if the associated nodes belong to the same community. If the

nodes are from different communities, then the influence is negative.

6.2.3 Computation of Likelihood Score

To define the importance of a node x relative to its neighbors, we use a

probabilistic model for capturing the influence probabilities. Specifically,

each node x independently influences its outgoing neighbors y ∈ Nout(x)

with influence probability p(x,y). Similarly, each node y is independently

influenced by its incoming neighbors x ∈ Nin(y) with influence probability

p(x,y). In an undirected graph, both x and y influence each other, that is,
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Nout(x) = Nin(x) = N(x). Therefore, we adopt the IC diffusion model to

compute the similarity index between individuals using these independent

features. The similarity index between nodes x and y can be calculated as

follows:

SI(x,y) = p(x,y)+(1− ∏
z∈Nout(x)∩Nin(y)

(1− p(z,y))) (6.4)

Therefore, the overall importance OI(x,y) of node x with respect to node y

is computed as follows:

OI(x,y) =CI(x,y)×SI(x,y) (6.5)

We now compute the likelihood score of non-existing links (x,y). To this

end, we adopt a feature set based on common neighbors, that is, we

consider the importance of common neighbors to/from both nodes. Let

CN(x,y) = {z|z ∈ (Nout(x)∩Nin(y))}. Then, the likelihood score LS(x,y)

of non-existing links (x,y) can be calculated as follows:

LS(x,y) = ∑
z
(OI(x,z)+OI(z,y)) (6.6)

Incorporating the concepts mentioned above, we present the CLP-ID

algorithm. The corresponding pseudocode is outlined in Algorithm 16.
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Algorithm 15: CD(G,τ): Community Detection Algorithm
Input: G(V,E): Social graph, τ: Number of iterations
Output: CS: Community structure of graph

1 i← 1 . Partition Phase
2 CS← φ

3 for each x ∈V do
4 CL.x← a distinct community label
5 z←CL.x
6 Cz← x
7 CS←CS∪Cz
8 for each neighbor y j of x , j ∈ [1,2, . . . , |N(x)|] do
9 if IsInfluence(x,y j)==True then

10 Ax[ j] = 1
11 else
12 Ax[ j] = 0

13 while i≤ τ do
14 for each x ∈V do
15 CL.x← argmax1≤ j≤l

{
1−∏yi∈N.Ci−1

j
(1− p(x,yi))

}
. Label Propagation

16 z←CL.x
17 Cz← x
18 CS←CS∪Cz

19 i← i+1 . Combination Phase

20 for each Cz ∈CS do
21 Dz← Estimate detachability of community Cz
22 if Dz < θ then
23 NE ← Find each node w ∈ N(Cz)∩ (V \Cz)
24 Tc← Find set of number of times each w ∈ NE appeares in

w ∈ N(Cz)∩ (V \Cz)
25 Cmax← argmaxw∈NE (Tc(w))
26 NS(Cmax)← Set of all nodes those have Cmax
27 CS← Set of all communities those have node w ∈ NS(Cmax)
28 MID←−∞

29 for each Ci ∈CS\Cz do
30 TID← D(Cz∪Ci)−D(Ci)
31 if TID > MID then
32 MID← TID
33 t← i

34 Ct ← (Ct ∪Cz)
35 CS← (CS \Cz)

36 Return CS
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Algorithm 16: CLP-ID(G): Link Prediction Algorithm
Input: G(V,E): Social graph
Output: LS: Likelihood score of non-existing links

1 CS←CD(G,τ) . See Algorithm 15
2 for each link (x,y) ∈ E do
3 CI(x,y)← Compute community index using equation 6.3
4 SI(x,y)← Compute similarity index using equation 6.4
5 OI(x,y)← Compute overall importance using equation 6.5

6 for each non-existing link (x,y) ∈U \E do
7 z← Nout(x)∩Nin(y)
8 LS(x,y)← Compute likelihood score using equation 6.6

9 Return LS

6.3 Algorithm

Algorithm 15 takes two inputs: a social graph G and the number of

iterations τ . CD determines the community structure of the graph based

on information diffusion. The algorithm operates in two phases: partition

(lines 1–19) and combination (lines 20–35). The partitioning phase

divides the network into smaller clusters. Lines 1 and 2 assign the value 1

and the empty set to the integer i and the community structure CS,

respectively. The for loop in lines 3–12 assigns a distinct community

label and identifies the influential neighbors of each node. The while loop

in lines 13–19 iteratively updates the community label of each node using

label propagation under the IC diffusion model. In the combination phase,

merging of unstable communities with most suitable and stable

communities is performed so that the detachability of the community

structure is improved. The for loop in lines 20–35 combines each unstable

community with a stable community to improve the isolability of the new
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community. Lines 23–26 identify all neighbor nodes of the community

with the highest number of appearance in some other communities. Line

27 identifies the set of communities with the highest appearance node.

Lines 28–35 find the best suitable and stable community Ct for Cz, and

then merge them and remove the unstable community Cz from the list of

all communities CS. Finally, line 36 returns the community structure CS of

G.

The main Algorithm 16 takes a social graph as input. CLP-ID determines

the likelihood score of each target link. Line 1 calls Algorithm 15 to divide

the graph into clusters. The for loop in lines 2–5 computes the overall

importance of each link in the graph using Equation 6.5. The for loop

in lines 6–8 determines the likelihood score of each non-existing or target

link. Finally, line 9 returns the likelihood score of each target link.

6.3.1 Applying the Algorithm

To explain the proposed algorithm, we take as an example the graph

shown in FIGURE 6.1. The given graph G has 16 nodes, and each edge is

associated with an influence probability. CLP-ID operates in three steps

as follows.

1 Detection of community structure. The CD algorithm is used for

community detection and operates in two phases: partition and

combination. In the partitioning phase, the network is divided into
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FIGURE 6.1: The Working of CD Algorithm using An Example Graph

communities using label propagation under the IC model. In the

combination phase, unstable communities are merged based on the

detachability metric. FIGURE 6.1 shows the operation of the CD

algorithm: the graph is divided into four clusters (partition phase),

and clusters C1 and C4 are merged (combination phase). Finally, the

example graph consists of three communities C1, C2, and C3.

2 Overall index computation for existing links. The CLP-ID algorithm

now computes the overall index of each existing link. For example,

to compute OI(A,B) of a node pair A and B, we first compute the
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community index CI(A,B). Thus, CI(A,B) is calculated as

CI(A,B)← +
|C1|
|V | ← + 7

16 ← 0.4375. The similarity index SI(A,B)

can be estimated as SI(A,B) ← p(A,B)+

(1 − ∏z∈Nout(A)∩Nin(B)(1 − p(z,B))) ← 0.28252. We can now

normalize the similarity index SI(A,B) as

SI(A,B)← SI(A,B)
max∀x,y(SI(x,y)) ← 0.17974. Subsequently, we calculate the

overall index OI(A,B) as OI(A,B) = CI(A,B) × SI(A,B) ←

0.4375×0.17974← 0.07864. Similarly, we can compute the overall

index for each existing link (x,y), as shown in TABLE 6.1.

3 Likelihood score computation for target links. We now compute the

likelihood score LS(x,y) of each non-existing link (x,y). For

example, to compute OI(E,B) of a node pair E and B, we should

first identify the common neighbors z← N(E)∩N(B)← {D}. The

likelihood score is LS(E,B) = ∑z(OI(E,z) + OI(z,B)) ←

0.19798+0.06302← 0.26100.

6.3.2 Complexity Analysis

In this section, we analyze the time complexity of the proposed algorithm.

First, we analyze the time complexity of Algorithm 15. Lines 1 and 2

perform initialization in O(1) time. Lines 3–12 determine the influenced

neighbors of each node in O(|V |.Davg) time, where Davg denotes the

average degree of a node in the graph. Lines 13–19 update the community
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TABLE 6.1: The Computation of Overall Index OI(x,y) of Each Existing Links (x,y)
based on CLP-ID Algorithm

Node Pair Influence
Probability

Community Index Similarity Index Overall Index

x− y p(x,y) CI(x,y) CI(y,x) SI(x,y) SI(y,x) OI(x,y) OI(y,x)

A−C 0.75269 0.43750 0.43750 0.47887 0.47887 0.20951 0.20951

B−A 0.28252 0.43750 0.43750 0.17974 0.17974 0.07864 0.07864

B−D 0.22642 0.43750 0.43750 0.14405 0.14405 0.06302 0.06302

C−D 0.42489 0.43750 0.43750 0.45252 0.84926 0.19798 0.37155

C−E 0.90998 0.43750 0.43750 0.76115 0.84926 0.33300 0.37155

D−E 0.28639 0.43750 0.43750 0.76115 0.45252 0.33300 0.19798

F−E 0.02332 0.43750 0.43750 0.06819 0.48210 0.02983 0.21092

G−E 0.08387 0.43750 0.43750 0.06819 0.52062 0.02983 0.22777

G−F 0.73445 0.43750 0.43750 0.48210 0.52062 0.21092 0.22777

H−D 0.89002 -0.25000 -0.43750 0.56624 0.56624 -0.14156 -0.24773

H−K 0.20926 0.25000 0.25000 0.13313 0.13313 0.03328 0.03328

I−H 0.03660 0.25000 0.25000 0.02328 0.02328 0.00582 0.00582

I− J 0.07083 0.25000 0.25000 0.04506 0.04506 0.01127 0.01127

J−K 0.60187 0.25000 0.25000 0.38292 0.38292 0.09573 0.09573

L− J 0.22314 -0.31250 -0.25000 0.14196 0.14196 -0.04436 -0.03549

L−M 0.54488 0.31250 0.31250 0.50749 0.38112 0.15859 0.11910

N−L 0.80161 0.31250 0.31250 0.54445 0.89831 0.17014 0.28072

N−O 0.61035 0.31250 0.31250 0.55027 1.00000 0.17196 0.31250

N−P 0.80568 0.31250 0.31250 0.64738 0.90090 0.20231 0.28153

O−L 0.05417 0.31250 0.31250 0.61323 0.48544 0.19163 0.15170

O−M 0.25280 0.31250 0.31250 0.76011 0.32279 0.23753 0.10087

O−P 0.21187 0.31250 0.31250 0.75523 0.58577 0.23601 0.18305

P−M 0.87243 0.31250 0.31250 0.71588 0.68984 0.22371 0.21558

label in O(τ.|V |.Davg) time, where τ represents the number of iterations in

the partition phase. Lines 20–35 merge unstable communities with some

other stable communities in O(l2.Cavg.Davg) time, where l represents the

number of communities after the partition phase. Therefore, CD divides

the graph into communities in O(Davg(τ.|V |+ l2.Cavg) time.

