
Appendix A

Proofs of Theorems

A.1 Proof of Theorems in Section 4.1

Proof. (Theorem 4.1) As discussed earlier, both context-aware diffusion

models CLT and CIC are directly inherited from traditional models LT

and IC described by Kempe et al. [11]. The propagation strategy in both

context-aware models is the same as the traditional diffusion models.

These models only take the user’s interest (as topics) into consideration

for improving the quality of seed. From Definition 4.1.1, it is clear that if

the number of the topic of interest is considered to one, i.e., t = 1 then

C2IM problem reduces to original IM problem formulated by [11].

Therefore, monotone increasing and diminishing return properties directly

inherited from the traditional diffusion models. Hence, it can be stated

that the expected influence spread σ(S|Q) remains submodular under CLT

and CIC models.
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Proof. (Theorem 4.2) The C2IM problem can be reduced into

conventional IM problem proposed by [11] considering the number of the

topic of interest is one, i.e., t = 1 with the whole network as a single

community. As we know conventional IM problem is NP-hard proved by

[11]. Therefore, it can be said that C2IM problem is NP-hard under LT

and IC.

A.2 Proof of Theorems in Section 5.1

Proof. (Theorem 5.1) The MIM2 algorithm incorporated traditional

diffusion models [11] and utilized the same propagation strategy as these

models. MIM2 considers multiple products and multiple networks

simultaneously to improve the effectiveness of seed nodes. From problem

definition, it is clear that if MIM2 consider l = 1 and m = 1, then MIM2

problem reduces to original IM problem formulated by [11]. Therefore,

diminishing return and monotone increasing properties directly inherited

from LT and IC diffusion models. Hence, we can conclude that the

expected influence spread σ(S) of MIM2 remains sub-modular under

traditional diffusion models.

Proof. (Theorem 5.2) As we discussed earlier, the MIM2 problem can be

reduced in conventional IM problem presented in [11] by considering the

number of networks l = 1 and the number of products m = 1. As we

know, IM problem is NP-hard under traditional diffusion models proved
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by [11]. Hence, we can say that MIM2 is NP-hard under traditional

diffusion models.


	Certificate
	Declaration by the Candidate
	Copyright Transfer Certificate
	Acknowledgements
	Preface
	Contents
	List of Figures
	List of Tables
	Abbreviations
	Symbols
	1 Introduction
	1.1 Challenges and Issues
	1.1.1 Major Challenges
	1.1.2 Major Issues

	1.2 Objectives
	1.3 Contributions
	1.3.1 Bio-inspired Optimization based Influence Maximization
	1.3.2 Context-aware Influence Maximization
	1.3.3 Multiple Influence Maximization in Multiple Featured Networks
	1.3.4 Applicability of Information Diffusion to Predict Missing Links

	1.4 Thesis Organization

	2 Literature Review
	2.1 Information Diffusion Models (IDMs/DMs)
	2.2 Problem Hardness
	2.3 Overview of IM Approaches
	2.3.1 The Greedy Framework
	2.3.2 Taxonomy of Existing IM Approaches
	2.3.3 Simulation based IM Approaches
	2.3.4 Approximate Scoring based IM Approaches
	2.3.5 Sampling based IM Approaches
	2.3.6 Summary and Discussion.

	2.4 Context-aware Influence Maximization
	2.4.1 Location-aware Influence Maximization
	2.4.2 Topic-aware Influence Maximization
	2.4.3 Time-aware Influence Maximization
	2.4.4 Competitive Influence Maximization
	2.4.5 Dynamic Influence Maximization

	2.5 Performance Metrics
	2.6 Datasets
	2.7 Application of Influence Maximization
	2.7.1 Influence Maximization in Events
	2.7.2 Influence Maximization in Recruitment
	2.7.3 Influence Maximization in Social Media Population Screening
	2.7.4 Others

	2.8 Business Implications of Influence Maximization
	2.9 Summary

	3 Influence Maximization using Learning-automata based Particle Swarm Optimization
	3.1 Introduction
	3.1.1 Discrete Particle Swarm Optimization
	3.1.2 Learning Automata

