Chapter 2

Literature review and objectives

In this chapter literature review related to the torrefaction of biomass, optimization of torrefaction process for high grade torrefied biomass, pyrolysis of raw and torrefied biomass, and optimization of process parameters such as temperature, retention time, heating rate, sweeping gas flow rate, particle size, etc. have been discussed. Finally, the literature related to application of biochar from pyrolysis of raw biomass towards removal of methylene blue dye from aqueous solution has been systematically discussed. This chapter-2 has been divided into three parts: (1) literature review on torrefaction of biomass and optimization of process, (2) literature review on pyrolysis of raw and torrefied biomass and optimization of process parameters, (3) literature review on application of biochar from pyrolysis of removal of aqueous methylene blue. Based on the literature review objectives of present research work have been decided.

2.1 Literature review

2.1.1 Torrefaction of biomass and optimization of torrefaction process

2.1.1.1 Torrefaction of biomass

Torrefaction is thermochemical pretreatment process that occurs in the temperature range of 200 to 300 °C in an oxygen free environment at atmospheric pressure (Niu et al., 2019). Torrefaction can alleviate the undesired characteristics of biomass such higher moisture content, lower energy density and HHV, lower fixed carbon, hydrophobicity, higher grinding energy (Chen & Kuo, 2011).

2.1.1.1.1 Effect of torrefaction on proximate and ultimate analysis of biomass

The effect of torrefaction on proximate and ultimate analysis of various biomasses has been mentioned in Table 2.1. The proximate analysis of torrefied biomass at different torrefaction condition revealed the significant decrease in volatile matter and at the same time increase in fixed carbon content and ash content was observed due to torrefaction. The ultimate analysis demonstrates the higher carbon content and lower oxygen and hydrogen content in torrefied biomass as compared to the raw biomass. Also, the trend in results of proximate and ultimate analysis intensifies with increase in severity of torrefaction process (increase in process temperature and retention time). The cleavage of oxygen containing functional groups present in biomass consequently release of light volatile matter during torrefaction is responsible for change in results of proximate and ultimate analysis (Wannapeera et al., 2011b). The decrease in volatile matter during torrefaction is the result of catalytic effect of inorganic minerals present on biomass (Sadaka & Negi, 2009). The higher carbon content in torrefied biomass as compared to oxygen and hydrogen depicts the higher energy value of torrefied biomass as compared to raw biomass (Couhert et al., 2009). The increase in energy value of torrefied biomass makes it suitable for biofuel production. The ash content of torrefied biomass is higher than raw biomass; however, increase in ash content is lower than the increase in fixed carbon content. The ash content is the inherent characteristics of biomass selected for torrefaction. Thus, the ash content of biomass has relative effect on the obtained torrefied products (Bridgeman et al., 2008). The increase in ash content on torrefied can results in accumulation of metallic minerals which may act as catalyst during pyrolysis of torrefied biomass (Yildiz et al., 2015). The elemental analysis also revealed that the atomic ratios H/C and O/C of torrefied biomass are lower than raw biomass. The decrease in these ratios facilitates the application of torrefied for biofuel production.

Table 2.1 Effect of torrefaction on proximate and ultimate analysis of bion	nass
---	------

Biomass	Prox	Proximate analysis			Ultimate analysis			References
	VM (wt%)	FC (wt%)	AC (wt%)	C (wt%)	H (wt%)	O (wt%)	N (wt%)	
Beech wood (raw) *PS =50-500 μm	84.20	15.50	0.30	47.20	6.00	45.20	0.40	(Couhert et al., 2009)
Torrefaction at T (240 °C) RT (1 h) PS = 50-500 μm	80.60	19.20	0.35	51.70	5.40	42.90	0.00	
Torrefaction at T (260 °C) RT (1 h) PS = 50-500 μm	75.70	24.20	0.40	54.40	5.20	40.40	0.00	
Leucaena (raw) PS < 75 μm	86.10	13.10	0.80	50.10	7.40	41.80	0.70	(Wannapeera et al., 2011b)
Torrefaction at T (200 °C) RT (0.5 h) PS < 75 μm	85.30	14.00	0.70	51.70	7.10	40.50	0.70	
Torrefaction at T (225 °C) RT (0.5 h) PS < 75 μm	84.30	14.90	0.80	52.40	7.10	39.80	0.70	
Torrefaction at T (250 °C) RT (0.5 h) PS < 75 μm	82.20	16.90	0.90	53.00	6.40	39.90	0.70	
Torrefaction at T (275 °C) RT (0.5 h) PS < 75 μm	73.80	24.90	1.30	57.20	5.50	36.50	0.80	
Willow (raw) PS = NR	87.60	10.70	1.70	47.20	6.10	44.80	0.34	(Bridgeman et al., 2008)
Torrefaction at T (230 °C) RT (0.5 h) PS = **NR	82.10	16.10	1.80	50.70	6.20	39.50	0.20	

Department of Chemical Engineering and Technology IIT (BHU), Varanasi-221005 Page 24

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Torrefaction at T (250 °C) BT (0.5 h)	79.80	18.40	1.90	51.70	6.10	38.70	0.20	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	PS = NR								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Torrefaction at T (270 °C)	79.30	18.60	2.10	53.40	6.10	37.20	0.20	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	RT (0.5 h) $PS = NR$								
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Torrefaction at	77.20	20.50	2.30	54.70	6.00	36.40	0.10	•
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	RT (0.5 h) PS = NR*								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Pine (raw)	85.98	13.76	0.27	47.20	6.64	45.76	0.17	(Phanphanich &
$\begin{array}{ c c c c c c } \hline mn (length) & & & & & & & & & & & & & & & & & & &$	PS = 20.94-70.59	001/0	10170	0.27				0117	Mani, 2011)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	mm (length)								-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Torrefaction at T (225 °C) RT (0.5 h)	84.78	14.95	0.27	49.47	6.07	44.03	0.15	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	PS = 20.94-70.59								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	mm (length)	00.70	17.04	0.25	E1 45	5.05	42.02	0.14	4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Torrefaction at Temp (250 °C) RT (0.5 h)	82.52	17.24	0.25	51.46	5.86	42.02	0.14	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	PS= 20.94-70.59								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	mm (length)								
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Torrefaction at T (275 °C) RT (0.5 h) PS= 20.94-70.59	76.40	23.26	0.35	54.91	6.20	38.17	0.20	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	mm (length)								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Torrefaction at T (300 °C) RT (0.5 h)	58.72	40.85	0.43	63.67	5.58	29.99	0.20	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	PS=20.94-70.59								
Sawdust (1aw) 73.13 13.02 0.33 40.83 0.17 39.07 0.03 (client et al., 2011)PS = 20-30 mesh69.1019.84 8.62 45.92 5.20 37.01 0.53 2011)Torrefaction at T (0.5 h)64.7923.74 9.21 47.16 5.01 0.55 35.52 T (250 °C) RT (0.5 h)64.7923.74 9.21 47.16 5.01 0.55 35.52 T (250 °C) RT (0.5 h)64.7923.74 9.21 47.16 5.01 0.55 35.52 T (250 °C) RT (0.5 h)707 30.15 10.63 50.67 4.77 30.81 0.65 Torrefaction at T (270 °C) RT (0.5 h)57.07 30.15 10.63 50.67 4.77 30.81 0.65 Torrefaction at (290 °C), RT (0.5 h)49.68 35.71 12.54 52.22 4.41 27.72 0.71	Sawdust (raw)	73 15	13.02	0.38	40.85	6.17	30.07	0.03	(Chan at al
Torrefaction at (230 °C) RT (0.5 h) PS= 20-30 mesh69.1019.848.6245.925.2037.010.53Torrefaction at T (250 °C) RT (0.5 h) PS= 20-30 mesh64.7923.749.2147.165.010.5535.52T (250 °C) RT (0.5 h) PS= 20-30 mesh64.7923.749.2147.165.010.5535.52Torrefaction at T (270 °C) RT (0.5 h) PS= 20-30 mesh57.0730.1510.6350.674.7730.810.65Torrefaction at (290 °C), RT 	$\frac{PS=20-30 \text{ mesh}}{PS=20-30 \text{ mesh}}$	75.15	15.02	0.58	40.85	0.17	39.07	0.03	2011)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Torrefaction at (230 °C) RT (0.5 h)	69.10	19.84	8.62	45.92	5.20	37.01	0.53	
Torrefaction at T (250 °C) RT (0.5 h) PS= 20-30 mesh64.79 	PS = 20-30 mesh								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Torrefaction at	64.79	23.74	9.21	47.16	5.01	0.55	35.52	1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	T (250 °C)								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	RT (0.5 h)								
Torrefaction at T (270 °C) RT (0.5 h) PS= 20-30 mesh57.07 30.1530.15 10.6310.63 50.6750.67 4.774.77 30.8130.81 0.650.65 0.65Torrefaction at (290 °C), RT (0.5 h)49.68 5.7135.71 12.5412.54 52.2252.22 4.4127.72 27.720.71	PS= 20-30 mesh			10.10				0.17	-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Torrefaction at	57.07	30.15	10.63	50.67	4.77	30.81	0.65	
PS=20-30 mesh $PS=20-30 mesh$ $PS=20-30 mesh$ Torrefaction at (290 °C), RT (0.5 h)49.6835.7112.5452.224.4127.720.71	$1(2/0^{-1}C)$ RT (0.5 b)								
Torrefaction at (290 °C), RT (0.5 h) 49.68 35.71 12.54 52.22 4.41 27.72 0.71	PS = 20-30 mesh								
(290 °C), RT (0.5 h)	Torrefaction at	49.68	35.71	12.54	52.22	4.41	27.72	0.71	
	(290 °C), RT (0.5 h)								

