Figure No.	Title of Figure	Page no
Fig. 1	Major commodity chemical and polymer derived from Benzene	2
Fig. 2	The leakage of pipeline, accidental spillage of benzene	4
Fig. 3	Process of waste bioremediation	7
Fig. 4	Bioremediation classification process	10
Fig. 5	Fibrous bioreactor for treatment of aqueous benzene	12
Fig. 6	Two phase partitioning bioreactor for treatment of xenobiotics	13
	including aqueous benzene	
Fig. 7	The polyurethane foam	29
Fig. 8	The PVA-calcium alginate beads	30
Fig. 9	Schematics of experimental setup of PBBR reactor	31
Fig. 10	Collected soil sample	32
Fig. 11	Cell growth in presense of nutrient broth agar on petrides plate	33
Fig .12	Cell growth in presense of MSM agar media and benzene on petrides plate	33
Fig. 13	The biochemical kit for idendification of bacterial isolate	35
Fig. 14	Flow diagram for continuous bioreactor system (C-PBBR)	41
Fig. 15	Image of experimental setup of continuous packed bed bioreactor	42
Fig. 16	Phylogenetic analysis of <i>Bacillus</i> species M ₂ , M ₃	50
Fig. 17	Representation of biodegradation of benzene in free (a), immobilized cells on	55
	alginate beads and PUF (b) and (c), Fig (d) shows comparison in between free,	
	immobilized on alginate beads and PUF at concentration of benzene 400 mg/L.	

Fig. 18	SEM images of polyurethane foam and sodium alginate bead (a, c)	56
	polyurethane-foam-immobilized cells (PFIC) (b) sodium alginate bead	
	immobilized cell (d)	
Fig. 19	Band position of (a) control sample (benzene) (b) biodegraded sample	57
Fig. 20 (a)	Mass spectrum of a) benzene (m/z identification 78); (b) phenol (m/z	59
	identification 94, 66, 39); (c) 1,2-benzenediol (m/z identification 110, 92, 81,	
	64); (d) hydroquinone (m/z identification 110, 81, 55, 39) and (e)	
	benzoate (m/z identification 122, 105, 77, 51).	
Fig. 21	GCMS chromatogram analysis of biodegraded sample of benzene	60
Fig. 22	(a) Observed data of specific growth rate versus benzene substrate	65
	concentration and model fit using Monod model. (b) Observed data of specific	
	growth rate versus benzene substrate concentration and model fit using	
	Andrew-Haldane.	
Fig. 23	Polygenetic tree of bacterial Bacillussp.M4	66
Fig. 24(a)	The removal efficiency with respect to inoculums size and bacterial growth	69
Fig. 24(b)	The removal efficiency with respect to DO and bacterial growth	68
Fig. 24(c)	The removal efficiency with respect to pH and bacterial growth.	68
Fig. 25	The performance of bioreactor at various feed flow rate (10-50 ml/h)	71
Fig. 26	The variation of removal efficiency and elimination capacity with respect to loading rate Variation	73
Fig. 27	(a) control benzene (b) formation of metabolite(Benzene-1.2-diol) in	75
	biodegraded sample of benzene	
Fig. 28	GC-MS result of (a) control of benzene (b) formation of one metabolite	76
	Benzene-1.2-diol in biodegraded sample of benzene	

Fig. 29	Study of degradation pathway of benzene	80
Fig. 30(a.b)	2DE gel image of (a) Control benzene (b) treated by Bacillus sp M4	81
Fig. 30(c)	Bar-diagram of proteins	82
Fig. 31	Phylogenetic tree identified proteins	85
Fig. 32(a)	SWISS model (BAI84687.1)	86
Fig. 32(b)	Discovery model (BAI84687.1)	86
Fig. 33(a)	Protein Docking with benzene	89
Fig. 33(b)	Active site protein docking with benzene	89
Fig. 33(c)	Major active site and residual interaction	90
Fig. 34(a)	The structure of design by discovery model ABH03697.1	92
Fig. 34(b)	The structure of design by discovery model NP_389107.1	92
Fig. 34(c)	The structure of design by discovery model NP_389324.1	93
Fig. 34(d)	The structure of design by discovery model NP_391706.1	93
Fig. 34(e)	The structure of design by discovery model ZP_03590478.1	94
Fig. 34(f)	The structure of design by discovery model ZP_06874203.1	94
Fig. 34(g)	The structure of design by discovery model ZP_06874203.1	94