List of figures

Figures		Page No.
Figure 1.1	Classification of membrane separation processes.	2
Figure 1.2	Membrane separation processes, pore sizes, molecular	6
	weight cut-off (MWCO) and examples of sizes	
	of solutes and particles.	
Figure 1.3	Classification of membranes.	10
Figure 1.4	Schematic diagram of cross flow filtration and dead end	13
	filtration process.	
Figure 1.5	Membrane preparation by NIPS method.	15
Figure 3.1	Schematic diagram of the membrane preparation process.	53
Figure 3.2	Concept of contact angle measurement of hydrophobic	55
	surface and hydrophilic surface.	
Figure 3.3	Schematic diagram of the filtration experiment.	57
Figure 4.1a	Surface morphology of the top surface of membranes and	67
8	Energy-dispersive X-ray spectroscopy data for the	
	membrane samples M1-M3.	
Figure 4.1b	Surface morphology of the top surface of membranes and	68
	Energy-dispersive X-ray spectroscopy data for the	
	membrane samples M4 and M5.	
Figure 4.2	Thermal gravimetric analysis of membranes.	70
Figure 4.3	XRD patterns of pure PVC membrane, pristine alumina	71
	particles and alumina composite membranes M1-M5.	
Figure 4.4	Pure water fluxes and permeates flux for feed conditions	78
	10mg/L, 20mg/L and 40 mg/L Humic acid solution.	
Figure 4.5	Fouling ratio for 10 mg/L, 20 mg/L and 40 mg/L Humic	79
	acid solution.	
Figure 4.6	Rejection for 10 mg/L, 20 mg/L and 40 mg/L Humic acid	80
	solution.	

Figure 4.7	Flux Recovery for 10 mg/L, 20 mg/L and 40 mg/L Humic acid solution.	81
Figure 4.8	Relatives flux of the membranes for 10 mg/L, 20 mg/L and 40 mg/L Humic acid solution.	82
Figure 4.9	Intrinsic and total resistance to membranes for 10 mg/L .	83
	20 mg/L and 40 mg/L Humic acid solution.	
Figure 5.1a	Surface morphology of the top surface of membranes and	89
	Energy-dispersive X-ray spectroscopy data for the	
	membrane samples M1-M3.	
Figure 5.1b	Surface morphology of the top surface of membranes and	89
	Energy-dispersive X-ray spectroscopy data for the	
	membrane samples M4 and M5.	
Figure 5.2	Thermal gravimetric analysis of membranes.	90
Figure 5.3	XRD patterns of pure PVC membrane, pristine nano	92
	bentonite particles and bentonite composite membranes	
	M1-M5.	
Figure 5.4	Pure water fluxes and permeates flux for feed conditions	95
	10mg/L, 20mg/L and 40 mg/L Humic acid solution.	
Figure 5.5	Fouling ratio for 10 mg/L, 20 mg/L and 40 mg/L Humic	96
	acid solution.	
Figure 5.6	Rejection for 10 mg/L, 20 mg/L and 40 mg/L Humic acid	99
	solution.	
Figure 5.7	Flux Recovery for 10 mg/L, 20 mg/L and 40 mg/L Humic	100
	acid solution.	
Figure 5.8	Relatives flux of the membranes for 10 mg/L, 20 mg/L	101
	and 40 mg/L Humic acid solution.	
Figure 5.9	Intrinsic and total resistance to membranes for 10 mg/L,	102
	20 mg/L and 40 mg/L Humic acid solution.	