LIST OF CONTENTS

CONTENTS	PAGE NO
List of Figures	xiii-xvi
List of Tables	xvii-xviii
List of Abbreviations	xix-xx
Abstract	xix-xxiii
CHAPTER 1	1-9
INTRODUCTION	
1.1 Background of the work	1
1.1.1 Waste generation	1
1.1.2 Waste management	3
1.1.3 Ceramic	4
1.2 Statement of the problem and rationale	6
1.3 Theme of the work	7
1.4 Scope and limitation of this study	7
1.4.1 Scope	7
1.4.2 Limitation	8
1.5 Organization of the thesis	8
CHAPTER 2	10-29
LITERATURE REVIEW	10-27
2.1 Introduction	10
2.2 Rice husk ash utilization	11
2.2.1 Refractory	12
2.2.2 Whiteware	13
2.2.3 Oxide ceramics	13
2.2.4 Non-oxide ceramics	15
2.2.5 Silica aerogel	16
2.3 Fly ash utilization	17
2.3.1 Refractory	18
2.3.2 Whiteware	19
2.3.3 Glass and glass-ceramics	20
2.3.4 Oxide ceramics	20
2.4 Eggshell utilization	22
2.5 Seashell utilization	24
2.6 Kosi river silt utilization	26

2.7 Refractory grog utilization	26
2.8 Summary of literature review	27
2.9 Objectives of the work	29
CHAPTER 3	30-45
MATERIALS AND METHODS	
3.1 Materials	30
3.1.1 Rice husk ash	30
3.1.2 Eggshell	32
3.1.3 River silt	33
3.1.4 Fly ash	35
3.1.5 Seashell	35
3.1.6 Refractory grog	36
3.1.7 Other materials	36
3.2 Synthesis and characterization of fabricated ceramics	37
3.2.1 Silica and silica sol	37
3.2.1.1 Silica foam	39
3.2.1.2 Mullite foam	40
3.2.1.3 Castable refractory	40
3.2.2 Wollastonite	42
3.2.2.1 Wollastonite ceramic	42
3.2.2.2 Tile	43
3.2.3 Ceramic board	44
3.2.4 Insulation refractory	45

CHAPTER 4						46-68
SYNTHESIS OF FOAM CERAMICS	USING	WASTE	RICE	HUSK	ASH	THROUGH
ECOLOGICAL ROUTES						
4.1 Introduction						46
4.2 Experimental procedure						48
4.2.1 Silica foam synthesis						48
4.2.2 Mullite foam synthesis						49
4.3 Results and discussion						49
4.3.1 Characterization of RHA derived s	silica					49
4.3.2 Characterization of 7.5 wt.% solid	containin	ng sol				54
4.3.3 Characterization of slurry						54
4.3.4 Characterization of silica foam						55
4.3.5 Characterization of mullite foam						59

69-84

WASTE RICE HUSK ASH DERIVED SOL AS A POTENTIAL CEMENT FREE BINDER IN HIGH ALUMINA REFRACTORY CASTABLES FOR HIGH TEMPERATURE APPLICATIONS

5.1 Introduction	691
5.2 Experimental procedure	71
5.2.1 30 wt.% solid containing sol synthesis	71
5.2.2 Castable making	71
5.3 Results and discussion	72
5.3.1 Characterization of 30 wt.% solid containing sol	72
5.3.2 Characterization of castable	73
5.4 Summary	83

CHAPTER 6	85-94
STUDY ON PHYSICAL AND DIELECTRIC PROPERTIES OF BIO-WASTE	DERIVED
SYNTHETIC WOLLASTONITE	
6.1 Introduction	85
6.2 Experimental Procedure	86
6.3 Results and discussion	86
6.3.1 Characterization of calcined wollastonite	86
6.3.2 Characterization of sintered wollastonite	89
6.4 Summary	94

CHAPTER 7 95-108
STUDY THE EFFECT OF PHYSICO-MECHANICAL CHARACTERISTICS OF CERAMIC
TILES AFTER ADDITION OF RIVER SILTS AND WOLLASTONITE DERIVED FROM
WASTES
7.1 Introduction95
7.2 Experimental procedure96
7.3 Results and discussion98
7.4 Summary 108
CHAPTER 8 109-126
FABRICATION OF SUSTAINABLE CERAMIC BOARD USING SOLID-WASTES FOR
CONSTRUCTION PURPOSE
8.1 Introduction

8.1 Introduction	109
8.2 Experimental procedure	110

8.2.1 Ceramic powder synthesis	110
8.2.2 Ceramic board synthesis	110
8.3 Results and discussion	111
8.3.1 Characterization of MCP	111
8.3.2 Characterization of ceramic board	115
8.4 Summary	125
CHAPTER 9	127-138
FABRICATION OF SUSTAINABLE INSULATION REFRACTORY:	UTILIZATION OF
DIFFERENT WASTES	
9.1 Introduction	127
9.2 Experimental Procedure	127
9.3 Results and Discussion	128
9.4 Summary	138
CHAPTER 10	139-142
CONCLUSIONS AND FUTURE SCOPE	
10.1 Conclusions	139
10.2 Future scopes	141
References	143-157
List of Publications	158-159