We now analyze the overall time complexity of the main algorithm

CLP-ID (Algorithm 16). Line 1 performs community detection using the
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CD algorithm in O(Davg(τ.|V |+ l2.Cavg) time. The overall importance of

each existing link is computed in O(|E|.Davg) time (lines 2–5). Lines 6–8

compute the likelihood score of each target link in O(|E|.Davg) time.

Thus, the overall time complexity of CLP-ID is

O(Davg(|E|+ τ.|V |+ l2.Cavg)). TABLE 6.2 compares the complexity of

the proposed algorithm with that of state-of-the-art algorithms.

TABLE 6.2: The Comparison of the Complexity of CLP-ID with the State-of-the-art
Algorithms

Algorithm Complexity Remarks

CN [169] O(N.D3
Avg) Local similarity index

PA [179] O(N.D2
Avg) Local Similarity Index

RA [171] O(N.D3
Avg) Local Similarity Index

LNBCN [180] O(N( f (z)+N.D3
Avg)) Naive Bayes theory

CAR [181] O(N.D4
Avg) Community-based Similarity Index

NLC [182] O(N.D3
Avg) Clustering Coefficient

N2V [183] O( l
k′(l−k′))

1 Network Embedding
CCLP [184] O(N2.D2

Avg) Clustering Coefficient
CCLP2 [185] O(N3.D2

Avg) Level-2 Clustering Coefficient
CLP-ID O(Davg(M+ τ.N + l2.Cavg)) Information dissemination

6.4 Empirical Analysis

All the experiments performed on eight real-world network datasets:

Football [146], Celegansneural [147], USAir97 [148], Political blogs

[149], Amazon web graph [150], NetScience [186], Power [147], and

GrQc [141]. The performance of proposed algorithm is tested against nine

methods regarding four performance metrics.

1The given time complexity of the N2V is defined for per sample where l is walk length
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6.4.1 Performance Metrics

Hasan et al. [168] treated the link prediction problem as a binary

classification problem, thus employing most of the related evaluation

metrics. The evaluation of a binary classification problem with two

classes can be represented as a confusion matrix [187].

True

positive
p′

p

False

negative

n Total

P′

False

positive
n′

Total P

True

negative
N′

N

Actual

value

Prediction outcome

1 Recall or True positive rate (TPR) or Sensitivity or Hit rate

Recall =
p′p
P′

(6.7)

2 False positive rate (FPR) or Fall-out

FPR =
n′p
N′

(6.8)

3 Specificity or True negative rate (TNR) or Selectivity

Speci f icity =
n′n
N′

(6.9)
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4 Precision or Positive predictive value

Precision =
p′p
P

(6.10)

5 Average Precision

AveragePrecision =
∫ 1

r=0
p(r)dr (6.11)

Manning et al. [187] defines the following metrics based on the above

confusion matrix. We evaluate the proposed algorithm CLP-ID in terms of

four accuracy metrics viz., Area under the precision-recall curve (AUPR)

[188], Recall [187], Area under curve (AUC) [189], and Average Precision

[187].

• Area under the precision-recall curve (AUPR). In binary

classification problems, AUPR [185, 187] is more informative and

useful. Thus, we used it as an accuracy measure. AUPR values are

computed based on the precision–recall curve, where the x- and

y-axes represent the recall and precision values, respectively.

Precision measures the deviation from true values and its scatter, and

is given in Equation 6.10. Similarly, recall measures the deviation

from true values and its total relevant values, and is given in

Equation 6.7.

• Recall. In link prediction, recall [185, 187] is the fraction of target

links that are successfully predicted, and is given in Equation 6.7.
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• Area under the Receiver Operating Characteristics Curve

(AUROC/AUC). AUROC/AUC [185, 187] plots TPR (y-axis)

against FPR (x-axis). The TPR and FPR values can be computed

using Equations 6.7 and 6.8, respectively. The AUC value is a

single-point statistical summary with range 0–1 and is estimated

using the trapezoidal rule.

• Precision. In link prediction, precision [185, 187] measures the

deviation from true values and its scatter, and can be computed by

Equation 6.10. To validate the predicted probability values against

the training data, a threshold is required that can act as a boundary

between true and false predictions. However, this threshold may be

different for different runs of the algorithm. To provide a more

standard metric, we used average precision2. The average precision

metric is a single-point summary value that is computed based on

varying threshold values. The average precision value is equal to the

precision averaged over all values of recall between 0 and 1

(Equation 6.11).

6.4.2 Methods to Compare

1 Common Neighbor (CN). In 2001, Newman et al. [169] stated that

the similarity score S(x,y) between a a pair of nodes x and y is

2 Henceforth, we will use the terms average precision and precision interchangeably, but the formula
used for the calculation of the metric is that of average precision
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dependent on the number of mutual friends, given as follows.

S(x,y) = |N(x)∩N(y)| (6.12)

where N(x) and N(y) denotes the set of neighbor nodes of x and y

respectively.

2 Preferential Attachment (PA). In 2002, Barabasi et al. [179]

considered preferential growth to a pair of nodes for link prediction

and presented the probability of co-authorship S(x,y) between a pair

of nodes x and y, given as follows.

S(x,y) = Dx×Dy (6.13)

where Dx and Dy denotes the degree of x and y respectively.

3 Resource Allocation (RA). In 2009, Zhou et al. [171] presented

resource allocation index for link prediction by imposing penalty to

higher degree nodes. The score S(x,y) between a pair of nodes x and

y based on this method given as follows.

S(x,y) = ∑
z∈N(x)∩N(y)

1
Dz

(6.14)

4 Local Naive Bayes based Common Neighbor (LNBCN). In 2011,

Liu et al. [180] suggested that that different common neighbors play

different role in the network. With their different contribution in score

computation, similarity score S(x,y) between a pair of nodes x and y
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is defined as follows.

S(x,y) = ∑
z∈N(x)∩N(y)

{
log(

C(z)
1−C(z)

)+ log(
ρ

1−ρ
)
}

(6.15)

where C(z) is clustering coefficient of node z and ρ is computed as

follows.

ρ =
|E|

|V |× (|V |−1)/2
(6.16)

5 CAR Index. In 2013, Cannistraci et al. [181] suggested that a pair

of nodes possibly have a connection if their common neighbors are

members of a local community. They proposed CAR variants of CN,

JA, AA, and RA. The common neighbor variant CAR CN computes

similarity score S(x,y) between a pair of nodes x and y as follows.

S(x,y) =CN(x,y)× ∑
z∈N(x)∩N(y)

γ(z)
2 (6.17)

where γ(z) represents a subset of neighbors of node z such that γ(z)⊆

N(z)∩N(x)∩N(y). CN(x,y) is the set common neighbors of a pair

of individuals x and y.

6 Node and Link Clustering Coefficient (NLC). In 2016, Wu et al.

[182] adopted both node and link clustering coefficients. The

similarity score of a target link can be computed as follows.

S(x,y) = ∑
z∈N(x)∩N(y)

{CN(x,z)
Dz−1

+
CN(y,z)
Dz−1

}
×C(z) (6.18)
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7 Node2vec (N2V). In 2016, Grover et al. [183] presented a network

embedding method to predict future links. N2V mapped nodes to a

lower dimensional space.

8 Clustering Coefficient based Link Prediction (CCLP). In 2016,

Wu et al. [184] utilized clustering coefficient to compute similarity

score of a pair of individuals based on common neighbors. The

similarity index between a target link (x,y) can be computed as

follows.

S(x,y) = ∑
z∈N(x)∩N(y)

C(z) (6.19)

The clustering coefficient C(z) of node z can be computed as follows.

C(z) =
tz

Dz× (Dz−1)
(6.20)

where tz denotes total number of triangles passing through the node z.

9 Level-2 node Clustering Coefficient-based Link

Prediction(CCLP2). In 2019, Kumar et al. [185] extended the

CCLP metric up to level 2 of a node. The CCLP2 score can be

computed as follows.

S(x,y) = ∑
z∈(N(x)∩N(CN(x,y)))||(N(CN(x,y))∩N(y))

CC(z) (6.21)

where CC(z) refers to level-2 clustering coefficient score defined in

[185].
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FIGURE 6.2: Safe Zone Predicted with Average Isolability Metric Corresponding to τ

and θ Ranges over Mean Value of Ratios in Different Datasets



Chapter 6. Link Prediction using Information Diffusion Perspective 211

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
θ ->

5
10

15
20

25
<-

 τ

−1

0

1

2

3

4

(A) Football

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
θ ->

5
10

15
20

25
<-

 τ

0

10

20

30

40

(B) Celegansneural

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
θ ->

5
10

15
20

25
<-

 τ

0.0000

0.0025

0.0050

0.0075

0.0100

(C) USAir97

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
θ ->

5
10

15
20

25
<-

 τ

0

2000

4000

6000

8000

(D) Political blogs

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
θ ->

5
10

15
20

25
<-

 τ

0

100

200

300

400

500

(E) Amazon

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
θ ->

5
10

15
20

25
<-

 τ

0

10

20

30

40

(F) NetScience

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
θ ->

5
10

15
20

25
<-

 τ

0.0

1.5

3.0

4.5

6.0

(G) Power

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
θ ->

5
10

15
20

25
<-

 τ

0

5

10

15

20

25

(H) GrQc

FIGURE 6.3: Safe Zone Predicted with External Density Metric Corresponding to τ and
θ Ranges over Mean Value of Ratios in Different Datasets
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6.4.3 Parameter Analysis with Community Detection Performance

Metrics

In this section, we analyze the parameters τ and θ in the performance

metrics of community detection. For parameter analysis, we use quality

metrics with unknown ground truth community structure, namely, average

isolability, external density, coverage, cluster count, and modularity [177].

