List of Tables

1.1	Energy consumption worldwide in 2018	2
1.2	Network reconfiguration solution technique and its objective	11
1.3	Summary of DER planning studies	19
2.1	Test system information	39
2.2	Four scenarios	39
2.3	Simulation results of TS-1 and TS-2 under TVVC and four Scenarios $$	41
2.4	optimal opened RCS of TS-1 and TS-2 under Scenario 3 and Scenario 4	41
2.5	Performance of various algorithms for Scenario 4 at peak loading hour for	
	TS-1 and TS-2	45
2.6	Performance of MBGWO and DICOPT for Scenario 4 at peak loading hour	
	for TS-1 and TS-2 \hdots	46
2.7	Simulation results of unbalanced 33 bus distribution system under TVVC	
	and four Scenarios	48
2.8	simulations results of TS-1 and TS-2 under multiple line faults at peak	
	demand	53
2.9	PV output during clear sky, partly and fully cloud day condition	54
2.10	Status of VVC devices, DNR and PVSI reactive power using proposed	
	algorithm during 13:00 to 14:00 hours	54
2.11	Summary of results during clear sky, partly and full cloudy condition for	
	TS-1	55
2.12	Summary of results during clear sky, partly and full cloudy condition for	
	TS-2	56
3.1	value of k_p and k_q and their location	63

3.2	cost parameters
3.3	summary of results under different cases
3.4	status of RCS, OLTC and SCBs under case 2 to case 4
3.5	status of RCS, OLTC and SCBs under case 6 and case 7
3.6	Results of CGWO and proposed MBGWO
3.7	Results of cost benefit analysis of SOP
3.8	Cost benefit analysis in presence of high penetration of DG 83
4.1	modified 33 bus distribution system information
4.2	value of k_p and k_q and their location
4.3	Cases studied
4.4	Set of non-inferior solutions of the objectives OF1 and OF2 under case 2
	and case3
4.5	set of non-inferior solutions of the objectives OF1 and OF2 under case 4
	and case 5
4.6	Results of three different cases of 33 bus system
4.7	load and PV output during clear sky, partly and fully cloud day condition 114
4.8	optimal setting of control devices using centralised control algorithm 115
5.1	simulation results under different scenarios
5.2	opened RCS under scenario 1 and 5
5.3	optimal scheduling of control devices obtained by centralised control stage
	at 14:00 hour
6.1	Different cases studied
6.2	Results of different cases over planning horizon
6.3	Percentage power share between RES and grid in different cases 151
6.4	Optimal location and size of DER and SOP for different cases at initial year 152
6.5	Optimal location and size of DER and SOP for different cases at initial year 153
6.6	Optimal capacities of DER and SOP for different cases in each year 154
6.7	optimal opened RCS* of case C and case E in each year
6.8	Performance of proposed hybrid solver and CGWO for case E 159