1.3 - 0.00 mism1.1 - 01.1 -	PS = 20.30 mesh								
Read canary grass (raw) 82.50 12.10 5.50 48.60 6.80 37.30 0.30 (Bridgeman et al., 2008) PS = NR 0.30 13.30 6.40 50.30 6.30 37.30 0.30 2008) PS = NR 0.10 76.60 16.10 7.30 52.20 6.00 37.30 0.10 Torrefaction at (290 °C) RT (0.5 h) PS = NR 70.50 21.30 8.30 54.30 6.10 45.20 0.10 VBeat straw (raw) PS = NR 76.40 17.30 6.30 47.30 6.80 37.70 0.80 PS = NR 77.00 15.60 7.40 49.60 6.10 35.60 0.90 Torrefaction at (raw) PS = NR 77.00 15.60 7.40 49.60 6.10 35.60 0.90 Torrefaction at (r20°C) RT (0.5 h) PS = NR 51.80 38.00 10.20 56.40 5.60 27.60 1.00 Miscanthus (raw) PS < 4 mm and PS > 10 mm 78.4 12.9 1.3 49.3 6.4 44.3 0.0	1.5 - 20-30 mesn								
grass (raw) PS = NRInitial intermediation at T (250 °C) RT (0.5 h) PS = NRNo. Initial intermediation at T (250 °C) RT (0.5 h) PS = NR13.306.4050.306.3037.00-2008)Torrefaction at (200 °C) RT (0.5 h) PS = NR76.6016.107.3052.206.0037.300.10-Torrefaction at (200 °C) RT (0.5 h) PS = NR70.5021.308.3054.306.1045.200.10-Wheat straw (raw) PS = NR76.4017.306.3047.306.8037.700.80Bridgeman et al., 2008)Torrefaction at (raw) PS = NR77.0015.607.4049.606.1035.600.90-Torrefaction at (row) PS = NR65.2026.508.4051.905.9033.200.80-Torrefaction at (row) PS = NR78.412.91.349.36.444.30.00-Torrefaction at (row) PS = NR63.832.61.455.85.838.40.00-Torrefaction at (row) PS = NR63.832.61.455.85.838.40.00-Torrefaction at (row) PS = NR63.832.61.455.85.838.40.00-Torrefaction at (row) PS > 10 mm63.832.61.455.85.838.40.00-PS < 4 mm and PS > 10 mm63.832.61.250.66.04	Read canary	82.50	12.10	5.50	48.60	6.80	37.30	0.30	(Bridgeman et al.,
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	grass (raw)								2008)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	PS = NR								,
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Torrefaction at	80.30	13 30	6.40	50.30	6 30	37.00	-	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Torrelaction at $T(250 ^{\circ}\text{C})$	00.50	15.50	0.40	50.50	0.50	57.00		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	T(250 C)								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\frac{\mathbf{KI}(0.5 \mathrm{II})}{\mathbf{DC} \mathrm{ND}}$								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	PS = NK	76.60	1610	7.20	52.20	6.00	27.20	0.10	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Torrefaction at	/6.60	16.10	7.30	52.20	6.00	37.30	0.10	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$T(2/0^{\circ}C)$								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	RT (0.5 h)								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	PS = NR								_
$ \begin{array}{ c c c c c c } \hline (20^{\circ}C) & & & & & & & & & & & & & & & & & & &$	Torrefaction at	70.50	21.30	8.30	54.30	6.10	45.20	0.10	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(290 °C)								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	RT (0.5 h)								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	PS = NR								
$ \begin{array}{ c craw } PS = NR & c &$	Wheat straw	76.40	17.30	6.30	47.30	6.80	37.70	0.80	(Bridgeman et al.,
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	(raw)								2008)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	PS = NR								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Torrefaction at	77.00	15.60	7.40	49.60	6.10	35.60	0.90	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	T (250 °C)								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	RT (0.5 h)								
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	PS = NR								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Torrefaction at	65.20	26.50	8.40	51.90	5.90	33.20	0.80	1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	T (270 °C)								
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	RT(0.5 h)								
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	PS = NR								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Torrefaction at	51.80	38.00	10.20	56 40	5 60	27.60	1.00	-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	T (290 °C)	51.00	50.00	10.20	20.10	2.00	27.00	1.00	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	RT(0.5 h)								
IS = INK Image: Constraint of the second state of the secon	PS = NP								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	15 = 100 Misconthus (row)	78 /	12.0	13	40.3	64	113	0.00	(Bridgeman et al
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	PS < 1 mm and	70.4	12.7	1.5	47.5	0.4	++.5	0.00	(Diffugential et al., 2010a)
Torefaction at T (290 °C) RT (10min) PS < 4 mm and 	PS > 10 mm								2010a)
Tonelaction at T (290 °C) RT (10min) PS < 4 mm and PS > 10 mm52.01.453.85.858.40.00Torrefaction at T (240 °C) RT (1 h) PS < 4 mm and PS > 10 mm76.420.01.353.76.040.30.00Torrefaction at T (240 °C) RT (1 h) PS < 4 mm and PS > 10 mm76.420.01.353.76.040.30.00Torrefaction at T (240 °C) RT (10min) PS < 4 mm and PS > 10 mm81.315.01.250.66.043.40.00Torrefaction at PS > 10 mm81.315.01.250.66.043.40.00Torrefaction at PS > 10 mm81.315.01.250.66.043.40.00Torrefaction at PS > 10 mm81.315.01.250.66.043.40.00	Torrefaction at	62.9	22.6	1.4	55.9	50	29.4	0.00	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Torrelaction at	05.8	52.0	1.4	55.0	5.0	56.4	0.00	
R1 (10min) PS < 4 mm and PS > 10 mm76.420.01.353.76.040.30.00Torrefaction at T (240 °C) RT (1 h) PS < 4 mm and PS > 10 mm76.420.01.353.76.040.30.00Torrefaction at T (240 °C) RT (10min) PS < 4 mm and PS > 10 mm81.315.01.250.66.043.40.00Torrefaction at T (240 °C) RT (10min) PS < 4 mm and PS > 10 mm81.315.01.250.66.043.40.00	1(290 C)								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	RI (10min)								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	PS < 4 mm and								
Torretaction at T (240 °C) 76.4 20.0 1.3 55.7 6.0 40.3 0.00 RT (1 h)	PS > 10 mm	764	20.0	1.2	52.7	6.0	40.2	0.00	_
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Torrefaction at	/6.4	20.0	1.3	53.7	6.0	40.3	0.00	
RT (1 h) PS < 4 mm and PS > 10 mm Image: matrix and the second se	T (240 °C)								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	RT(1h)								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	PS < 4 mm and								
Torrefaction at T (240 °C) 81.3 15.0 1.2 50.6 6.0 43.4 0.00 RT (10min) PS < 4 mm and	PS > 10 mm								_
T (240 °C) RT (10min) PS < 4 mm and	Torrefaction at	81.3	15.0	1.2	50.6	6.0	43.4	0.00	
RT (10min) PS	T (240 °C)								
PS < 4 mm and PS > 10 mm	RT (10min)								
PS > 10 mm	PS < 4 mm and								
Tempfection at 60.00 25.50 1.00 62.4 5.70 20.00 0.00	PS > 10 mm								
$\begin{bmatrix} 1 \text{ OTTERACTION at} & 60.00 & 35.50 & 1.90 & 65.4 & 5.70 & 30.90 & 0.00 & \end{bmatrix}$	Torrefaction at	60.00	35.50	1.90	63.4	5.70	30.90	0.00	
T (290 °C)	T (290 °C)								
RT (1 h)	RT (1 h)								

PS < 4 mm and								
PS > 10 mm								
Eucalyptus (raw)	84.00	-	0.70	49.00	6.10	44.60	0.20	(Arias et al.,
PS < 5 mm								2008a)
Torrefaction at	80.50	-	0.50	49.20	6.20	44.30	0.20	
T (240 °C)								
RT (0 h)								
PS < 5 mm								
Torrefaction at	78.70	-	0.50	51.20	5.90	42.70	0.10	
T (240 °C)								
RT (0.25 h)								
PS < 5 mm								
Torrefaction at	75.40	-	0.70	53.10	6.10	40.60	0.10	
T (240 °C)								
RT (0.5 h)								
PS < 5 mm								
Torrefaction at	74.50	-	1.00	53.00	5.90	40.90	0.10	
T (240 °C)								
RT (1 h)								
PS < 5 mm								
Torrefaction at	73.30	-	0.90	54.20	5.90	39.70	0.10	
T (240 °C)								
RT (2 h)								
PS < 5 mm								
Torrefaction at	74.10	-	1.00	53.80	6.00	40.00	0.10	
T (240 °C)								
RT (3 h)								
PS < 5 mm								

*PS: Particle size, **NR: not reported

2.1.1.1.2 Effect of torrefaction on mass yield, energy yield and higher heating value of biomass

The mass yield, energy yield, and higher heating value are the crucial indicator of biomass for its practical evaluation during thermochemical conversion process (Dai et al., 2019). The mass and energy yield can be calculated by using Eqs. (1) and (2) (Bridgeman et al., 2010a; Yan et al., 2009). The mass yield, energy yield, and higher heating value of different biomass are mentioned in Table 2.2. It was observed that mass yield decreases with increase in temperature and retention time during torrefaction process. The

decomposition of volatile matter in liquid and gaseous products at higher temperature and retention time is responsible for decrease in mass yield (Chew & Doshi, 2011; Dai et al., 2019). The major decomposition of hemicellulose takes place during torrefaction (Arias et al., 2008a). Thus, it was also observed that, the mass yield of herbaceous biomass is lower that the woody biomass during torrefaction due to higher hemicellulose content in herbaceous biomass (Bridgeman et al., 2008; Prins et al., 2006b). The increase in temperature and retention time during torrefaction causes increase in higher heating value of torrefied biomass. The increase in carbon content and decrease in oxygen content as a result of torrefaction is accountable for increase in higher heating value of torrefied biomass since, C-C bond has higher energy content as compared to C-H or C-O bonds (Phanphanich & Mani, 2011). The energy yield being a function of mass yield, HHV of torrefied and raw biomass signifies the amount of energy lost during torrefaction. The wide variation in energy yield of herbaceous biomass was observed due to large variation in volatile matter and hemicellulose content (Deng et al., 2009b). It was also observed that temperature has more pronounced effect on energy yield as compared to retention time. Thus, lower or higher temperature range along with shorter retention time can minimize the loss of energy through torrefaction (Chew & Doshi, 2011).