To evaluate the quality metrics corresponding to the parameters τ and θ , we

consider eight real-world networks. The results obtained on each network

corresponding to all 50 pairs of τ and θ values are shown in figs. 6.2 to 6.6.

6.4.3.1 Average isolability

Before discussing the average isolability corresponding to different values

of τ and θ , we define the isolability metric for measuring the quality of the

community structure. The isolability of a community Ci is defined as the

ratio of intra-links and total links of the community Ci. As in the case of

the relative density measure, isolability is defined as follows:

Isolability(Ci) =
Linksintra(Ci)

Linksintra(Ci)+Linksinter(Ci)
(6.22)

Let |CS| denote the number of communities in the community structure CS;

then, the average isolability defined as follows:

Avg Isolability(CS) =
∑Ci∈CS Isolability(Ci)

|CS|
(6.23)
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The results obtained for the average isolability metric for different datasets

are shown in FIGURE 6.2. Clearly, the average isolability appears to reach

its maximum value for τ and θ values in the ranges 5–25 and 0.8–1.0,

respectively, in the Football dataset. Other value pairs of τ and θ generate

quite small average isolability values. Hence, the safe zone for the Football

dataset is obtained with τ = 5–25 and θ = 0.8–1.0. Similarly, the safe

zone for the Celegansneural dataset is obtained with τ = 5–25 and θ =

0.6–1.0. The safe zone for the USAir97 dataset is obtained with τ = 25 and

θ = 0.8. The safe zones for both the Political Blogs and Amazon datasets

are obtained with τ = 5–25; however, the corresponding values for θ are

different: 0.1–0.4 and 0.5–0.7, respectively. Similarly, the safe zone for the

NetScience dataset is obtained with τ = 5–25 and θ in the range 0.6–1.0.

The safe zone for the Power dataset is obtained with τ = 5–25 and θ = 1.0.

Similarly, the safe zone for the GrQc dataset is obtained with τ = 5–25 and

θ in the range 0.8–1.0.

6.4.3.2 External density

The external density of a community structure is defined as the ratio of the

number of edges that link distinct communities to the maximum number of

possible such edges, that is, the ratio of intra- and inter-community edges.

The external density ExtrDens of CS is calculated as follows:

ExtrDens(CS) =
∑Ci∈CS Linksintra(Ci)

∑Ci∈CS Linksinter(Ci)
(6.24)
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Small values of external density indicate better-quality communities.

External density becomes insignificant for clusters between which no

edges exist. For a graph with only one cluster, the external density can be

assumed to be −1.

The results obtained for the external density quality metric are shown in

FIGURE 6.3. For the Football dataset, the external density reached its

smallest value with θ and τ values in the ranges 0.1–0.5 and 5–25,

respectively. Hence, the safe zone for the Football dataset is obtained with

θ = 0.1–0.5 and τ = 5–25. Similarly, the safe zone for the

Celegansneural dataset is obtained with τ = 5–25 and θ in the range

0.5–1.0. The safe zone for the USAir97 dataset is obtained with τ values

in the range 5–25 and θ = 0.6–1.0. The safe zone for the Political Blogs

dataset is obtained with τ = 5–25 and θ values in the range 0.1–0.5.

Similarly, the safe zones for both the Amazon and NetScience datasets are

obtained with τ values in the range 5–25 and θ values in the range

0.1–0.7. The safe zone for the Power dataset is obtained with τ = 5–25

and θ = 1.0. Similarly, the safe zone for the GrQc dataset is obtained with

τ = 5–25 and θ values in the range 0.1–0.7 and 1.0.

6.4.3.3 Coverage

The coverage of the community structure CS is defined as the fraction of

all community intra-connections to the total number of connections in the
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network. It can be estimated as follows:

Coverage(CS) =
∑Ci∈CS Linksintra(Ci)

|E|
(6.25)

Higher values of coverage indicate better-quality community structure.

Coverage becomes 0 if all the communities have a single node, that is,

|CS| = |V |. Similarly, coverage becomes 1 if all the nodes belong to the

same community, that is, |CS|= 1.

The results obtained for coverage corresponding to a range of τ and θ

values are shown in FIGURE 6.4. For the Football dataset, coverage

attained its highest value for τ and θ values in the ranges 5–25 and

0.9–1.0, respectively. In these ranges, coverage attained a value of at least

0.90. However, it varied with θ . Hence, the safe zone for the Football

dataset is reached at least at 0.75 with τ and θ values in the ranges 5–25

and 0.8–1.0, respectively. Similarly, the safe zones for both the

Celegansneural and USAir97 datasets are reached at least at 0.80 with τ

and θ values in the ranges 5–25 and 0.6–1.0, respectively. For the

Political Blogs dataset, coverage reached its highest value for τ values in

the range 5–25 and θ = 1.0. The safe zone for the Political Blogs dataset

is reached at least at 0.95 with τ and θ values in the ranges 5–25 and

0.5–1.0, respectively. Similarly, the safe zones for both the Amazon and

NetScience datasets are reached at least at 0.90 with τ and θ values in the

ranges 5–25 and 0.8–1.0, respectively. The safe zone for the Power

dataset is obtained with τ = 5–25 and θ = 1.0. Similarly, the safe zone for
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GrQc dataset is obtained with τ = 5–25 and θ values in the range 0.9–1.0.

6.4.3.4 Cluster count

The cluster count of a community structure CS is defined as the number of

communities present in CS. The results obtained for cluster count

corresponding to a range of τ and θ values are shown in FIGURE 6.5. For

the Football dataset, cluster count attained values in the range 5–15 for τ

and θ values in the ranges 5–25 and 0.3–0.7, respectively. Similarly, the

safe zones for both the Celegansneural and USAir97 datasets are reached

for values in the range 15–20 with τ and θ values in the ranges 5–25 and

0.6–0.9, respectively. The safe zone for the Political Blogs dataset is

obtained with τ values in the range 5–25 and θ = 1.0. Similarly, the safe

zone for the Amazon dataset is obtained with τ values in the range 10–15

and θ = 0.9. The safe zone for the NetScience dataset is obtained with τ

and θ values in the ranges 5–25 and 0.9–1.0, respectively. The safe zone

for the Power dataset is obtained with τ = 5–25 and θ = 0.9–1.0.

Similarly, the safe zone for the GrQc dataset is obtained with τ = 5–25

and θ values in the range 0.8–1.0.

6.4.3.5 Modularity

Modularity is the most widely accepted quality metric to measure the

quality of predicted communities. The modularity of a community
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structure CS is defined as the fraction of intra-connections in the network

by subtracting the corresponding expected values. The value of

modularity approaches 0 if the number of intra-connections in the

communities is small. Similarly, the value of modularity approaches 1 if

the number of intra-connections in the communities is higher. Modularity

can be estimated as follows:

Modularity(CS) = ∑
Ci∈CS

{Linksintra(Ci)

|E|
−
(Linksinter(Ci)

|E|

)2}
(6.26)

The results obtained for modularity corresponding to a range of τ and θ

values are shown in FIGURE 6.6. For the Football dataset, modularity

reached its highest value for τ and θ values in the ranges 5–25 and

0.9–1.0, respectively. Within this range, modularity attained a value of at

least 1.0. Modularity attained a value of at least 0.80 with τ values in the

range 5–25, but it varied with θ . Hence, the safe zone for the Football

dataset is reached at least at 0.80 with τ and θ values in the ranges 5–25

and 0.8–1.0, respectively. Similarly, the safe zone for both the

Celegansneural and USAir97 datasets reached its highest value with τ and

θ values in the ranges 5–25 and 0.7–1.0, respectively. For the Political

Blogs dataset, modularity reached its highest value for τ values in the

range 5–25 and θ = 1.0. The safe zone for the Political Blogs dataset is

reached at least at 0.95 with τ and θ values in the ranges 5–25 and

0.4–1.0, respectively. Similarly, the safe zones for both the Amazon and
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NetScience datasets are reached at least at 0.96 with τ and θ values in the

ranges 5–25 and 0.9–1.0, respectively. The safe zone for the Power

dataset is obtained with τ = 5–25 and θ = 1.0. Similarly, the safe zone

for the GrQc dataset is obtained with τ = 5–25 and θ values in the range

0.9–1.0.

6.4.4 Parameter Analysis with Link Prediction Performance Metrics

As in the previous section, we analyze the parameters τ and θ and the

corresponding performance metrics of link prediction. Here, we use four

quality metrics: AUPR, recall, AUC, and precision to predict the safe zones

for the parameters. To evaluate the quality metrics corresponding to the

parameters τ and θ , we consider eight real-world networks. The results

obtained on each of the eight networks corresponding to all 50 pairs of τ

and θ values are shown in figs. 6.7 to 6.10.

