CONTENTS

PARTICULARS	Page No.
List Of Symbols & Abbreviations	i
List of tables	iv
List of figures	v
Preface	xiii
Acknowledgement	XV
Chapter 1: Introduction	
1.1 Shape memory alloys	1
1.1.1 Thermomechanical phenomena and phase transformation behaviors	4
1.1.2 Shape memory effect	6
1.1.3 Superelasticity (SE) or Pseudoelasticity (PE)	9
1.2 Shape memory alloy applications and opportunities	12
1.3 Hip joint and its anatomy	24
1.3.1 Hip Joint bones and its mechanical properties	25
1.3.2 Total Hip Replacement: Joint Reconstruction	26
1.4 Brief history of THR	26
1.5 Modern approach and developments in THR	29
1.6 Failure of total hip implants	34
1.6.1 Various national THR registries report	34
1.6.2 Failure scenarios	36
1.6.3 Accumulated damage	36
1.6.4 Particulate reaction	36
1.6.5 Failed ingrowth	38
1.6.6 Stress shielding	39
1.6.7Stress bypass	39
1.6.8 Wear	39
1.6.9 High fluid pressure	40
1.6.10 Surgical error	41

1.6.11 Aseptic loosening	41
1.6.12 Infection	41
1.6.13 Dislocation	41
1.6.14 Fracture (implant)	42
1.6.15 Fracture (bone)	42
1.7 Osteoporosis	42
1.7.1 Effect of osteoporosis on implant stability	44
1.8 Screw in THR	48
1.8.1 Acetabular Screw	48
Chapter 2: Design of novel THR implant component	
2.1 Novel acetabular screw design	56
2.1.1 Executing expandable nitinol thread inserts to screw	56
2.2 Acetabular cup and femoral stem	65
2.2.1 Press-fit acetabular cup with expandable rig	65
Chapter 3:Constitutive modeling of nitinol behavior and finite	
element simulations of novel THR implants	
3.1 Introduction	71
3.2 Constitutive equation	75
3.2.1 Transformation kinetics law	80
3.3 Numerical implementation of the constitutive model in ANSYS Multiphysics®	91
3.4 Results and Discussions	92
3.4.1 Preliminary Simulations	92
3.4.2 Simulation of a superelastic case	94
3.4.3 Preliminary simulation for 2D uniaxial tension load	94
3.4.4 Preliminary simulation for 3D uniaxial tension load	96
3.4.5 Simulation of a shape memory case	97
3.5 Validation of the numerical tool	100
3.5.1 Validation for superelastic test case	101
3.5.2 Validation of the shape memory test case	102
3.6 Finite Element Simulation of the novel acetabular screw	102
3.6.1 Delineation and linearization of the problem	103

3.6.2 Contrasting shape memory-pseudoelastic beam assembly	105
3.6.3 FE simulation results and discussion	108
3.7 Pilot testing of the novel acetabular screw	118
3.8 Predicting outcomes of novel press-fit acetabular cup design	121
3.9 Conclusion	122
3.10 Future work	123
Chapter 4:Study of eccentric screw on vascular injury during	
total hip replacement	
4.1 Introduction	124
4.2 Anatomy of pelvic bone and neuro-vascular structures	128
4.2.1 Pelvis structure	128
4.2.2 Vascular structures	128
4.2.3 Neuroanatomy	131
4.3 Neuro-vascular injury in THR	131
4.4 Surgical approaches to the acetabulum during THR	133
4.4.1 Posterior approach	134
4.4.2 Anterolateral approach and modifications	135
4.4.3 Anterior approach and modifications	136
4.4.4 Ilioinguinal approach	137
4.5 Quadrant system used in THR	139
4.6 Objectives	141
4.7 Workflow	142
4.8 Building a 3D pelvis model	142
4.8.1 Data acquisition:	143
4.8.2 Obtaining material properties from CT-data	145
4.8.3 Preparing the acquired CT Data	146
4.8.4 Image Segmentation and 3D model reconstruction	148
4.9 Automating the model creation	151
4.9.1 Data acquisition	151
4.9.2 Three dimensional model reconstruction	152
4.9.3 Image segmentation	152
4.10 3D-Model optimization & modification	156

4.10.1 Inspecting Element quality	158
4.10.2 Typical remesh workflow	158
4.10.3 Volume meshing	160
4.11 Design and assembly of THA components	161
4.11.1 Cup and screw design	162
4.11.2 Angular eccentric screw configuration profiles	165
4.11.3 Planes and axis of acetabular cup	165
4.12 Surgical simulation and measurements	167
4.12.1 Implant orientation	167
4.12.2 Surgical simulation of acetabular cup: Cup fixation	171
4.12.3 Surgical simulation of eccentric screw: Screw fixation	172
4.13 Development of quadrant system	176
4.14 Calculating the risk on vascular structures due to positioning of eccentric screws	177
4.14.1 Initial Criteria for consider the risk factor of vessels	177
4.15 Results	184
4.16 Statistical Analysis	190
4.17 Statistical Results	192
4.18 Discussion and Conclusions	193
References	
Appendix	
List of Publications	