Mass yield =
$$\frac{\text{Mass}_{\text{torrefied biomass}}}{\text{Mass}_{\text{raw biomass}}} \times 100$$
 (1.1)

Energy yield = Mass yield ×
$$\frac{HHV_{torrefied biomass}}{HHV_{raw biomass}}$$
 (1.2)

Phanphanich et al. (Phanphanich & Mani, 2011) investigated the mass and energy yield of pine chips and logging residues in the temperature range of 225-300 °C at a retention time of 0.5 h and reported that the mass yield varies in the range of 52-89%, while energy yield

varies in the range of 71-94%. Pimchuai et al. (Pimchuai et al., 2010) performed the torrefaction of water hyacinth, peanut husk, rice husk and bagasse in the temperature range of 250-300 °C and retention time in the range of 1-2 h. They reported that mass and energy yield fell in the range of 41-79% and 55-98%, respectively. The mass and energy yield and HHV of torrefied biomass depends on types of biomass, temperature, retention time and types of process reactor (Niu et al., 2019).

 Table 2.2 Effect of torrefaction on mass yield, energy yield and higher heating value of biomass

Biomass	Torrefaction	Mass	Energy	HHV	References
	condition	yield	yield (wt%)	(MJ/kg)	
		(%)	-	_	
Leucaena	Т (200 °С)	91.0	94.1	21.0	(Wannapeera et
	RT (0.5 h)				al., 2011b)
	*PS < 75 μm				
	T (225 °C)	86.5	90.3	21.2	
	RT (0.5 h)				
	$PS < 75 \ \mu m$				
	T (250 °C)	73.0	76.2	21.2	
	RT (0.5 h)				
	$PS < 75 \ \mu m$				
	Т (275 °С)	54.5	61.2	22.0	
	RT (0.5 h)				
	$PS < 75 \ \mu m$				
Pine	T (230 °C)	92.4	96.5	18.0	(Pach et al., 2002)
	RT (1.0 h)				
	PS = **NR				
	T (250 °C)	88.2	94.3	18.5	
	RT (1.0 h)				
	PS = NR				
	Т (280 °С)	78.1	93.9	20.8	
	RT (1.0 h)				
	PS = NR				
Willow	T (230 °C)	95.1	96.0	20.2	(Bridgeman et al.,
	RT (0.5 h)				2008)

	$\mathbf{PS} = \mathbf{NR}$				
	T (250 °C) RT (0.5 h) PS = NR	89.6	92.2	20.6	
	T (270 °C) RT (0.5 h) PS = NR	79.8	85.3	21.4	
	$ \begin{array}{c} T (290 \ ^{\circ}\text{C}) \\ \text{RT} (0.5 \ \text{h}) \\ \text{PS} = \text{NR} \end{array} $	72.0	78.8	21.9	
Wood briquette	T (220 °C) RT (0.5 h) PS = NR	94.0	95.9	20.4	(Felfli et al., 2005a)
	T (250 °C) RT (0.5 h) PS = NR	74.0	78.3	21.2	
	T (270 °C) RT (0.5 h) PS = NR	56.0	63.7	22.7	
Sugarcane bagasse	T (230 °C) RT (1.0 h) PS = NR	87.5	96.4	17.0	(Pach et al., 2002)
	T (250 °C) RT (1.0 h) PS = NR	78.9	92.0	18.0	
	T (280 °C) RT (1.0 h) PS = NR	68.6	82.9	18.7	
Cotton stalk	T (200 °C) RT (0.5 h) PS = 25 mm	63.8	83.4	23.9	(Wang et al., 2011)
	T (250 °C) RT (0.5 h) PS = 25 mm	33.8	45.3	24.5	
	T (300 °C) RT (0.5 h) PS = 25 mm	30.0	41.0	25.0	
Sawdust	T (250 °C) RT (1.0 h) PS = NR	67.2	72.4	19.5	(Pimchuai et al., 2010)
	T (270 °C) RT (1.0 h) PS = NR	59.5	67.1	20.4	
	T (300 °C) RT (1.0 h) PS = NR	42.0	55.1	23.8	

	r		1	1
T (200 °C)	47.56	56.0	19.8	(Wang et al.,
RT (0.5 h)				2011)
PS = 25 mm				
T (250 °C)	41.24	51.0	20.8	
RT (0.5 h)				
PS = 25 mm				
T (300 °C)	31.61	40.6	21.6	
RT (0.5 h)				
PS = 25 mm				
T (200 °C)	59.8	59.9	17.1	(Deng et al.,
RT (0.5 h)				2009b)
PS = 25 mm				
T (250 °C)	40.3	42.4	18.0	
RT (0.5 h)				
PS = 25 mm				
T (300 °C)	36.5	39.9	18.6	
RT (0.5 h)				
PS = 25 mm				
T (250 °C)	83.0	85.1	20.0	(Bridgeman et al.,
RT (0.5 h)				2008)
PS = NR				
Т (270 °С)	72.0	76.8	20.8	
RT (0.5 h)				
PS = NR				
Т (290 °С)	61.5	68.7	21.8	
RT (0.5 h)				
PS = NR				
	T (200 °C) RT (0.5 h) PS = 25 mm T (250 °C) RT (0.5 h) PS = 25 mm T (300 °C) RT (0.5 h) PS = 25 mm T (200 °C) RT (0.5 h) PS = 25 mm T (250 °C) RT (0.5 h) PS = 25 mm T (300 °C) RT (0.5 h) PS = 25 mm T (250 °C) RT (0.5 h) PS = 25 mm T (250 °C) RT (0.5 h) PS = NR T (270 °C) RT (0.5 h) PS = NR T (290 °C) RT (0.5 h) PS = NR	T (200 °C) RT (0.5 h) PS = 25 mm47.56T (250 °C) RT (0.5 h) PS = 25 mm41.24RT (0.5 h) PS = 25 mm31.61T (300 °C) RT (0.5 h) PS = 25 mm31.61T (200 °C) S = 25 mm59.8T (200 °C) RT (0.5 h) PS = 25 mm59.8T (250 °C) RT (0.5 h) PS = 25 mm40.3T (300 °C) RT (0.5 h) PS = 25 mm36.5T (0.5 h) PS = 25 mm36.5T (250 °C) RT (0.5 h) PS = 25 mm83.0T (250 °C) RT (0.5 h) PS = NR83.0T (270 °C) RT (0.5 h) PS = NR72.0T (290 °C) RT (0.5 h) PS = NR61.5T (0.5 h) PS = NR81.0	T (200 °C) RT (0.5 h) PS = 25 mm47.5656.0T (250 °C) RT (0.5 h) PS = 25 mm41.2451.0T (300 °C) RT (0.5 h) PS = 25 mm31.6140.6RT (0.5 h) PS = 25 mm59.859.9T (200 °C) RT (0.5 h) PS = 25 mm59.859.9T (250 °C) RT (0.5 h) PS = 25 mm40.342.4T (250 °C) RT (0.5 h) PS = 25 mm36.539.9T (300 °C) RT (0.5 h) PS = 25 mm36.539.9T (250 °C) 	$\begin{array}{c ccccccc} T (200 \ ^\circ C) & 47.56 & 56.0 & 19.8 \\ RT (0.5 h) & PS = 25 mm & & & & & \\ T (250 \ ^\circ C) & 41.24 & 51.0 & 20.8 \\ RT (0.5 h) & PS = 25 mm & & & & \\ T (300 \ ^\circ C) & 31.61 & 40.6 & 21.6 \\ RT (0.5 h) & PS = 25 mm & & & & \\ T (200 \ ^\circ C) & 59.8 & 59.9 & 17.1 \\ RT (0.5 h) & PS = 25 mm & & & \\ T (250 \ ^\circ C) & 40.3 & 42.4 & 18.0 \\ RT (0.5 h) & PS = 25 mm & & & \\ T (300 \ ^\circ C) & 36.5 & 39.9 & 18.6 \\ RT (0.5 h) & PS = 25 mm & & & \\ T (300 \ ^\circ C) & 36.5 & 39.9 & 18.6 \\ RT (0.5 h) & PS = 25 mm & & & \\ T (250 \ ^\circ C) & 83.0 & 85.1 & 20.0 \\ RT (0.5 h) & PS = NR & & & \\ T (270 \ ^\circ C) & 72.0 & 76.8 & 20.8 \\ RT (0.5 h) & PS = NR & & \\ T (290 \ ^\circ C) & 61.5 & 68.7 & 21.8 \\ RT (0.5 h) & PS = NR & & \\ \end{array}$

*PS: Particle size, **NR: not reported

2.1.1.1.3 Effect of torrefaction on grindability and moisture absorption capacity of biomass

As a result of torrefaction, the fibrous structure of biomass is broken and smaller and spherical size particle are obtained which enhances the flow characteristics of biomass (Arias et al., 2008a; Wang et al., 2011). Thus, torrefaction makes the biomass brittle which enhances its grinding properties and lower the grinding energy as a result smaller particle size distribution are obtained (Deng et al., 2009b; Repellin et al., 2010). The grinding

energy of torrefied biomass was noted to 10-20% lower than the raw biomass, and this grinding energy can be compared with grinding energy of coal (Ciolkosz & Wallace, 2011; Phanphanich & Mani, 2011). Hence, torrefaction facilitate grindability and flowability of biomass. Repellin et al. (Repellin et al., 2010) performed the grinding of spruce and beech at different torrefaction temperature (180-280 °C for beech and 160-280 °C for spruce) and retention time (5-60 min for beech and 5 min for spruce) using ultra centrifugal mill (Retsch ZM1) coupled with 0.5 mm grid and found that grinding energy decreased with increase in temperature and retention time. However, small decrease in grinding energy was noted when retention time increased beyond 20 min. Bridgeman et al. (Bridgeman et al., 2010a) confirmed that temperature during torrefaction had most significant impact on grindability of torrefied biomass followed by retention time and particle size. Mani et al. (Mani et al., 2004) confirmed that higher moisture content in torrefied biomass increased its grinding energy due to more shear strength. Wang et al. (Wang et al., 2011) investigated the grinding energy for cotton stalk and wheat straw and reported that beyond 250 °C, temperature had almost no significance on grinding energy.