6.4.4.1 AUPR

The results obtained for AUPR corresponding to a range of τ and θ values

are shown in FIGURE 6.7. For the Football dataset, AUPR attained a

value of at least 0.28 for τ and θ values in the ranges 5–25 and 0.8–1.0,

respectively. Hence, the safe zone for the Football dataset is obtained with

τ and θ values in the ranges 5–25 and 0.8–1.0, respectively. The safe

zones for both the Celegansneural and USAir97 datasets are obtained with



Chapter 6. Link Prediction using Information Diffusion Perspective 222

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
θ ->

5
10

15
20

25
<-

 τ

0.08

0.10

0.12

0.14

0.16

0.18

(A) Football

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
θ ->

5
10

15
20

25
<-

 τ

0.02

0.03

0.04

0.05

0.06

0.07

(B) Celegansneural

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
θ ->

5
10

15
20

25
<-

 τ

0.015

0.030

0.045

0.060

0.075

0.090

(C) USAir97

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
θ ->

5
10

15
20

25
<-

 τ

0.132

0.138

0.144

0.150

0.156

(D) Political blogs

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
θ ->

5
10

15
20

25
<-

 τ

0.006

0.012

0.018

0.024

0.030

(E) Amazon

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
θ ->

5
10

15
20

25
<-

 τ

0.150

0.165

0.180

0.195

0.210

0.225

(F) NetScience

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
θ ->

5
10

15
20

25
<-

 τ

0.0104

0.0112

0.0120

0.0128

0.0136

(G) Power

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
θ ->

5
10

15
20

25
<-

 τ

0.175

0.200

0.225

0.250

0.275

0.300

(H) GrQc

FIGURE 6.7: Safe Zone Predicted with AUPR Metric Corresponding to τ and θ Ranges
over Mean Value of Ratios in Different Datasets
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
θ ->

5
10

15
20

25
<-

 τ

0.48

0.54

0.60

0.66

0.72

(A) Football

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
θ ->

5
10

15
20

25
<-

 τ

0.48

0.54

0.60

0.66

0.72

(B) Celegansneural

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
θ ->

5
10

15
20

25
<-

 τ

0.40

0.48

0.56

0.64

0.72

(C) USAir97

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
θ ->

5
10

15
20

25
<-

 τ

0.80

0.82

0.84

0.86

0.88

(D) Political blogs

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
θ ->

5
10

15
20

25
<-

 τ

0.05

0.10

0.15

0.20

0.25

(E) Amazon

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
θ ->

5
10

15
20

25
<-

 τ

0.56

0.60

0.64

0.68

0.72

(F) NetScience

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
θ ->

5
10

15
20

25
<-

 τ

0.08

0.09

0.10

0.11

0.12

0.13

(G) Power

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
θ ->

5
10

15
20

25
<-

 τ

0.48

0.52

0.56

0.60

0.64

0.68

(H) GrQc

FIGURE 6.8: Safe Zone Predicted with Recall Metric Corresponding to τ and θ Ranges
over Mean Value of Ratios in Different Datasets
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
θ ->

5
10

15
20

25
<-

 τ

0.48

0.56

0.64

0.72

0.80

(A) Football

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
θ ->

5
10

15
20

25
<-

 τ

0.40

0.48

0.56

0.64

0.72

(B) Celegansneural

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
θ ->

5
10

15
20

25
<-

 τ

0.3

0.4

0.5

0.6

0.7

0.8

(C) USAir97

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
θ ->

5
10

15
20

25
<-

 τ

0.82

0.84

0.86

0.88

0.90

(D) Political blogs

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
θ ->

5
10

15
20

25
<-

 τ

0.40

0.45

0.50

0.55

0.60

(E) Amazon

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
θ ->

5
10

15
20

25
<-

 τ

0.56

0.60

0.64

0.68

0.72

(F) NetScience

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
θ ->

5
10

15
20

25
<-

 τ

0.520

0.528

0.536

0.544

0.552

0.560

(G) Power

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
θ ->

5
10

15
20

25
<-

 τ

0.48

0.52

0.56

0.60

0.64

0.68

(H) GrQc

FIGURE 6.9: Safe Zone Predicted with AUC Metric Corresponding to τ and θ Ranges
over Mean Value of Ratios in Different Datasets
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
θ ->

5
10

15
20

25
<-

 τ

0.08

0.10

0.12

0.14

0.16

0.18

(A) Football

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
θ ->

5
10

15
20

25
<-

 τ

0.02

0.03

0.04

0.05

0.06

0.07

(B) Celegansneural

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
θ ->

5
10

15
20

25
<-

 τ

0.015

0.030

0.045

0.060

0.075

0.090

(C) USAir97

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
θ ->

5
10

15
20

25
<-

 τ

0.132

0.138

0.144

0.150

0.156

(D) Political blogs

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
θ ->

5
10

15
20

25
<-

 τ

0.006

0.012

0.018

0.024

0.030

(E) Amazon

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
θ ->

5
10

15
20

25
<-

 τ

0.120

0.135

0.150

0.165

0.180

0.195

(F) NetScience

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
θ ->

5
10

15
20

25
<-

 τ

0.0020

0.0024

0.0028

0.0032

0.0036

(G) Power

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
θ ->

5
10

15
20

25
<-

 τ

0.150

0.175

0.200

0.225

0.250

0.275

(H) GrQc

FIGURE 6.10: Safe Zone Predicted with Precision Metric Corresponding to τ and θ

Ranges over Mean Value of Ratios in Different Datasets
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τ and θ values in the ranges 5–25 and 0.5–1.0. For the Political Blogs

dataset, AUPR attained a value of at least 0.060 for τ and θ values in the

ranges 5–25 and 0.3–1.0, respectively. Hence, the safe zone for the

Political Blogs dataset is obtained with τ and θ values in the ranges 5–25

and 0.3–1.0, respectively. Similarly, the safe zone is predicted for the

Amazon dataset with τ and θ values in the ranges 10–20 and 0.4–0.6,

respectively. The safe zone is predicted for the NetScience dataset with τ

and θ values in the ranges 5–25 and 0.6–1.0, respectively. The safe zone

for the Power dataset is obtained with τ = 5–25 and θ = 0.7–1.0.

Similarly, the safe zone for the GrQc dataset is obtained with τ = 5–25

and θ = 1.0.

6.4.4.2 Recall

The results obtained for the recall corresponding to a range of τ and θ

values are shown in FIGURE 6.8. For the Football dataset, the recall

attained a value of at least 0.69 for τ and θ values in the ranges 5–25 and

0.8–1.0, respectively. Hence, the safe zone for the Football dataset is

obtained with τ and θ values in the ranges 5–25 and 0.8–1.0, respectively.

Similarly, the safe zones for both the Celegansneural and USAir97

datasets are obtained with τ and θ values in the ranges 5–25 and 0.6–1.0,

respectively. For the Political Blogs dataset, the recall attained a value of

at least 0.80 for τ and θ values in the ranges 5–25 and 0.5–1.0,

respectively. Hence, the safe zone for the Political blogs dataset is
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obtained with τ and θ values in the ranges 5–25 and 0.5–1.0, respectively.

Similarly, the safe zone is predicted for the Amazon dataset with τ and θ

values in the ranges 15–20 and 0.5, respectively. The safe zone is

predicted for the NetScience dataset with τ and θ values in the ranges

5–25 and 0.1–0.4, respectively. The safe zone for the Power dataset is

obtained with τ = 5–25 and θ = 0.9–1.0. Similarly, the safe zone for the

GrQc dataset is obtained with τ = 5–25 and θ = 0.8–1.0.

6.4.4.3 AUC

Results obtained for AUC corresponding to a range of τ and θ values are

shown in FIGURE 6.9. For the Football dataset, AUC attained a value of

at least 0.75 for τ and θ values in the ranges 5–25 and 0.7–1.0,

respectively. Hence, the safe zone for the Football dataset is obtained with

τ and θ values in the ranges 5–25 and 0.7–1.0, respectively. Similarly, the

safe zones for both the Celegansneural and USAir97 datasets are obtained

with τ and θ values in the ranges 5–25 and 0.6–1.0, respectively. For the

Political Blogs dataset, AUC attained a value of at least 0.85 for τ and θ

values in the ranges 5–25 and 0.4–1.0, respectively. Hence, the safe zone

for the Political Blogs dataset is obtained with τ and θ values in the

ranges 5–25 and 0.4–1.0. Similarly, the safe zone is predicted for the

Amazon dataset with τ and θ values in the ranges 5–25 and 0.8–1.0,

respectively. The safe zone is predicted for the NetScience dataset with τ

and θ values in the ranges 5–25 and 0.1–0.4, respectively. The safe zone
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for the Power dataset is obtained with τ = 5–25 and θ = 0.9–1.0.

Similarly, the safe zone for the GrQc dataset is obtained with τ = 5–25

and θ = 0.7–1.0.

