TABLE OF CONTENTS

CONTENTS

PAGE NO

Title Page	(i)
Certificates	(iii)
Acknowledgement	(xi)
Table of Content	(xiii)
List of Figures	(xvii)
List of Tables	(xix)
List of Abbreviations and Symbols	(xxiii)
Abstract	(xxvii)

CHAPTER 1 INTRODUCTION	1-30
1.1 Preamble	1
1.2 Traditional Overcurrent Protective Relays	6
1.3 Distributed Generation	10
1.4 Impacts of DG on Feeder Protection	12
1.5 Literature Review	16
1.6 Problem Statement	24
1.7 Objectives of The Thesis	26
1.8 Organization of The Thesis	28
1.9 Conclusion	30

CHAPTER 2CONSTRAINTS REDUCTION BASED RELAYS31-54COORDINATION METHOD31-54

2.1 Introduction	31
2.2 Problem Formulation	32
2.2.1 Distribution System with Variable Number and Sizes of DGs	32
2.2.2 Conventional Comprehensive RC Method	34

2.1 Proposed Constraints Reduction Relays Coordination Method (CRRC)	37
2.1.1 CRRC Method	37
2.1.2 Simulation setup, Case Studies, and Results	40
2.1.3 Comparative Performance Evaluation and Advantages	50
2.4 Conclusion	52
CHAPTER 3 HYBRID PICKUP OF THE RELAYS	55-70
3.1 Introduction	55
3.2 Proposed Hybrid-Algo Algorithm for Determining the Relay's HPMS	57
3.2.1 Working Procedure	57
3.2.2 Functioning and Significance of The Hybrid Approach	60
3.2.3 Relays Coordination and Operating Times with HPMS Settings	61
3.3 Comparative Performance of The HPMS Relay Setting and Result	64
Discussion	
3.3.1 Simulation Setup	64
3.3.2 Comparative Performance and Advantages	65
3.4 Conclusion	69
CHAPTER 4 FAULT ZONE DETECTION	71-96
4.1 Introduction	71
4.2 Problem Formulation	72
4.2.1 Generation of FDb and RPD bits for a zth zone's relays	72
4.2.2 Existing FZD methods and Problem formulation	75
4.3 Proposed Direction Based Fault Zone Detection Method (DFZD)	77
4.3.1 Representation of a typical Network	77
4.3.2 Functioning of the DFZD method and Case studies	78
4.3.3 Application of the DFZD method in a sample network	87
4.3.4 Results and Discussion	90
4.4 Conclusion	95

CHAPTER 5 ADAPTIVE RELAYS HIERARCHIES	97-116
5.1 Introduction	97
5.2 Why an Adaptive RHS?	98
5.3 Adaptive Relays Hierarchy Algorithm (RHs_algo)	99
5.3.1 Description of the RHs-Algo algorithm	101
5.3.2 Functioning of the RHs-algo algorithm	101
5.4 Comparative Performance Analysis Results and Discussion	104
5.4.1 Results and Discussion	104
5.4.2 Merits of Bidirectional Backup Tripping	111
5.5 Conclusion	115

CHAPTER 6COMPREHENSIVE ADAPTIVE PROTECTION SCHEMES117-156(CAPS) FOR VARIABLE DISTRIBUTION SYSTEM WITH DGS

6.1 Introduction		117	
6.2	Protect	ion Scheme-1 (CAPS-1) Considering Variable Operating Modes	118
Dur	ring No	rmal Conditions	
	6.2.1	Working procedure of the CAPS-1	118
	6.2.2	Comparative Results and Advantages of the CAPS-1	125
6.3	Protec	tion Scheme-2 (CAPS-2) Considering Variable Operating Modes	131
	During	g Both Normal and Faulty Conditions	
	6.3.1	Impact of the increasing proliferation of DGs on the performance of	132
		the CRRC	
	6.3.2	Smart Constraints Reduction Relay Coordination (SCRRC) Method	133
	6.3.3	Comparative Performance of the SCRRC	
		a) Simulation Setup	138
		b) Obtained Results and Comparison	139
	6.3.4	Workflow of the CAPS-2	145
	6.3.5	Comparative Performance of the CAPS-2	147
6.4	Cumu	lative Performance of The Proposed Algorithms in CAPS	149

LIST OF PUBLICATIONS	
REFERENCES	163-173
7.2 Scope for Future Work	160
7.1 Conclusion	157
CHAPTER 7 CONCLUSION	157-161
6.5 Conclusion	155