The hygroscopic characteristics of biomass is highly depends on the composition (cellulose, hemicellulose and lignin content) of biomass (Niu et al., 2019). Among the composition of biomass, hemicellulose has the strongest affinity toward water absorption while, lignin has the least affinity towards water (Björk & Rasmuson, 1995). Due to torrefaction, the decomposition of majority of hemicellulose along with reduction in H/C and O/C ratios, the torrefied biomass has hydrophobic characteristics as compared to raw biomass. The cleavage of hydroxyl bonds associated with hemicellulose is mainly accountable for hydrophobic characteristics of torrefied biomass (Kanwal et al., 2019;

Phanphanich & Mani, 2011). The hydrophobic nature of torrefied biomass facilitates its transport and storage without bacterial deterioration like raw biomass (Yan et al., 2009). The water absorption capacity of biomass decreases with increase in temperature during torrefaction (Pimchuai et al., 2010). Ciolkosz et al. (Ciolkosz & Wallace, 2011) summarized the mechanism of hydrophobic characteristics of biomass due to torrefaction. They reported that decomposition of hemicellulose during torrefaction leads to unbind the cellulose and lignin. This causes discharge of water molecules present in cell wall. The decomposition of hemicellulose brings the brittle characteristics in cellulose and lignin. The breakdown of hydroxyl groups present in hemicellulose decreases the tendency of formation of hydrogen bond with water molecules. Non-polar molecules are formed as a result of hemicellulose decomposition. The hydrophobic characteristics of biomass can be estimated by using Equilibrium Moisture Content (ECM) as proposed by Acharjee et al. (Acharjee et al., 2011) and Yan et al. (Yan et al., 2009). The torrefied biomass having lower ECM has lower risk of biological degradation as compared to torrefied biomass with higher ECM (Yan et al., 2009). Thus, it can be concluded that torrefaction significantly reduced the grinding energy and moisture absorption capacity of native biomass. The reduction in grinding energy of biomass due to torrefaction increased the energy efficiency of process and reduction in moisture absorption capacity can lead to lower bacterial degradation resulting in longer storage of native biomass.

2.1.1.2 Optimization of torrefaction process

The torrefaction process depends on temperature, retention time, heating rate, type of biomass, process reactor system, particle size, etc. Among these parameters temperature and retention time has most significant impact on torrefaction process (Asadullah et al.,

2014). Also, the torrefaction process is generally used as a pretreatment process to upgrade the quality of native biomass; hence yield of upgraded biomass (torrefied biomass) with enhanced properties is the desired output from torrefaction. However, the yield and quality of torrefied biomass shows opposite trend during torrefaction process. With increase in temperature and retention time the quality of torrefied biomass (HHV, fixed carbon, H/C and O/C ratios) enhances while, yield of torrefied biomass decreases (Singh et al., 2019b). Thus, it is of prime importance to find a balance between quality and quantity of torrefied biomass. The process outcomes such as mass and energy yield are very sensitive to temperature and retention time. A small variation in temperature and retention time can cause significant variation in mass and energy yield (Koukios, 1993). The desired value of process parameters can be established through optimization of process parameters. Asadullah et al. (Asadullah et al., 2014) carried out the torrefaction of palm kernel shell between 200-350 °C, retention time 10-60 min and sweeping gas flow between 100-1000 mL/min. They reported the optimum condition of torrefaction for maximum yield (73%) and HHV (24.5 MJ/kg) of torrefied biomass at 300 °C, retention time (20 min) and sweeping gas flow rate (300 mL/min). Buratti et al. (Buratti et al., 2018) investigated the torrefaction of coffee chaff and spent coffee ground between 220-300 °C, retention time 20-60 min and heating rate between 5-25 °C/min and optimize the weight loss and HHV using response surface methodology. The optimum value for coffee chaff was found at 271.7 °C, retention time (20 min) and heating rate (5 °C/min) and for spent coffee ground the optimum value was found at 256 °C, retention time (20 min) and heating rate (25 °C/min). Table 2.3 represents the optimization of torrefaction process for different biomass.

Table 2.3 Optimization of process parameters for torrefaction of different biomass