6.4.4.4 Precision

The results obtained for the precision corresponding to a range of τ and θ

values are shown in FIGURE 6.10. For the Football dataset, the precision

attained a value of at least 0.28 for τ and θ values in the ranges 5–25

and 0.8–1.0, respectively. Hence, the safe zone for the Football dataset is

obtained with τ and θ values in these ranges. Similarly, the safe zones

for both the Celegansneural and USAir97 datasets are obtained with τ and

θ values in the ranges 5–25 and 0.6–1.0, respectively. For the Political

Blogs dataset, the precision attained its highest value for τ and θ values

in the ranges 5–25 and 0.6− 0− 0.9, respectively. Hence, the safe zone

for the Political Blogs dataset is obtained with τ and θ values in these

ranges. Similarly, the safe zone is predicted for the Amazon dataset with

τ = 25 and θ values in the range 0.1–0.8. The safe zone is predicted for

the NetScience dataset with τ and θ values in the ranges 5–25 and 0.7–1.0,

respectively. The safe zone for the Power dataset is obtained with τ = 5–25

and θ = 0.8–0.9. Similarly, the safe zone for the GrQc dataset is obtained

with τ = 5–25 and θ = 1.0.
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TABLE 6.3: Comparison of CLP-ID with the State-of-the-art Algorithms in terms of
Accuracy Quantified by AUPR

Dataset Ratio Algorithm

N2V CCLP CCLP2 CN RA PA CAR NLC LNBCN CLP-ID

Football

0.1 0.11648 0.09221 0.09114 0.08339 0.20690 0.00630 0.11150 0.11104 0.09576 0.13589

0.2 0.17146 0.15257 0.15288 0.18006 0.32175 0.01324 0.13857 0.16503 0.13978 0.19900

0.3 0.21408 0.18937 0.20176 0.18599 0.27099 0.02006 0.17643 0.17291 0.20937 0.22419

0.4 0.22692 0.17153 0.21998 0.21168 0.31235 0.03061 0.12834 0.21139 0.18535 0.23212

0.5 0.22218 0.18006 0.20831 0.21514 0.27106 0.03683 0.02457 0.19971 0.17658 0.22690

Celegansneural

0.1 0.02115 0.03701 0.04286 0.03545 0.06273 0.02376 0.02770 0.05565 0.03484 0.04574

0.2 0.03655 0.08605 0.06372 0.06573 0.09210 0.04613 0.06054 0.08742 0.07102 0.06758

0.3 0.04831 0.09358 0.07410 0.07971 0.12581 0.06653 0.06732 0.11603 0.08839 0.08715

0.4 0.05831 0.11038 0.08512 0.09695 0.12481 0.07647 0.07909 0.12128 0.10377 0.09794

0.5 0.06608 0.11224 0.10499 0.10144 0.15844 0.09421 0.12026 0.12282 0.11295 0.10108

USAir97

0.1 0.04773 0.24960 0.22894 0.24963 0.47136 0.24797 0.23332 0.25916 0.27705 0.27899

0.2 0.08654 0.32974 0.29227 0.33254 0.52955 0.33712 0.28597 0.35803 0.35068 0.34962

0.3 0.10088 0.41507 0.33532 0.37018 0.54411 0.39694 0.29547 0.43216 0.38686 0.38250

0.4 0.12430 0.42728 0.36680 0.39477 0.52481 0.42803 0.32622 0.44177 0.43565 0.39953

0.5 0.12583 0.41710 0.37339 0.41568 0.52200 0.44449 0.28613 0.44198 0.40725 0.41050

Political blogs

0.1 0.01505 0.07578 0.08632 0.07601 0.07631 0.03159 0.06614 0.09520 0.07092 0.08456

0.2 0.02544 0.12308 0.12774 0.13383 0.13019 0.06035 0.10921 0.16111 0.13027 0.13753

0.3 0.03346 0.16583 0.16837 0.16738 0.17318 0.08655 0.13508 0.19320 0.17144 0.17641

0.4 0.03970 0.19618 0.19054 0.19578 0.19567 0.10890 0.14121 0.22493 0.20066 0.20218

0.5 0.04422 0.21503 0.20232 0.20809 0.21393 0.13081 0.15659 0.23854 0.21561 0.21826

Amazon

0.1 0.00523 0.01431 0.10677 0.01412 0.01472 0.10639 0.04291 0.07819 0.01615 0.02870

0.2 0.00624 0.02659 0.10691 0.03276 0.02669 0.11216 0.05426 0.06901 0.03079 0.03882

0.3 0.00718 0.03196 0.09231 0.04250 0.03586 0.13212 0.07493 0.08971 0.03563 0.04084

0.4 0.00986 0.04226 0.08164 0.04316 0.03772 0.12817 0.04825 0.07327 0.03907 0.04389

0.5 0.00802 0.04502 0.06865 0.04236 0.04318 0.13722 0.10780 0.08703 0.04687 0.04778

NetScience

0.1 0.09631 0.19348 0.16204 0.18831 0.69874 0.00375 0.18133 0.15769 0.23989 0.14942

0.2 0.15169 0.23835 0.22757 0.26070 0.67891 0.00627 0.24240 0.23014 0.30209 0.21059

0.3 0.18437 0.27084 0.24601 0.28896 0.65239 0.00838 0.25818 0.26225 0.32452 0.25496

0.4 0.20763 0.27631 0.24516 0.29353 0.59811 0.00834 0.25950 0.25939 0.32248 0.29086

0.5 0.20378 0.28501 0.28182 0.29096 0.55626 0.01067 0.24630 0.28844 0.31685 0.31682

Power

0.1 0.00237 0.00810 0.00911 0.00434 0.01293 0.00008 0.03623 0.00759 0.00763 0.00628

0.2 0.00379 0.01652 0.01700 0.00930 0.01311 0.00013 0.07569 0.01565 0.01691 0.01100

0.3 0.00434 0.01747 0.02686 0.01179 0.02128 0.00020 0.00008 0.02096 0.01988 0.01524

0.4 0.00431 0.02966 0.03433 0.01537 0.02468 0.00024 0.00011 0.03776 0.02913 0.01963

0.5 0.00384 0.02819 0.04014 0.01984 0.03219 0.00032 0.00014 0.04735 0.04581 0.02288

GrQc

0.1 0.04773 0.24960 0.22894 0.24963 0.47136 0.24797 0.23332 0.25916 0.27705 0.27899

0.2 0.08654 0.32974 0.29227 0.33254 0.52955 0.33712 0.28597 0.35803 0.35068 0.34962

0.3 0.10088 0.41507 0.33532 0.37018 0.54411 0.39694 0.29547 0.43216 0.38686 0.38250

0.4 0.12430 0.42728 0.36680 0.39477 0.52481 0.42803 0.32622 0.44177 0.43565 0.39953

0.5 0.12583 0.41710 0.37339 0.41568 0.52200 0.44449 0.28613 0.44198 0.40725 0.41050
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TABLE 6.4: Comparison of CLP-ID with the State-of-the-art Algorithms in terms of
Accuracy Quantified by Recall

Dataset Ratio Algorithm

N2V CCLP CCLP2 CN RA PA CAR NLC LNBCN CLP-ID

Football

0.1 0.79677 0.80645 0.71774 0.69355 0.80645 0.17742 0.29032 0.85484 0.82258 0.89758

0.2 0.76152 0.80488 0.67886 0.81301 0.78049 0.31707 0.16260 0.73984 0.78049 0.87764

0.3 0.73080 0.75544 0.67663 0.76087 0.77174 0.26087 0.79348 0.60870 0.76630 0.76658

0.4 0.69648 0.63821 0.64431 0.68699 0.72764 0.34959 0.80894 0.58537 0.66260 0.70589

0.5 0.63627 0.55700 0.42020 0.57003 0.59609 0.31922 0.90554 0.43974 0.49186 0.60195

Celegansneural

0.1 0.67535 0.84651 0.76512 0.92093 0.88372 0.65581 0.15349 0.83256 0.83721 0.88628

0.2 0.63659 0.85116 0.67558 0.87907 0.81861 0.70465 0.10233 0.77209 0.83721 0.85116

0.3 0.59121 0.73488 0.62713 0.82946 0.77209 0.68372 0.04031 0.68372 0.78760 0.79868

0.4 0.55496 0.70814 0.54593 0.72442 0.69767 0.65930 0.84535 0.58954 0.71047 0.72221

0.5 0.50385 0.59218 0.46136 0.61173 0.61080 0.62384 0.92086 0.50000 0.54935 0.63152

USAir97

0.1 0.85603 0.92958 0.81690 0.97183 0.94836 0.77934 0.75587 0.89671 0.92488 0.92911

0.2 0.81706 0.88967 0.79930 0.95305 0.92723 0.82160 0.64319 0.87089 0.90845 0.91455

0.3 0.79509 0.90125 0.75000 0.92790 0.90282 0.84796 0.54075 0.85267 0.90909 0.89828

0.4 0.77438 0.87427 0.74971 0.89659 0.84841 0.82491 0.41833 0.81199 0.89307 0.88320

0.5 0.74431 0.81844 0.72013 0.85231 0.86171 0.81279 0.20602 0.77046 0.83161 0.84073

Political blogs

0.1 0.78441 0.92105 0.84510 0.94557 0.90817 0.90518 0.61483 0.87081 0.92492 0.93505

0.2 0.77207 0.90162 0.81938 0.93540 0.90205 0.89846 0.50621 0.86270 0.92522 0.93219

0.3 0.75366 0.89282 0.81001 0.90809 0.88417 0.90431 0.38557 0.84548 0.89952 0.91443

0.4 0.73265 0.87925 0.78275 0.87843 0.85727 0.89967 0.25398 0.81249 0.88126 0.88276

0.5 0.70902 0.81975 0.73684 0.83525 0.82089 0.89729 0.79626 0.76926 0.83239 0.83823

Amazon

0.1 0.17408 0.29744 0.28974 0.32564 0.25674 0.35339 0.19409 0.30090 0.30937 0.34363

0.2 0.17610 0.28801 0.26346 0.26026 0.27728 0.31471 0.14249 0.29955 0.31454 0.30886

0.3 0.16689 0.27474 0.24091 0.29855 0.26046 0.30881 0.10950 0.27887 0.28089 0.27490

0.4 0.15984 0.22768 0.21784 0.24623 0.25096 0.27095 0.02729 0.25465 0.25931 0.28654

0.5 0.14556 0.21808 0.20365 0.21603 0.22382 0.26033 0.04467 0.22068 0.22958 0.23383

NetScience

0.1 0.85042 0.78909 0.71455 0.88364 0.85818 0.50182 0.27273 0.72000 0.72000 0.87818

0.2 0.81117 0.68670 0.62659 0.81967 0.80874 0.59745 0.18215 0.69035 0.73953 0.83761

0.3 0.76468 0.62090 0.51154 0.71810 0.76063 0.58202 0.10693 0.62576 0.60875 0.76288

0.4 0.71176 0.53145 0.40611 0.64357 0.66181 0.51686 0.05561 0.51413 0.53327 0.68282