	3.2 Proposed Approach
	3.3 Algorithm
	3.3.1 Applying the Algorithm
	3.3.2 Complexity Analysis

	3.4 Empirical Analysis
	3.4.1 Experimental Setup
	3.4.2 Parametric Analysis 
	3.4.2.1 The size of the population and the number of iterations
	3.4.2.2 The inertia weight and learn factors
	3.4.2.3 The reward and penalty parameter

	3.4.3 Analyzing Quality
	3.4.4 Analyzing Efficiency
	3.4.5 Statistical Test

	3.5 Conclusion

	4 Community-based Context-aware Influence Maximization
	4.1 Introduction
	4.1.1 Data Model
	4.1.2 Context-aware Information Diffusion Models

	4.2 Proposed Approach
	4.2.1 Algorithm Overview
	4.2.2 Algorithm Description
	4.2.2.1 Preprocessing
	4.2.2.2 Finding non-desirable nodes
	4.2.2.3 Selecting seed nodes
	4.2.2.4 Computing spread of nodes


	4.3 Algorithm
	4.3.1 Applying the Algorithm
	4.3.2 Complexity Analysis

	4.4 Empirical Analysis
	4.4.1 Experimental Setup
	4.4.2 Parameter Setting
	4.4.3 Varying 
	4.4.4 Analyzing Quality
	4.4.5 Analyzing Efficiency

	4.5 Conclusion

	5 Multiple Influence Maximization across Multiple Social Networks
	5.1 Introduction
	5.1.1 Graph Notations
	5.1.2 Influence Propagation Model

	5.2 Proposed Approach
	5.2.1 Identification of Overlapping Users
	5.2.2 Node Alignment Process
	5.2.3 Graph Coupling Scheme: Direct Linkage
	5.2.4 Multiple Influence Maximization
	5.2.4.1 Generation of product diffusion graph
	5.2.4.2 Finding non-candidate nodes
	5.2.4.3 Identifying most influential user for product Pi
	5.2.4.4 Identifying most influential user among all product diffusion graph
	5.2.4.5 Influence estimation


	5.3 Algorithm
	5.3.1 Applying the Algorithm
	5.3.2 Complexity Analysis

	5.4 Empirical Analysis
	5.4.1 Experimental Setup
	5.4.2 Analyzing Coupling Schemes
	5.4.3 Advantages of using IM2
	5.4.4 Advantages of using MIM
	5.4.5 Advantages of using MIM2
	5.4.5.1 Influence spread
	5.4.5.2 Running time


	5.5 Conclusion

	6 Link Prediction using Information Diffusion Perspective
	6.1 Introduction
	6.2 Proposed Approach
	6.2.1 Identification of Community Structure
	6.2.1.1 Partition phase
	6.2.1.2 Combination phase

	6.2.2 Incorporation of Community Importance
	6.2.3 Computation of Likelihood Score

	6.3 Algorithm
	6.3.1 Applying the Algorithm
	6.3.2 Complexity Analysis

	6.4 Empirical Analysis
	6.4.1 Performance Metrics
	6.4.2 Methods to Compare
	6.4.3 Parameter Analysis with Community Detection Performance Metrics
	6.4.3.1 Average isolability
	6.4.3.2 External density
	6.4.3.3 Coverage
	6.4.3.4 Cluster count
	6.4.3.5 Modularity

	6.4.4 Parameter Analysis with Link Prediction Performance Metrics
	6.4.4.1 AUPR
	6.4.4.2 Recall
	6.4.4.3 AUC
	6.4.4.4 Precision

	6.4.5 Performance Analysis
	6.4.5.1 AUPR
	6.4.5.2 Recall
	6.4.5.3 AUC
	6.4.5.4 Precision

	6.4.6 Statistical Test
	6.4.6.1 Friedman test: non-parametric analysis
	6.4.6.2 Friedman Conover test: Post hoc analysis


	6.5 Conclusion

	7 Concluding Remarks and Future Directions
	7.1 Summary of Contributions
	7.2 Scope for Future Work

	Bibliography
	A Proofs of Theorems
	A.1 Proof of Theorems in Section 4.1
	A.2 Proof of Theorems in Section 5.1

	B List of Publications