Variable variable variable Tool condition Value of dependent Palm kernel shell T (200-350 Solid yield - T (300 Solid yield (Asadullah (73%), SGF (100- 1000mL/min) (Asadullah (73%), SGF (100- 1000mL/min) (Asadullah (73%), SGF (100- 1000mL/min) (Asadullah (73%), SGF (300, min) (Asadullah (73%), SGF (300, min), HR (5 - 20, C), SGF (300, MJ/kg) (Baratti et al., 2018) Spent T (20-300, C), RT (15- 60 min) Weight loss (C), RT (15- 60 min) RSM (7300, C), RT (30, min) T (230, SGF (300, C), RT (30- min) (Chin et al., C)(3) Oil palm trusk T (200-	Biomass	Independent	Dependent	Optimization	Optimum	Optimum	References
Image: second state in the second state is		Variable	variable	Tool	condition	Value of	
l Palm kernel shellT CO0-350 CO, RT (10- 60 min) SGF (100- 1000mL/min)Solid yield HHV SGF (100- 1000mL/min)-T CO, RT CO, RT (20 min), mL/min)Ansel (20 min), mL/min)(Asadullah (Asadullah (20 min), mL/min)Greenhouse crop residue (C), RT (15- 60 min)T(200-300 (C), RT (15- (20 min))Energy# (20 min), (20 min), modelingANFIS (70, RT (15- (20 min), ml/min)T(263 °C), modeling modelingT(263 °C), RT (15- (20 min), (28.7%), (28.7%), (28.7%), (28.7%), (28.7%), (28.7%), (28.7%), (28.7%), (28.7%), (28.7%), (28.7%), (28.7%), (28.7%), (28.7%), (28.7%), (28.7%), (28.7%), (28.7%), (21.6%), (31.4%)(Asadullah (21.6%), (31.4%)(Buratti et al., 2018)Spent coffee ground buch ground buchT (20.200 (20.300) (C, RT (20- (20.300) (C), RT (20- (20.300) (C), RT (15- (60 min))Heating HR (5-25 valueRSM based (C), RT (20- (C), RT (20- (C), RT (20- (C), RT (15- (60 min))RSM (C), RT (20- (C), RT (15- (60 min))RSM (C), RSM (C), RT (45- min)T(200-300 (C), RT (45- min)(Chin et al., (C), (C), RT (45- min)(Chin et al., (C), (C), RT (45- min)Maccaranga spp.T(200-300 (C), RT (15- (60 min))HHV yield (C), RSM (C), RSM (C), RT (45- min)RSM (C), RT (45- min)T(200- (C), RT (45- min)(Chin et al., (C), (C), RT (45- min)Maccaranga spp.T(20-300 (C), RT (15- (60 min))HHV yield (C), RSM (C), RT (45						dependent	
Palm kernel shell T (200-350 C), RT (10- 00 min), SGF (100- 1000mL/min) Solid yield HW						variable	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Palm kernel	T (200-350	Solid yield	-	T (300	Solid yield	(Asadullah
	shell	°C), RT (10-	HHV		°C), RT	(73%),	et al., 2014)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		60 min)			(20 min),	HHV (24.5	
Indextrem Indextrem Interval (Interval in the second sec		SGF (100-			SGF (300	MJ/kg)	
		1000mL/min)			mL/min)		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Greenhouse	T (200-300	Energy#	ANFIS	T(263 °C),		(lánez-
$ \begin{array}{c} \mbox{control} & \mbox{control} $	crop residue	$^{\circ}$ C), RI (15-	yield	modeling	RI(15)	-	Rodriguez et
$ \begin{array}{c} \mbox{Control}{C} & \mbox{C} (220-300 \\ \mbox{c} (7), RT (20-300 \\ \mbox{c} (7), RT (15-60 \\ \mbox{c} (7), RT (15-60 \\ \mbox{min}) \\ \mbox{min} \\ \mbox{f} (20-300 \\ \mbox{c} (7), RT (15-60 \\ \mbox{min}) \\ \mbox{f} (20-300 \\ \mbox{c} (7), RT (15-60 \\ \mbox{min}) \\ \mbox{f} (20-300 \\ \mbox{c} (7), RT (15-60 \\ \mbox{min}) \\ \mbox{f} (20-300 \\ \mbox{r} (15-60 \\ \mbox{min}) \\ \mbox{f} (20-300 \\ \mbox{r} (15-60 \\ \mbox{min}) \\ \mbox{f} (20-300 \\ \mbox{c} (7), RT (15-60 \\ \mbox{min}) \\ \mbox{f} (20-300 \\ \mbox{min}) \\ \mbox{f} (20-300 \\ \mbox{c} (7), RT (15-60 \\ \mbox{min}) \\ \mbox{f} (20-300 \\ \mbox{min}) \\ \mbox{min}) \\ \mbox{f} (20-300 \\ \mbox{min}) \\ \mbox{min}) \\ \mbox{f} (20-300 \\ \mbox{min}) \\ \mbox{min}) \\ \mbo$	Coffaa	T(220, 200)	Weight loss	DSM based	ппп) Т(271-7	Weight loss	al., 2017)
$ \begin{array}{cccc} {\rm Charl} & {\rm Col}, {\rm Fr}(20) & {\rm and} & {\rm Heating} \\ {\rm HR}(5-25) & {\rm value} & {\rm value} & {\rm real} & {\rm RT}(20) & {\rm HHV}(23.60) \\ {\rm min}, & {\rm HR}(5) & {\rm value} & {\rm real} & {\rm $	Conee	$^{\circ}(220-300)$	and	RBD	°C)	(28,7%)	(Duraturet)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Chan	60 min	Heating		RT(20)	(20.770), HHV (23.60	al., 2010)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		HR (5-25)	value		min)	MJ/kg	
Spent coffee ground T (220-300 °C), RT (20- 60 min) Weight loss and Heating value RSM based BBD T (256.7 °C), RT (20 Weight loss (21.6%), RT (20 (Buratti et al., 2018) Empty fruit bunch T (200-300 °C), RT (15- 60 min) HHV yield RSM T (230 121.1% (Chin et al., 2013) Oil palm trunk T (200-300 °C), RT (15- 60 min) HHV yield RSM T (300 °C), min) 109.2% (Chin et al., 2013) Acacia spp. T (200-300 °C), RT (15- 60 min) HHV yield RSM T (260 min) 131.4% (Chin et al., 2013) Macaaranga spp. T (200-300 °C), RT (15- 60 min) HHV yield RSM T (260 min) 131.4% (Chin et al., 2013) Macaranga spp. T (200-300 °C), RT (15- 60 min) HHV yield RSM T (260 °C), RT (30 min) 131.0% (Chin et al., 2013) Macaranga spp. T (200-300 °C), RT (15- 60 min) HHV yield RSM T (280 °C), RT (45 min) 131.0% (Chin et al., 2013) Cotton stalk T (260-320 °C), RT (15- 60 min) HHV yield RSM based BBD T (30 min) HHV (19.7 (32 min) (Kutlu & Kocar, Content kg/m ³) Carbon Cont		°C/min)	vulue		HR (5	ivit, itg)	
$ \begin{array}{c} \mbox{Spent} \\ \mbox{coffee} \\ \mbox{coffee} \\ \mbox{ground} \end{array} \begin{tabular}{ c c c c c c c c } \hline T & (220-300 \\ \mbox{`C}, RT & (20-6) \\ \mbox{domin} \\ \mbox{HR} & (5-25 \\ \mbox{`C/min}) \end{array} \begin{tabular}{ c c c c c c c } \hline T & (220-300 \\ \mbox{`C/min}) \\ \hline T & (200-300 \\ \mbox{`C/min}) \end{array} \begin{tabular}{ c c c c c c c } \hline T & (200-300 \\ \mbox{`C}, RT & (15-6) \\ \mbox{domin}) \end{array} \begin{tabular}{ c c c c c c } \hline T & (200-300 \\ \mbox{`C}, RT & (15-6) \\ \mbox{domin}) \end{array} \begin{tabular}{ c c c c c c c } \hline T & (200-300 \\ \mbox{`C}, RT & (15-6) \\ \mbox{domin}) \end{array} \begin{tabular}{ c c c c c } \hline T & (200-300 \\ \mbox{`C}, RT & (15-6) \\ \mbox{domin}) \end{array} \begin{tabular}{ c c c c c c } \hline T & (200-300 \\ \mbox{`C}, RT & (15-6) \\ \mbox{domin} \end{array} \begin{tabular}{ c c c c c c c } \hline T & (200-300 \\ \mbox{`C}, RT & (15-6) \\ \mbox{domin} \end{array} \begin{tabular}{ c c c c c c c } \hline T & (200-300 \\ \mbox{`C}, RT & (15-6) \\ \mbox{domin} \end{array} \begin{tabular}{ c c c c c c c } \hline T & (200-300 \\ \mbox{`C}, RT & (15-6) \\ \mbox{domin} \end{array} \begin{tabular}{ c c c c c c c } \hline T & (200-300 \\ \mbox{`C}, RT & (15-6) \\ \mbox{domin} \end{array} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$					°C/min)		
$ \begin{array}{cccc} coffee \\ ground \\ ground \\ round \\ $	Spent	T (220-300	Weight loss	RSM based	T (256.7	Weight loss	(Buratti et
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	coffee	°C), RT (20-	and	BBD	°C),	(21.6%),	al., 2018)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ground	60 min)	Heating		RT (20	HHV (28.18	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		HR (5-25	value		min)	MJ/kg)	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		°C/min)			HR (25		
Empty fruit bunchT (200-300 °C), RT (15- 60 min)HHV yieldRSMT (230 °C), RT (40 min)121.1% (Chin et al., 2013)(Chin et al., 2013)Oil palm trunkT (200-300 °C), RT (15- 60 min)HHV yieldRSMT (300 °C), min)109.2% (Chin et al., 2013)(Chin et al., 2013)Acacia spp.T (200-300 60 min)HHV yieldRSMT (260 °C), RT (45 min)131.4% (Chin et al., 2013)(Chin et al., 2013)Macaranga spp.T (200-300 °C), RT (15- 60 min)HHV yieldRSMT (280 °C), RT (30 min)131.0% (Chin et al., 2013)(Chin et al., 2013)Macaranga spp.T (200-300 °C), RT (15- 60 min)HHV yieldRSMT (280 °C), RT (45 min)131.0% (Chin et al., 2013)(Chin et al., 2013)Cotton stalk BD (125-175 kg/m³)T (260-320 contentHHV and contentRSM based BBDT (305 °C), RT (32 min)HHV (19.7 Carbon 2018)(Kutlu & kocar, 2018)Rice strawT (210-290 °C), RT (20- 60 min)Energy yieldRSM based CCDT (210 °C), °C, CO, CO,T (210 S013)(Nam & Capareda, CD, CD		F (200, 200		2014	°C/min)	101.101	
bunch°C), RT (15- 60 min)2013)Oil palmT (200-300 °C), RT (15- 60 min)HHV yieldRSMT(300 °C), runk109.2% (Chin et al., 2013)Acacia spp.T (200-300 °C), RT (15- 60 min)HHV yieldRSMT (260 °C), RT (45 min)131.4% (Chin et al., 2013)Acacia spp.T (200-300 °C), RT (15- 60 min)HHV yieldRSMT (260 °C), RT (30 min)131.4% (Chin et al., 2013)Macaranga spp.T (200-300 °C), RT (15- 60 min)HHV yieldRSMT (280 °C), RT (30 min)131.0% (Chin et al., 2013)Macaranga spp.T (200-300 °C), RT (15- 60 min)HHV yieldRSMT (280 °C), RT (45 min)131.0% (Chin et al., 2013)Cotton stalk BD (125-175 kg/m³)T (260-320 contentHHV and contentRSM based BBDT (305 °C), RT (32 min)HHV (19.7 Carbon 2018)Rice strawT (210-290 °C), RT (20- 60 min)Energy yieldRSM based CCDT (210 °C), CO, CO, CO,T (210 2015)	Empty fruit	T (200-300	HHV yield	RSM	T (230	121.1%	(Chin et al.,
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	bunch	°C), RT (15-			°C),		2013)
Oil palm trunk T (200-300 °C), RT (15- 60 min) HHV yield RSM T (300 °C), RT (45 min) 109.2% (Chin et al., 2013) Acacia spp. T (200-300 °C), RT (15- 60 min) HHV yield RSM T (260 131.4% (Chin et al., 2013) Macaranga spp. T (200-300 °C), RT (15- 60 min) HHV yield RSM T (280 131.0% (Chin et al., 2013) Macaranga spp. T (200-300 °C), RT (15- 60 min) HHV yield RSM T (280 131.0% (Chin et al., 2013) Cotton stalk T (260-320 °C), RT (10- 60 min) HHV and carbon RSM based T (305 min) HHV (19.7 min) (Kutlu & Kocar, (32 min) Kocar, 2013) Rtice straw T (210-290 °C), RT (20- 60 min) Energy yield RSM based T (210 °C), RT (20) 91.3% (Nam & Capareda, 2015)		60 min)			RI(40)		
On pain trunk $^{\circ}$ (2), RT (15- 60 min)HHV yieldRSM $^{\circ}$ (300 °C), RT (45 min) $^{\circ}$ (00 min) $^{\circ}$ (15- 60 min) $^{\circ}$ (Oil nalm	Т (200-300	HHV vield	RSM	$T(300 \ \text{°C})$	109.2%	(Chin et al
Acacia spp. T (200-300 °C), RT (15- 60 min) HHV yield RSM T (260 °C), RT (15- 60 min) 131.4% (Chin et al., 2013) Macaranga spp. T (200-300 °C), RT (15- 60 min) HHV yield RSM T (280 °C), RT (30 min) 131.0% (Chin et al., 2013) Macaranga spp. T (200-300 °C), RT (15- 60 min) HHV yield RSM T (280 °C), RT (45 min) 131.0% (Chin et al., 2013) Cotton stalk T (260-320 °C), RT (10- 60 min) HHV and carbon RSM based T (305 BBD HHV (19.7 %C), RT (Kutlu & Kocar, 2018) BD (125-175 kg/m ³) Energy yield RSM based T (210 °C), RT (20 91.3% (Nam & Capareda, 2015)	trunk	°C) RT (15-	iiiiv yleid	KOW	RT (45)	109.270	(Chill et al., 2013)
Acacia spp. T (200-300 °C), RT (15- 60 min) HHV yield RSM T (260 °C), RT (30 min) 131.4% (Chin et al., 2013) Macaranga spp. T (200-300 °C), RT (15- 60 min) HHV yield RSM T (280 °C), RT (280 °C), RT (45 min) 131.0% (Chin et al., 2013) Macaranga spp. T (200-300 °C), RT (15- 60 min) HHV yield RSM T (280 °C), RT (45 min) 131.0% (Chin et al., 2013) Cotton stalk T (260-320 °C), RT (10- 60 min) HHV and carbon content RSM based T (305 °C), RT (45 min) HHV (19.7 MJ/kg), (Kutlu & Kocar, 2018) BD (125-175 kg/m ³) Energy yield RSM based T (210 V), 91.3% (Nam & Capareda, 2015)	ti ti ti ti	60 min			min)		2010)
Macaranga °C), RT (15- 60 min) °C), RT (30- min) °C), RT (30- min) RT (30- min) 2013) Macaranga T (200-300 HHV yield RSM T (280 131.0% (Chin et al., 2013) spp. °C), RT (15- 60 min) HHV yield RSM T (280 131.0% (Chin et al., 2013) Cotton stalk T (260-320 HHV and °C), RT (10- 60 min) RSM based T (305 HHV (19.7) (Kutlu & Kocar, 2018) BD (125-175 carbon 60 min) content BBD °C), RT MJ/kg), (64%) 2018) Rice straw T (210-290 Energy yield RSM based CCD T (210 91.3% (Nam & Capareda, 2015)	Acacia spp.	T (200-300	HHV yield	RSM	T (260	131.4%	(Chin et al.,
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	°C), RT (15-	5		°C),		2013)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		60 min)			RT (30		
Macaranga spp.T (200-300 °C), RT (15- 60 min)HHV yieldRSMT (280 °C), RT (45 min)131.0% 2013)(Chin et al., 2013)Cotton stalkT (260-320 °C), RT (10- 60 min)HHV and carbon contentRSM based BBDT (305 °C), RT (32 min)HHV (19.7 MJ/kg), Carbon BD (125-175 kg/m³)(Kutlu & Kocar, 2018)Rice strawT (210-290 °C), RT (20- b0 min)Energy yieldRSM based CCDT (210 °C), RT (21091.3% Capareda, 2015)					min)		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Macaranga	T (200-300	HHV yield	RSM	T (280	131.0%	(Chin et al.,
60 min) RT (45 min) RT (45 min) Cotton stalk T (260-320 HHV and carbon RSM based BBD T (305 HHV (19.7) (Kutlu & Kocar, 60 min) content BBD °C), RT MJ/kg), Kocar, 60 min) content (32 min) Carbon 2018) BD (125-175 min BD (158 content kg/m ³) Energy RSM based T (210 91.3% (Nam & Capareda, 2015)	spp.	°C), RT (15-			°C),		2013)
Image: Cotton stalk T (260-320 HHV and carbon RSM based T (305 HHV (19.7) (Kutlu & °C), RT (10- carbon BBD °C), RT MJ/kg), Kocar, 60 min) content (32 min) Carbon 2018) BD (125-175 BBD kg/m ³) (64%)		60 min)			RT (45		
Cotton stalk I (260-320 HHV and carbon RSM based I (305 HHV (19.7) (Kutlu & Kocar, 2018) $^{\circ}$ C), RT (10- carbon BBD $^{\circ}$ C), RT MJ/kg), Kocar, 2018) BD (125-175 content BD (158 content kg/m ³) 664%) Rice straw T (210-290 Energy RSM based T (210 91.3% (Nam & Capareda, 60 min) 60 min) i CCD °C), RT (20 2015)	G (1)	T (2.0.220	XXXXX 1		min)		(W 1 0
C), R1 (10- 60 min)carbonBBDC), R1MJ/kg), (32 min)Kocar, 2018)BD (125-175 kg/m³)content $(32 min)$ Carbon2018)Rice strawT (210-290Energy yieldRSM basedT (21091.3%(Nam & Capareda, 2015)Rice straw $^{\circ}$ C), RT (20- 60 min)yieldCCD $^{\circ}$ C), RT (202015)	Cotton stalk	T(260-320)	HHV and	RSM based	T (305	HHV (19.7)	(Kutlu &
of min) content (32 min) Carbon 2018) BD (125-175 BD (125-175 BD (158 content kg/m ³) (64%) Rice straw T (210-290 Energy RSM based T (210 91.3% (Nam & Capareda, 2015) $^{\circ}$ C), RT (20- yield CCD °C), RT (20 2015)		C, KI (10-	carbon	עסס	(22 min)	WIJ/Kg),	\mathbf{N} (\mathbf{C}
BD (125-175) BD (156) Content kg/m ³) kg/m ³) (64%) Rice straw T (210-290) Energy RSM based T (210) 91.3% (Nam & Capareda, Capareda, CCD) 60 min Kg (20) Kg (20) Kg (20) Kg (20) Kg (20) Kg (20)		BD (125 175	content		(32 mm) BD (158	content	2010)
Rice straw T (210-290 Energy RSM based T (210 91.3% (Nam & Capareda, Capareda, CCD 60 min) 60 min) RT (20 2015) 2015)		$k\sigma/m^3$			$k\sigma/m^3$	(64%)	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Rice straw	T (210-290	Energy	RSM based	T (210	91.3%	(Nam &
$ 60 \text{ min} \rangle$ $ 112 122 30, 122 2015 $	Luce Suum	°C). RT (20-	vield	CCD	°C).	21.070	Capareda.
		60 min)	<i>Ju</i>		RT (20		2015)