0.5 0.62801 0.42378 0.29723 0.55361 0.55288 0.52079 0.90591 0.39971 0.40190 0.57429

Power

0.1 0.47455 0.10152 0.06894 0.15909 0.18030 0.36212 0.97727 0.08182 0.10152 0.19849

0.2 0.37892 0.09022 0.04359 0.14632 0.14860 0.32146 0.98332 0.06520 0.08946 0.16164

0.3 0.29480 0.05407 0.03335 0.11268 0.12481 0.33350 0.98787 0.04295 0.05356 0.12683

0.4 0.21387 0.04094 0.02218 0.08946 0.08567 0.32563 0.99811 0.03412 0.03222 0.09856

0.5 0.15881 0.01850 0.01046 0.07128 0.06976 0.37216 0.99666 0.01729 0.02881 0.07340

GrQc

0.1 0.85603 0.92958 0.81690 0.97183 0.94836 0.77934 0.75587 0.89671 0.92488 0.92911

0.2 0.81706 0.88967 0.79930 0.95305 0.92723 0.82160 0.64319 0.87089 0.90845 0.91455

0.3 0.79509 0.90125 0.75000 0.92790 0.90282 0.84796 0.54075 0.85267 0.90909 0.89828

0.4 0.77438 0.87427 0.74971 0.89659 0.84841 0.82491 0.41833 0.81199 0.89307 0.88320

0.5 0.74431 0.81844 0.72013 0.85231 0.86171 0.81279 0.20602 0.77046 0.83161 0.84073
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TABLE 6.5: Comparison of CLP-ID with the State-of-the-art Algorithms in terms of
Accuracy Quantified by AUC

Dataset Ratio Algorithm

N2V CCLP CCLP2 CN RA PA CAR NLC LNBCN CLP-ID

Football

0.1 0.86833 0.82246 0.80970 0.76389 0.84980 0.27477 0.53198 0.87228 0.82790 0.89412

0.2 0.85318 0.83577 0.79617 0.84536 0.83063 0.32456 0.48344 0.82080 0.82236 0.88625

0.3 0.84237 0.81083 0.79742 0.80876 0.82171 0.33468 0.43983 0.75932 0.82686 0.82095

0.4 0.82824 0.75493 0.77819 0.77981 0.80662 0.40215 0.41748 0.76681 0.76631 0.79599

0.5 0.80663 0.72252 0.67895 0.72850 0.74593 0.39556 0.45543 0.69626 0.69767 0.74935

Celegansneural

0.1 0.80692 0.84315 0.80909 0.84690 0.88441 0.75993 0.46214 0.87077 0.83633 0.87072

0.2 0.78891 0.85640 0.78896 0.82423 0.84667 0.76871 0.45379 0.84561 0.83639 0.83331

0.3 0.77215 0.80534 0.76284 0.79720 0.82033 0.75735 0.44247 0.81380 0.81175 0.80409

0.4 0.75738 0.78702 0.71992 0.76243 0.77832 0.74175 0.44110 0.78001 0.77380 0.76735

0.5 0.73607 0.71906 0.68108 0.71752 0.74378 0.73234 0.46996 0.71684 0.72015 0.73192

USAir97

0.1 0.90341 0.94441 0.91189 0.94656 0.95856 0.85418 0.83679 0.94692 0.93792 0.94189

0.2 0.89586 0.92448 0.91005 0.93743 0.94779 0.88177 0.77591 0.93014 0.92010 0.92927

0.3 0.88105 0.92915 0.87525 0.92474 0.93315 0.89113 0.71124 0.91947 0.92465 0.92414

0.4 0.87247 0.90848 0.87653 0.90994 0.90314 0.88210 0.65069 0.89980 0.91364 0.90673

0.5 0.85290 0.87656 0.85067 0.88527 0.90275 0.86967 0.50419 0.88120 0.88058 0.88915

Political blogs

0.1 0.88627 0.93964 0.93111 0.93569 0.93939 0.92962 0.74983 0.93964 0.93453 0.94070

0.2 0.87965 0.92841 0.91895 0.93126 0.93510 0.92801 0.68689 0.93483 0.93158 0.93612

0.3 0.87336 0.92308 0.91080 0.91737 0.92461 0.93095 0.61260 0.92539 0.92159 0.92409

0.4 0.86642 0.91232 0.89436 0.90451 0.90914 0.92808 0.53562 0.91078 0.90832 0.90856

0.5 0.85940 0.88486 0.86956 0.88465 0.88289 0.92734 0.45953 0.88432 0.88669 0.88885

Amazon

0.1 0.82974 0.61381 0.64068 0.62638 0.59122 0.40741 0.59506 0.63822 0.62088 0.63821

0.2 0.76307 0.61565 0.62621 0.60030 0.61057 0.42819 0.55564 0.63911 0.62953 0.62568

0.3 0.71089 0.61528 0.61615 0.62608 0.60740 0.47222 0.52759 0.63169 0.61838 0.61515

0.4 0.66832 0.59658 0.60594 0.60539 0.60846 0.49726 0.47377 0.62146 0.61267 0.62652

0.5 0.62202 0.59691 0.59997 0.59513 0.60003 0.53200 0.49468 0.60654 0.60323 0.60371

NetScience

0.1 0.89808 0.89382 0.85631 0.94105 0.92880 0.64480 0.52557 0.85927 0.85935 0.94382

0.2 0.86408 0.84265 0.81256 0.90901 0.90404 0.68256 0.51012 0.84452 0.86910 0.91464

0.3 0.83608 0.80976 0.75518 0.85824 0.88001 0.66808 0.46000 0.81229 0.80379 0.88337

0.4 0.80369 0.76517 0.70257 0.82109 0.83059 0.65307 0.46497 0.75655 0.76611 0.83530

0.5 0.75408 0.71148 0.64834 0.77620 0.77619 0.64562 0.46250 0.69953 0.70057 0.78731

Power

0.1 0.68117 0.55052 0.53435 0.57893 0.58964 0.45167 0.48941 0.54073 0.55052 0.59863

0.2 0.61773 0.54494 0.52172 0.57264 0.57388 0.44897 0.49205 0.53248 0.54456 0.58099

0.3 0.55961 0.52690 0.51662 0.55592 0.56209 0.45175 0.49394 0.52139 0.52666 0.56299

0.4 0.51799 0.52040 0.51105 0.54440 0.54260 0.46043 0.49906 0.51701 0.51605 0.54895

0.5 0.49660 0.50921 0.50522 0.53540 0.53471 0.47317 0.49834 0.50862 0.51437 0.53646

GrQc

0.1 0.90341 0.94441 0.91189 0.94656 0.95856 0.85418 0.83679 0.94692 0.93792 0.94189

0.2 0.89586 0.92448 0.91005 0.93743 0.94779 0.88177 0.77591 0.93014 0.92010 0.92927

0.3 0.88105 0.92915 0.87525 0.92474 0.93315 0.89113 0.71124 0.91947 0.92465 0.92414

0.4 0.87247 0.90848 0.87653 0.90994 0.90314 0.88210 0.65069 0.89980 0.91364 0.90673

0.5 0.85290 0.87656 0.85067 0.88527 0.90275 0.86967 0.50419 0.88120 0.88058 0.88915
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TABLE 6.6: Comparison of CLP-ID with the State-of-the-art Algorithms in terms of
Accuracy Quantified by Precision

Dataset Ratio Algorithm

N2V CCLP CCLP2 CN RA PA CAR NLC LNBCN CLP-ID

Football

0.1 0.12010 0.09431 0.09071 0.08588 0.21269 0.00703 0.06515 0.11411 0.09750 0.13661

0.2 0.17405 0.15265 0.14732 0.18219 0.32283 0.01409 0.05315 0.16527 0.13821 0.19740

0.3 0.21617 0.18415 0.18859 0.16552 0.26390 0.02095 0.04668 0.16503 0.20448 0.21788

0.4 0.22856 0.15709 0.19287 0.18368 0.29326 0.03170 0.03700 0.19548 0.17063 0.21783

0.5 0.22353 0.15015 0.15185 0.17316 0.23633 0.03786 0.04482 0.16060 0.14654 0.20017

Celegansneural

0.1 0.02150 0.03744 0.04333 0.03281 0.06414 0.02446 0.01566 0.05646 0.03543 0.04619

0.2 0.03683 0.08629 0.06311 0.05786 0.09217 0.04658 0.02270 0.08742 0.07084 0.06718

0.3 0.04855 0.09205 0.07184 0.06768 0.12478 0.06691 0.01799 0.11463 0.08684 0.08561

0.4 0.05852 0.10629 0.07912 0.07841 0.12075 0.07676 0.01932 0.11733 0.09868 0.09363

0.5 0.06629 0.10346 0.08983 0.07824 0.14856 0.09399 0.02448 0.11177 0.10091 0.09265

USAir97

0.1 0.04860 0.25220 0.23027 0.24495 0.47234 0.24879 0.23107 0.26201 0.27994 0.28034

0.2 0.08733 0.33071 0.29243 0.32237 0.52940 0.33698 0.27007 0.35903 0.35156 0.34998

0.3 0.10142 0.41501 0.33358 0.35382 0.54298 0.39614 0.25781 0.43183 0.38668 0.38211

0.4 0.12480 0.42509 0.36259 0.37015 0.52161 0.42653 0.24938 0.43933 0.43389 0.39748

0.5 0.12621 0.41077 0.36376 0.38010 0.51580 0.44250 0.14097 0.43649 0.40187 0.40534

Political blogs

0.1 0.01511 0.07593 0.08643 0.07387 0.07647 0.03174 0.06289 0.09549 0.07116 0.08461

0.2 0.02548 0.12292 0.12741 0.12870 0.13005 0.06051 0.09832 0.16105 0.13009 0.13729