Department of Chemical Engineering and Technology IIT (BHU), Varanasi-221005Page 35

				min)		
Cotton stalk	T (210-290 °C), RT (20- 60 min)	Energy yield	RSM based CCD	T (210 °C), RT (20 min)	99.4%	(Nam & Capareda, 2015)

the definition of energy yield has been defined in section 2.1.1.1.2 (Eq. 1.2)

2.1.2 Pyrolysis of raw and torrefied biomass and optimization of process parameters

2.1.2.1 Pyrolysis of raw biomass and optimization of process parameters

Pyrolysis is a process that can potentially be used to harness energy and various chemicals from biomass (Akhtar & Amin, 2012). The pyrolysis is a thermochemical conversion process which can convert the biomass into solid, liquid, and gaseous products in an inert atmosphere depending upon the process parameters such as temperature, heating rate and retention time. The amount of solid, liquid and gaseous products from pyrolysis depends on the process parameters (Akhtar & Amin, 2012). Generally the pyrolysis process takes place between 500-800 °C (Akhtar & Amin, 2012). Depending upon the process parameters, the pyrolysis can be classified as slow pyrolysis, fast pyrolysis, and flash pyrolysis (Dai et al., 2019). The flash pyrolysis is characterized by higher heating rate (> 1000 °C/s) and lower retention time (< 0.5 s) (Bahng et al., 2009). The flash pyrolysis process requires an experimental set-up equipped with high quality equipment for the control of process. In this regard, slow and fast pyrolysis has gathered huge attention for production of biochar and bio-oil from biomass (Dai et al., 2019). The slow pyrolysis is characterized by low heating rate (0.1-1 °C/s) and longer retention time (300-550 s). While, fast pyrolysis generally occurs between heating rate of 10-200 °C/s, and retention time between 0.5-10 s (Ben & Ragauskas, 2013; Guedes et al., 2018; Jahirul et al., 2012). Biochar and bio-oil has been considered as the main product from slow and fast pyrolysis, respectively (Guedes et al., 2018). During pyrolysis process biomass went through primary and secondary cracking reactions through heat and mass transfer. The primary reactions during pyrolysis consist of degradation of hemicellulose, cellulose and lignin content of biomass.. The primary products and intermediates are the major products during primary reactions. The intermediates formed during primary reactions are further cracked during secondary reaction of pyrolysis. The primary reactions during pyrolysis follow the dehydration and charring mechanism; while, secondary reactions follows the volatilization and degradation of intermediates (Akhtar & Amin, 2012; Zaror & Pyle, 1982). The yield of bio-oil during pyrolysis of biomass is governed by many factors such as process temperature, retention time, heating rate, sweeping gas flow rate, particle size of feedstock, minerals present in biomass, initial moisture content of biomass and composition of feedstocks (Akhtar & Amin, 2012). Tsai et al. (Tsai et al., 2007) investigated the pyrolysis of rice husk and reported that the yield of bio-oil increased from 11.26 wt% to 35.92 wt%, once the temperature increased from 400 to 500 °C. However, the yield of bio-oil increased with lower rate to 40 wt% at a temperature of 800 °C. Lazzari et al. (Lazzari et al., 2016) performed the mango seed pyrolysis in the temperature range of 450 to 650 °C. The maximum yield of bio-oil (38.8 wt %) was obtained at 650 °C. Jung et al. (Jung et al., 2008) investigated the pyrolysis of saw dust from bamboo and reported that the yield of bio-oil increased from 56% to 72%, once the temperature increased from 350 to 405 °C.

On further increase in temperature up to 510 °C, the yield of bio-oil decreased to 61%. With increase in temperature during pyrolysis, the bio-oil yield increased up to maximum value and after that bio-oil yield decreased due to secondary cracking of volatiles at higher temperature (Isahak et al., 2012). Ates et al. (Ateş et al., 2004) investigated the pyrolysis of sesame stalk and varied the heating rate from 100-700 °C/min. they observed that maximum yield of bio-oil was obtained at a heating rate of 500 °C/min. Tsai et al. (Tsai et al., 2007) varied the heating rate form 100-500 °C/min during pyrolysis of rice husk in a fixed bed reactor. They reported that maximum bio-oil yield was obtained at a heating rate of 200 °C/min and further increase in heating rate has negligible impact on bio-oil yield. Morali et al. (Moralı & Şensöz, 2015) carried out the pyrolysis of hornbean shell and varied the heating rate from 7-50 °C/min. They observed that the variation in yield of bio-oil was almost negligible and effect of heating rate on pyrolysis was minimal in the tested conditions of pyrolysis.

Biomass	Desired	Optimum	Optimization	References
	outcomes	condition	tool	
Napier	Bio-oil	T: 600 °C, HR;	RSM based	(Mohammed et al.,
grass	yield (50.57	50 °C/min,	CCD	2017c)
	wt%)	SGF: 5 L/min		
Oil Palm	Bio-oil	T: 536.5 °C,	RSM based	(Abas et al., 2018)
Fiber	yield (50.57	RT: 23.88 min,	CCD	
	wt%)	AC loading:		
		86.21 g		
Bambara	Bio-oil	T: 600 °C, HR:	RSM based	(Mohammed et al.,
groundnut	yield (36.49	50 °C/min,	CCD	2017b)
	wt%)	SGF: 11 L/min		
Sagwan	Bio-oil	Т: 640 °С,	RSM based	(Gupta & Mondal,
sawdust	yield (48.70	SGF: 180	BBD	2019)
	wt%)	mL/min, Bed		
		height: 8 cm		

 Table 2.4 Optimization of process parameters for pyrolysis of different biomass

Food wests	Dia oil	T. 400 °C DT.	DSM based	(Kadlimatti at al
rood waste	$\frac{D10-011}{\text{viold}}$	1:400 °C, K1:	CCD	$(\mathbf{K} a \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U}$
	$y_{101}(30.24)$	50 mIIII, 50 F.	CCD	2019)
Demonstral		JU IIIL/IIIII	DSM bagad	(Sailria at al
Perennial	B10-011	1: 550 °C, HK:	KSIVI based	(Salkia et al., 2018)
grass	yield (38.1	20 °C/min,	CCD	2018)
	wt%)	SGF: 226		
		mL/min		
Neem press	Bio-oil	T: 512.5 °C,	RSM based	(Dhanavath et al.,
seed cake	yield (52.1	RT: 60 min,	BBD	2019)
	wt%)	SGF: 0.5 L/min		
Pine	Bio-oil	T: 547 °C, HR:	RSM based	(Mandal et al.,
needles	yield (27.6	50 °C/min,	CCD	2018)
	wt%)	VCT: 15 °C,		
		SGF: 1.85		
		L/min		
Euphorbia	Bio-oil	T: 600 °C, HR:	RSM based	(Kılıç et al., 2014)
rigida	yield (35.3	200 °C/min,	CCD	
	wt%)	SGF: 100		
		mL/min		
Pearl Millet	Bio-oil	Т: 400 °С,	RSM based	(Boubacar Laougé
	yield (48.27	SGF: 200	CCD	et al., 2020)
	wt%)	mL/min, PS:1.5		
		mm		
Sida	Bio-oil	Т: 400 °С,	RSM based	(Boubacar Laougé
cordifolia	yield (48	SGF: 200	CCD	et al., 2020)
<i>L</i> .	wt%)	mL/min, PS:1.5		
		mm		
Rice husk	Biochar	T: 300 °C, HR:	Taguchi	(Vieira et al.,
	yield (37.71	20 °C/min, RT:	method	2020)
	wt%)	5400 s, BL:		
		500 g		
Rice husk	HHV of	T: 500 °C, HR:	Taguchi	(Vieira et al.,
	biochar	10 °C/min, RT:	method	2020)
	(23.41	5400 s, BL:		
	MJ/kg)	125 g		
Rice husk	Fixed	T: 500 °C, HR:	Taguchi	(Vieira et al.,
	carbon of	5 °C/min, RT:	method	2020)
	biochar	7200 s. BL:		,
	(60.10	500 g		
	wt%)			
Palm fruit	Bio-oil	T: 628.2 °C,	Central	(Ferreira et al.,
empty	yield (45.29	SGF: 0.259	rotational	2020)
bunch	wt%)	L/min	compound	
			design	
Poplar saw	Bio-oil	T: 528.44 °C,	RSM based	(Ates & Erginel,
dust	vield (30.45	HR: 750	CCD	2016)

	wt%)	°C/min, Pressure: 1 bar		
Oil palm trunk	Bio-oil yield (42.05 wt%)	T: 446.11 °C, RT: 119.98 min, moisture content: 9.26%	RSM based BBD	(Oramahi et al., 2015)
Waste mixture (10% pine, 10% scrap tyres, 80% recycled plastic)	Bio-oil yield (54.9 wt%)	T: 426 °C, RT: 28 min, Pressure: 0.2 MPa	RSM (experimental factorial design)	(Pinto et al., 2013)
Coffee silverskin	Organic phase yield (15.2 wt%)	T: 560 °C, SGF: 49 mL/min	RSM based CCD	(Polidoro et al., 2018)
Salwood	Bio-oil yield (44.78 wt%)	T: 540 °C, SGF: 155 cm ³ /min, Feed rate: 0.45 kg/h	RSM based BBD	(Charusiri & Numcharoenpinij, 2017)
Sugarcane bagasse	Bio-oil yield (53.4 wt%)	T: 560 °C, RT: 77 s, Particle size: 0.5 to 0.85 mm	Simplex method	(Vecino Mantilla et al., 2014)
Palm Empty fruit bunch	Bio-oil yield (48.4 wt%)	T: 540 °C, RT: 31 s, Particle size: less than 0.5 mm	Simplex method	(Vecino Mantilla et al., 2014)
Cascabela thevetia seed	Bio-oil yield (45.26 wt%)	T: 525 °C, HR: 75 °C/min, SGF: 75 mL/min	RSM based CCD	(Mishra et al., 2020)

2.1.2.2 Pyrolysis of torrefied biomass

2.1.2.2.1 Effect of torrefaction on kinetics of biomass during pyrolysis

The torrefaction process can alter the kinetic parameters resulting in change in rate of heat and mass transfer due to decomposition of biomass during torrefaction. The torrefied biomass displayed the better behavior than raw biomass due to lower moisture content, H/C and O/C ratios and fractured and brittle structure (Dai et al., 2019). Since, the torrefaction as a pretreatment process can alleviate the undesired characteristics of raw biomass such as higher moisture content, lower energy density, higher oxygen content, higher grinding energy and tendency to absorb the moisture, added energy provided during torrefaction can offset due to enhanced characteristics of raw biomass (Dai et al., 2019). Ren et al. (Ren et al., 2013a) and Martin-Lara et al. (Martín-Lara et al., 2017) performed the TGA analysis of raw and torrefied biomass to investigate the pyrolysis characteristics. They reported that activation energy for pyrolysis of torrefied biomass was lower as compared to raw biomass due to decomposition of biomass during torrefaction. Martin-Lara et al. (Martín-Lara et al., 2017) also reported that for torrefied biomass obtained at mild torrefaction condition, the first order, single kinetic model was followed however, for severe torrefaction condition multi step kinetic model was followed. Hu et al. (Hu et al., 2018) performed the pyrolysis of raw and pellets from torrefied corn stalk. They observed that considerable amount of volatiles were lowered and rate of decomposition of biomass had increased due to torrefaction. Ru et al. (Ru et al., 2015) reported that the activation energy of hemicellulose and cellulose significantly reduced due to torrefaction, while for lignin, slight change in activation energy was observed. This showed that with increase in temperature during torrefaction, contribution of hemicellulose and cellulose decreased while contribution of lignin increased during decomposition of torrefied biomass during pyrolysis.

2.1.2.2.2 Effect of torrefaction on product distribution during pyrolysis of biomass

The integrated torrefaction-pyrolysis process can be a promising route for upgradation of quality of bio-oil obtained from pyrolysis of biomass. However, yield of bio-oil from pyrolysis of torrefied biomass is lower that the raw biomass because lighter component of biomass has already been converted into gaseous and liquid condensate (water, CO₂, CO, acids, etc.) during torrefaction process (Boateng & Mullen, 2013a; Chen et al., 2016c; Prins et al., 2006a). Table 2.5 represents the effect of torrefaction on quality of bio-oil obtained from pyrolysis of torrefied biomass. Boateng et al. (Boateng & Mullen, 2013a) performed the pyrolysis of torrefied biomass and reported that yield of bio-oil decreased and biochar yield increased however, quality of bio-oil has increased due to lower acidic content and higher energy content. Ukaew et al. (Ukaew et al., 2018) performed torrefaction of rice straw in the temperature range of 225-275 °C and retention time of 30 min followed by pyrolysis of torrefied rice straw. They reported that bio-oil yield decreased by quarter as compared to raw rice straw. However, bio-oil from pyrolysis of torrefied rice straw has lower water content, oxygenated and acids compounds as compared to raw rice straw. Pyrolysis of torrefied biomass favors the cross-linking reaction resulting in higher char yield and lower bio-oil yield (Wannapeera et al., 2011b). Zeng et al. (Zheng et al., 2013) performed the pyrolysis of raw and torrefied corncob and analyzed the composition of biooil by employing GC-MS analyzer. They reported that the bio-oil from pyrolysis of torrefied corncob has lower yield, acidic, furfural and aldehydes derivative compounds as compared to bio-oil from raw corncob. The higher heating value and pH of bio-oil were improved after torrefaction. They reported that intense devolatilization, cross-linking

reactions and charring of torrefied corncob was mainly accountable for decrease in yield of bio-oil. Xin et al. (Xin et al., 2018) performed the torrefaction of herbaceous residue having high moisture content between temperature 210-280 °C and retention time of 60 min followed by pyrolysis of torrefied herbaceous residue. They reported that torrefaction reduces the oxygen and acids derived compound in the bio-oil. Chen et al. (Chen et al., 2017) reported that torrefaction as a pretreatment can significantly reduce the acidic compounds and increase the phenol derivative compounds in the bio-oil from pyrolysis of torrefied biomass. Thus, it can be concluded that the yield of bio-oil from pyrolysis of torrefied biomass is lower as compared to pyrolysis of native biomass. However, the quality of bio-oil has improved due to torrefaction supporting the feasibility of integrated torrefaction-pyrolysis process for production of high quality bio-oil.