0.3 0.03349 0.16521 0.16739 0.15896 0.17264 0.08663 0.10873 0.19258 0.17080 0.17570

0.4 0.03973 0.19473 0.18835 0.18257 0.19418 0.10892 0.09021 0.22340 0.19913 0.20059

0.5 0.04425 0.21163 0.19759 0.18839 0.21053 0.13078 0.05294 0.23490 0.21229 0.21488

Amazon

0.1 0.00561 0.01502 0.10607 0.01394 0.01511 0.10786 0.01686 0.07918 0.01706 0.02892

0.2 0.00647 0.02698 0.10497 0.03202 0.02687 0.11279 0.01362 0.06917 0.03141 0.03879

0.3 0.00737 0.03197 0.08914 0.03816 0.03570 0.13223 0.02112 0.08882 0.03560 0.04061

0.4 0.01004 0.04159 0.07666 0.03770 0.03694 0.12843 0.00636 0.07137 0.03824 0.04334

0.5 0.00816 0.04325 0.06030 0.03605 0.04170 0.13691 0.01446 0.08329 0.04522 0.04671

NetScience

0.1 0.09712 0.19065 0.15592 0.16725 0.68746 0.00418 0.10794 0.15340 0.23593 0.14700

0.2 0.15230 0.22252 0.20567 0.22471 0.65805 0.00657 0.09821 0.21433 0.28971 0.20071

0.3 0.18485 0.24195 0.20114 0.23452 0.61250 0.00853 0.06130 0.23000 0.29185 0.22955

0.4 0.20803 0.22288 0.17363 0.22154 0.53594 0.00817 0.02985 0.20279 0.26881 0.24522

0.5 0.20411 0.19699 0.15914 0.20398 0.45272 0.01053 0.00960 0.18168 0.22320 0.23934

Power

0.1 0.00240 0.00343 0.00201 0.00131 0.00835 0.00008 0.00018 0.00220 0.00287 0.00303

0.2 0.00384 0.00456 0.00233 0.00257 0.00460 0.00013 0.00022 0.00255 0.00467 0.00430

0.3 0.00436 0.00277 0.00277 0.00252 0.00678 0.00020 0.00016 0.00266 0.00377 0.00517

0.4 0.00433 0.00258 0.00205 0.00268 0.00590 0.00024 0.00022 0.00295 0.00331 0.00562

0.5 0.00386 0.00148 0.00113 0.00287 0.00615 0.00032 0.00027 0.00195 0.00331 0.00527

GrQc

0.1 0.04860 0.25220 0.23027 0.24495 0.47234 0.24879 0.23107 0.26201 0.27994 0.28034

0.2 0.08733 0.33071 0.29243 0.32237 0.52940 0.33698 0.27007 0.35903 0.35156 0.34998

0.3 0.10142 0.41501 0.33358 0.35382 0.54298 0.39614 0.25781 0.43183 0.38668 0.38211

0.4 0.12480 0.42509 0.36259 0.37015 0.52161 0.42653 0.24938 0.43933 0.43389 0.39748

0.5 0.12621 0.41077 0.36376 0.38010 0.51580 0.44250 0.14097 0.43649 0.40187 0.40534
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6.4.5 Performance Analysis

In this section, we investigate the performance of the proposed method

against state-of-the-art algorithms in terms of four accuracy metrics:

AUPR, recall, AUC, and precision. In the experiments, we use five

different ratios or fraction sets of observed links as the test set

(10,20,30,40,50%). This is because a sparsification level exceeding 50%

may disconnect the network. The results on different datasets for various

fractions of observed links against state-of-the-art algorithms are

presented in tables 6.3 to 6.6. Each experiment was conducted on eight

real-world network datasets.

6.4.5.1 AUPR

Owing to the sparsity of real-world social networks, the number of

non-existing links (target links) is far greater than the number of existing

links. Some studies suggest that the AUPR metric is more informative

than AUC for imbalanced networks. Therefore, AUPR is considered one

of the prominent quality metrics. TABLE 6.3 presents the results of

AUPR on different datasets for different sets of observed links.

From TABLE 6.3, it can be observed that RA is the best performing

method for the Football and Celegansneural datasets, and CLP-ID

outperforms all the other state-of-the-art methods on both datasets. For

datasets with smaller clustering coefficient, the proposed algorithm is the
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best performing method after RA. On the USAir97 dataset, CLP-ID

outperforms all the state-of-the-art methods. Similarly, CLP-ID

outperforms all the state-of-the-art methods except CCLP and CCLP2 on

the Political blogs dataset. The proposed algorithm has comparable AUPR

values with those of CCLP and CCLP2 for different ratios (10–50%). For

datasets with a larger clustering coefficient (C ≥ 0.8), CLP-ID has

comparable AUPR with that of the state-of-the-art methods. Hence,

CLP-ID has comparable AUPR on the Amazon and NetScience datasets.

Similarly, for the remaining datasets, CLP-ID outperforms all the

state-of-the-art methods except RA, CCLP2, PA, and NLC. The AUPR of

the proposed algorithm is almost the same as that of the RA, CCLP2, PA,

and NLC methods. To summarize the accuracy of CLP-ID in terms of

AUPR, it can be concluded that the algorithm outperforms all the

compared methods except RA and is comparable to CCLP2, PA, and

NLC.

6.4.5.2 Recall

TABLE 6.4 presents the results of recall on each dataset for different sets

of observed links. It can be seen that the proposed algorithm outperforms

almost all (except CN and PA) of the compared methods in terms of recall

on each dataset except the Power dataset. CN has the best performance.

CLP-ID have comparable recall with that of CN and PA. For the Power

dataset, CAR is the best method. After CAR, CLP-ID is the second best
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method and outperforms all the state-of-the-art methods. To summarize

the accuracy of CLP-ID in terms of recall, it can be concluded that the

algorithm outperforms all the other methods on all datasets except Power

under different sets of observed links (10− 50%). The algorithm has

comparable performance with that of CN and PA in terms of recall.

6.4.5.3 AUC

TABLE 6.5 shows the results for AUC on each dataset for different sets of

observed links. On the Football dataset, the proposed algorithm

outperforms all the other methods. On the Celegansneural, USAir97, and

GrQc datasets, the proposed algorithm is comparable with RA and

outperforms the other methods. Similarly, on the remaining datasets,

CLP-ID outperforms all the state-of-the-art methods. To summarize the

accuracy of CLP-ID in terms of AUC, it can be concluded that the

algorithm outperforms all the other methods except RA, with which is in

fact comparable.

6.4.5.4 Precision

TABLE 6.6 presents the results for precision on each dataset for different

sets of observed links. It can be observed that the proposed algorithm

outperforms all the other methods except RA on datasets with smaller

clustering coefficient (Football, Celegansneural, and USAir97) for each
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set of observed links. For the Political blogs dataset, CLP-ID is the best

method after NLC. Similarly, for the remaining datasets, CLP-ID has

comparable precision values with those of the state-of-the-art methods. To

summarize the accuracy of CLP-ID in terms of precision, it can be

concluded that the algorithm outperforms all the other methods except RA

on all datasets under different sets of observed links (10–50%).

6.4.6 Statistical Test

In this section, we present the results of some statistical tests to analyze

the significant differences between the proposed algorithm and the

state-of-the-art algorithms in terms of AUPR, Recall, AUC, and Precision.

First, we applied Friedman test [159, 160] to analyze whether there are

significant differences in link prediction quality metrics. If there are

significant differences, then we applied the Friedman Conover test [160]

as post hoc procedure to find the degree of rejection of each hypothesis.

The post hoc procedure considers CLP-ID as control algorithm for each

quality metric. We consider the level of confidence as αc = 0.05 and the

degree of freedom as D f = 9 in all the cases.

6.4.6.1 Friedman test: non-parametric analysis

The Friedman test indicates that there is a significant difference in various

quality metrics for different ratios, as shown in TABLE 6.7. The null
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TABLE 6.7: The Friedman Test on AUPR

Ratio Dataset AUPR-value Ff State Result

N2V CCLP CCLP2 CN RA PA CAR NLC LNBCN CLP-ID Is Ff > χ2 ?

0.1 Celegansneural 0.02115 0.03701 0.04286 0.03545 0.06273 0.02376 0.02770 0.05565 0.03484 0.04574 53.47 Null

Football 0.11648 0.09221 0.09114 0.08339 0.20690 0.00630 0.11150 0.11104 0.09576 0.13589 Hypothesis

Political blogs 0.01505 0.07578 0.08632 0.07601 0.07631 0.03159 0.06614 0.09520 0.07092 0.08456 Rejected

NetScience 0.09631 0.19348 0.16204 0.18831 0.69874 0.00375 0.18133 0.15769 0.23989 0.14942

Amazon 0.00523 0.01431 0.10677 0.01412 0.01472 0.10639 0.04291 0.07819 0.01615 0.02870

GrQc 0.04878 0.24390 0.18547 0.22424 0.57664 0.01769 0.28148 0.22989 0.24870 0.22937

Power 0.00237 0.00810 0.00911 0.00434 0.01293 0.00008 0.03623 0.00759 0.00763 0.00628

USAir97 0.04773 0.24960 0.22894 0.24963 0.47136 0.24797 0.23332 0.25916 0.27705 0.27899

0.2 Celegansneural 0.03655 0.08605 0.06372 0.06573 0.09210 0.04613 0.06054 0.08742 0.07102 0.06758 54.57 Null

Football 0.17146 0.15257 0.15288 0.18006 0.32175 0.01324 0.13857 0.16503 0.13978 0.19900 Hypothesis

Political blogs 0.02544 0.12308 0.12774 0.13383 0.13019 0.06035 0.10921 0.16111 0.13027 0.13753 Rejected