Table 2.5 Effect of torrefaction on quality of bio-oil obtained from pyrolysis of torrefied

 biomass

Biomass	Torrefaction condition	Pyrolysis condition	Important findings*	References	
Arecanut husk	T; 200-300 °C, HR; 10 °C/min, RT; 30 min	T; 300-600 °C, HR; 40 °C/min	The bio-oil yield decreased from 32 to 21 %, O/C ratio of bio-oil decreased from 0.36 to 0.28	(Gogoi et al., 2017)	
Loblolly pine	T; 273-330 °C, RT; 2.5 min	T; 500 °C, Fr; 150 g/h	O/C ratio of bio-oil decreased from 0.63 to 0.31, while, HHV of bio-oil increased from 20 to 26.3 MJ/kg	(Meng et al., 2012)	
Cotton stalk	T; 220-280 °C, RT; 30 min	T; 500 °C	Acid and furan content of bio-oil decreased, while, phenolic and ketone derivatives increased from 0.53-8.25, 0.59-6.41 %, respectively.	(Chen et al., 2015a)	
Rice straw	T; 225-275 °C,	T; 450-500 °C,	Oxygenated, acid, aldehydes,	(Zheng et	

	RT; 30 min	HR; 1000	ketones,	al., 2012)
		°C/sec	and sugar derivative	
			compounds as well as water	
			content of bio-oil decreased	
Yunnan	T; 210-300 °C,	T; 500 °C	The bio-oil yield decreased	(Zheng et
pine	RT; 30 min		from 37 to 20 %, phenolic	al., 2017)
			and hydrocarbon derivatives	
			increased, while, acid,	
			aldehydes and ketone	
			derivative	
			compounds decreased	
Rice straw	T; 240 °C, RT; 60	T; 550 °C	Phenolic compounds	(Dong et al.,
	min		increased from 28 to 42 %,	2018)
			while, acid, aldehydes,	,
			ketone and furan derivative	
			compounds decreased	
Corncob	T; 210-300 °C,	T; 600 °C, HR;	The yield of bio-oil increased	(Zheng et
	RT; 20-60 min	20000 K/sec	to 82 % from 51 %, aromatic	al., 2014)
		(catalytic	compounds increased	
		pyrolysis)		
Corn stalk	T; 200-290 °C,	T; 550 °C	Bio-oil yield decreased as	(Wang et
	RT: 30 min		compared	al., 2018b)
			to raw biomass	
Herbaceous	T; 210-280 °C,	T; 600 °C, HR;	Phenol, acid, ketone, ester	(Xin et al.,
residue	RT; 60 min	50 °C/min	and furan derivative	2018)
			compounds are the main	,
			components of bio-oil and	
			collectively contribute 72.1	
			% of total compounds	
			detected.	

*important findings are mentioned with respect to the pyrolysis of raw biomass at similar pyrolysis conditions

2.1.3 Application of biochar from pyrolysis of biomass for removal of aqueous methylene blue

The removal of methylene blue (MB) dye from real or synthetic wastewater using adsorption process has gathered huge attention in recent years due to simple operation, utilization of abundant and low cost adsorbent as well as high removal efficiency towards MB removal (Santoso et al., 2020). In addition, adsorption process inhibit the generation of secondary pollutant which can generated via degradation or oxidation of MB dye (Katheresan et al., 2018; Salleh et al., 2011). Biochar obtained from pyrolysis of biomass or biomass waste can act as an adsorbent for removal of MB from wastewater (Santoso et al., 2020). The biochar derived from biomass can have similar properties to activated carbon. Hagemann et al. (Hagemann et al., 2018) discussed the two carbon based pyrogenic materials biochar and activated carbon that possess similar preparation technique, terminology and their applications. Biochar was used as a soil amendment agent in agriculture however; recently it has got more attention as an adsorbent towards wastewater treatment (Hagemann et al., 2018). Sun et al. (Sun et al., 2013) used three feedstocks namely, eucalyptus, palm bark, and anaerobic digestion residue for preparation of biochar from pyrolysis at 400 °C. They reported the adsorption capacity of 2.0, 2.95, and 9.77 mg/g for eucalyptus, palm bark, and anaerobic digestion residue, respectively towards MB removal. Ahmed et al. (Ahmed et al., 2019) reported the adsorption capacity of 512.67 mg/g towards MB removal for biochar derived from seaweed by performing pyrolysis process at 800 °C. Ji et al. (Ji et al., 2019) reported the adsorption capacity of 78.6 mg/g towards MB removal for biochar derived from fallen leaf by performing pyrolysis process at 500 °C. Table 2.6 represents the application of biochar derived from pyrolysis of different biomass. The large number of functional groups associated with biochar, porous structure and high surface area of biochar are accountable for removal of MB from wastewater (Oue et al., 2018). Thus, with increase in the scope of integrated torrefactionpyrolysis process, it is imperative to check the efficacy of biochar from pyrolysis of torrefied biomass towards aqueous methylene blue removal. It might offset the extra energy provided during torrefaction during integrated torrefaction-pyrolysis process.

Table 2.6 Application of biochar from pyrolysis raw biomass towards aqueous methylene

 blue removal

Feedstock	Pyrolysis condition	Duration of experiment (min)	Adsorbent dose (g/L)	Initial Conc. (mg/L)	рН	Adsorption capacity (mg/g)	Ref.
Eucalyptus sawdust	T: 400 °C, RT: 30 min	240	8	15	NR	0.957	(Sun et al., 2013)
Palm bark	T: 400 °C, RT: 30 min	240	8	15	NR	1.217	(Sun et al., 2013)
Municipal solid waste	T: 400- 500 °C, RT: 30 min	240	2	50	6.5	21.83	(Sumalino g et al., 2018)
Tea waste mixed with sewage sludge	T: 300 °C, RT: 2 h	1440	NR	100	-	8.945	(Fan et al., 2016)
Mixed municipal discard material	T: 400 °C, RT: 30 min	360	5	10	5	1.798	(Hoslett et al., 2020)
Mixed municipal discard material	T: 400 °C, RT: 30 min	360	5	25	5	2.732	(Hoslett et al., 2020)
Mixed municipal discard material	T: 400 °C, RT: 30 min	360	5	50	5	2.960	(Hoslett et al., 2020)
Mixed municipal discard material	T: 400 °C, RT: 30 min	360	5	75	5	5.018	(Hoslett et al., 2020)
Mixed municipal discard	T: 400 °C, RT: 30	360	5	100	5	7.254	(Hoslett et al., 2020)

Department of Chemical Engineering and Technology IIT (BHU), Varanasi-221005 Page 46

material	min						
Eucalyptus Sheathiana bark	T: 500 °C, RT: 2 h	150	10	100	11.3	104.2	(Dawood et al., 2016)
Wheat straw	T: 550 °C, RT: 5 min	50	-	100	8-9	12.03	(Liu et al., 2012)

NR: not reported

2.2 Objectives

The detailed literature review showed that torrefaction has been successfully employed as a pretreatment process to upgrade the quality of raw biomass. However, work related to the optimization of process parameters for maximum energy yield and higher heating value of torrefied biomass considering both at the same time has scarcely reported. Also, little attention has been given to the effect of heating rate on torrefaction process. The in-depth analysis of kinetics and solid reaction mechanism during pyrolysis of torrefied biomass has been scarcely reported. The literature review showed that pyrolysis of raw and optimization process parameters for maximum bio-oil yield have been extensively reported. However, pyrolysis of torrefied biomass has been scarcely reported. The optimization of process parameters for maximum bio-oil yield from pyrolysis of torrefied biomass has not been reported yet. The biochar from pyrolysis of raw biomass has been extensively used as an adsorbent for removal of methylene blue dye from wastewater. However efficacy of biochar from pyrolysis of torrefied biomass towards methylene blue dye removal has not been tested. In order to fulfill the above mentioned research gaps, the present thesis has the following objectives:

- Pretreatment of raw Acacia nilotica using torrefaction and investigation of fuel and flow properties to check the suitability of torrefied Acacia nilotica for pyrolysis process
- Investigation of kinetic and thermodynamic parameters and solid reaction mechanism of pyrolysis of torrefied *Acacia nilotica* using thermogravimetric analysis
- Optimization of process parameters (temperature, retention time and heating rate) for torrefaction of *Acacia nilotica* for maximum energy yield and higher heating value using response surface methodology
- The pyrolysis of torrefied Acacia nilotica obtained at optimum condition of torrefaction and optimization of process parameters (temperature, heating rate, retention time and sweeping gas flow rate) for maximum yield of pyrolysis oil using response surface methodology. Also, the comparative study of products obtained from pyrolysis of raw and torrefied Acacia nilotica at optimum condition of pyrolysis
- Application and comparative study of biochar obtained from pyrolysis of raw and torrefied *Acacia nilotica* at optimum condition of pyrolysis towards removal of aqueous methylene blue dye