NetScience 0.15169 0.23835 0.22757 0.26070 0.67891 0.00627 0.24240 0.23014 0.30209 0.21059

Amazon 0.00624 0.02659 0.10691 0.03276 0.02669 0.11216 0.05426 0.06901 0.03079 0.03882

GrQc 0.08321 0.29686 0.24187 0.29775 0.56168 0.02978 0.37109 0.29909 0.31670 0.30550

Power 0.00379 0.01652 0.01700 0.00930 0.01311 0.00013 0.07569 0.01565 0.01691 0.01100

USAir97 0.08654 0.32974 0.29227 0.33254 0.52955 0.33712 0.28597 0.35803 0.35068 0.34962

0.3 Celegansneural 0.04831 0.09358 0.07410 0.07971 0.12581 0.06653 0.06732 0.11603 0.08839 0.08715 55.00 Null

Football 0.21408 0.18937 0.20176 0.18599 0.27099 0.02006 0.17643 0.17291 0.20937 0.22419 Hypothesis

Political blogs 0.03346 0.16583 0.16837 0.16738 0.17318 0.08655 0.13508 0.19320 0.17144 0.17641 Rejected

NetScience 0.18437 0.27084 0.24601 0.28896 0.65239 0.00838 0.25818 0.26225 0.32452 0.25496

Amazon 0.00718 0.03196 0.09231 0.04250 0.03586 0.13212 0.07493 0.08971 0.03563 0.04084

GrQc 0.11073 0.32951 0.27426 0.33291 0.54803 0.03100 0.42027 0.32445 0.33173 0.32800

Power 0.00434 0.01747 0.02686 0.01179 0.02128 0.00020 0.00008 0.02096 0.01988 0.01524

USAir97 0.10088 0.41507 0.33532 0.37018 0.54411 0.39694 0.29547 0.43216 0.38686 0.38250

0.4 Celegansneural 0.05831 0.11038 0.08512 0.09695 0.12481 0.07647 0.07909 0.12128 0.10377 0.09794 55.17 Null

Football 0.22692 0.17153 0.21998 0.21168 0.31235 0.03061 0.12834 0.21139 0.18535 0.23212 Hypothesis

Political blogs 0.03970 0.19618 0.19054 0.19578 0.19567 0.10890 0.14121 0.22493 0.20066 0.20218 Rejected

NetScience 0.20763 0.27631 0.24516 0.29353 0.59811 0.00834 0.25950 0.25939 0.32248 0.29086

Amazon 0.00986 0.04226 0.08164 0.04316 0.03772 0.12817 0.04825 0.07327 0.03907 0.04389

GrQc 0.12921 0.33441 0.29614 0.35538 0.49461 0.03548 0.45793 0.33845 0.35289 0.32887

Power 0.00431 0.02966 0.03433 0.01537 0.02468 0.00024 0.00011 0.03776 0.02913 0.01963

USAir97 0.12430 0.42728 0.36680 0.39477 0.52481 0.42803 0.32622 0.44177 0.43565 0.39953

0.5 Celegansneural 0.06608 0.11224 0.10499 0.10144 0.15844 0.09421 0.12026 0.12282 0.11295 0.10108 54.07 Null

Football 0.22218 0.18006 0.20831 0.21514 0.27106 0.03683 0.02457 0.19971 0.17658 0.22690 Hypothesis

Political blogs 0.04422 0.21503 0.20232 0.20809 0.21393 0.13081 0.15659 0.23854 0.21561 0.21826 Rejected

NetScience 0.20378 0.28501 0.28182 0.29096 0.55626 0.01067 0.24630 0.28844 0.31685 0.31682

Amazon 0.00802 0.04502 0.06865 0.04236 0.04318 0.13722 0.10780 0.08703 0.04687 0.04778

GrQc 0.13770 0.33935 0.32289 0.35186 0.45409 0.03952 0.43085 0.32148 0.35887 0.33929

Power 0.00384 0.02819 0.04014 0.01984 0.03219 0.00032 0.00014 0.04735 0.04581 0.02288

USAir97 0.12583 0.41710 0.37339 0.41568 0.52200 0.44449 0.28613 0.44198 0.40725 0.41050

hypothesis (H0) states that the methods compared are statistically

equivalent, with no significant difference. The Friedman test rejects the

hypothesis H0 if the test statistic value Ff is higher than the χ2(αc,D f ),

i.e., Ff > 16.919. TABLE 6.7 perform the Friedman test for AUPR and
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TABLE 6.8: The Posthoc Friedman Conover Test (Control Method = CLP-ID)
Corresponding Different Accuracy Metrics

Metric Ratio p-value

N2V CCLP CCLP2 CN RA PA CAR NLC LNBCN

AUPR 0.1 0.009464 0.583510 0.695170 0.185576 0.161371 0.017486 0.753864 0.814052 0.814052

0.2 0.009464 0.348393 0.481207 0.753864 0.309993 0.037455 0.531079 0.531079 0.814052

0.3 0.025805 0.875387 0.753864 0.753864 0.074943 0.088158 0.242064 0.531079 0.695170

0.4 0.014306 0.753864 0.481207 0.695170 0.348393 0.053445 0.139683 0.434061 0.875387

0.5 0.017486 0.695170 0.481207 0.531079 0.212434 0.103241 0.274562 0.481207 0.814052

Recall 0.1 0.037238 0.139223 0.001544 0.813837 0.411000 0.007585 0.000347 0.033974 0.160883

0.2 0.044756 0.139529 0.000748 0.813981 0.368521 0.021237 0.000208 0.017443 0.257764

0.3 0.103108 0.161208 0.001223 0.875338 0.638158 0.129587 0.006146 0.034110 0.389577

0.4 0.088158 0.044838 0.000352 0.481207 0.309993 0.161371 0.017486 0.004948 0.212434

0.5 0.139683 0.037455 0.000209 0.434061 0.481207 0.583510 0.185576 0.003153 0.088158

AUC 0.1 0.120360 0.063427 0.006165 0.212434 0.481207 0.000041 0.000024 0.274562 0.037455

0.2 0.185576 0.120360 0.003957 0.274562 0.695170 0.000094 0.000031 0.161371 0.161371

0.3 0.753864 0.531079 0.017486 0.638290 0.531079 0.007653 0.000455 0.481207 0.531079

0.4 0.274562 0.242064 0.004948 0.348393 0.753864 0.002503 0.000054 0.185576 0.212434

0.5 0.185576 0.044838 0.000585 0.185576 0.583510 0.003153 0.000018 0.025805 0.120360

Precision 0.1 0.004948 0.481207 0.212434 0.031155 0.389762 0.006165 0.006165 0.814052 0.638290

0.2 0.009464 0.434061 0.139683 0.389762 0.348393 0.014306 0.002503 0.875387 0.875387

0.3 0.014306 0.481207 0.242064 0.103241 0.242064 0.017486 0.001562 0.814052 0.875387

0.4 0.031155 0.434061 0.120360 0.103241 0.389762 0.021286 0.000962 0.814052 0.937497

0.5 0.025805 0.274562 0.044838 0.088158 0.481207 0.037455 0.000352 0.695170 0.531079

indicates that the null hypothesis is rejected. Similarly, the null hypothesis

is rejected for remaining metrics Recall, AUC, and Precision on distinct

ratio. Therefore, the Friedman Conover test is applied to measure the

actual differences between the algorithms.

6.4.6.2 Friedman Conover test: Post hoc analysis

The Friedman Conover procedure rejects hypothesis H1 to Hi−1 if the

p-value is greater than the adjusted level of confidence value, i.e.,

pi > αc/((D f + 1)− i), where i is the smallest integer. We consider

dependent test statistics to perform Friedman Conover post hoc procedure.

Let p1, p2, . . . , pD f are the ordered p-values (smallest to largest) and
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H1,H2, . . . ,HD f are the corresponding hypothesis. The Friedman Conover

procedure starts with most significant p-value. TABLE 6.8 shows the

p-value results for AUPR, Recall, AUC, and Precision metrics. In the

tables, the highlighted value indicate the rejected hypothesis, respectively.

The statistical tests on different accuracy metrics (AUPR, Recall, AUC,

and Precision) demonstrate that the proposed algorithm is significantly

different from the state-of-the-art algorithms. From TABLE 6.8, we can

observe the level of significant differences between our proposed

algorithm and other standard algorithms. The highlighted value shows the

significant difference (≤ 0.05) between CLP-ID and remaining

algorithms. In TABLE 6.8. the combined ratio indicates that the statistical

test is performed simultaneously for different sets of observed links.

6.5 Conclusion

In this chapter, a community-based link prediction algorithm (CLP-ID) is

presented, which uses an information diffusion perspective to predict

target links. Classical node-based similarity methods for link prediction

primarily focus on the prediction accuracy rate. By contrast, CLP-ID

considers both the accuracy rate and the information spread in the social

network. Comparative analysis is performed on various real-world

networks. The analysis revealed following facts.
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• Incorporation of information diffusion in community detection

accounts influences between nodes, rather than only the connection

between nodes, such that the influence degree of nodes within a

community can be as close as that in the whole network.

• Incorporation of community structure in link prediction accounts

positive influence for intra-community future links and negative

influence for inter-community links.

• The empirical results show that the proposed algorithm performs

better than compared methods in terms of AUPR metric for datasets

with higher clustering coefficient value. It is also observe that the

proposed algorithm outperforms almost all (except CN and PA) of

the compared methods in terms of Recall on each dataset except

Power dataset. CLP-ID outperforms compared methods except RA

in terms of AUC. It also performs better than compared methods

except RA in terms of Precision on datasets with lower clustering

coefficient values.

• The statistical tests are performed to analyze the significant

differences in AUPR, Recall, AUC, and Precision between the

proposed algorithm and compared algorithms. The post hoc analysis

states the significant difference between CLP-ID and state-of-the-art

algorithms.
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