LIST OF FIGURES

Figure No	Title	Page No
Figure 3.1	Preparation of mono/hybrid nanofluids	39
Figure 3.2	SEM image (a) Al ₂ O ₃ nanofluid (b) Al ₂ O ₃ +CNT hybrid nanofluid (c) Al ₂ O ₃ +TiO ₂ hybrid nanofluid and TEM image of (d) Al ₂ O ₃ +MgO	41
Figure 3.3	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	43
Figure 3.4	Photograph of (a) Hot disk TPS-500 analyser, (b) Brookfield DV1 digital viscometer and (c) Digital weighing balance	44
Figure 4.1	(a) Schematic diagram of the experimental setup (b) Actual picture of the test setup	50
Figure 4.2	V-cuts twisted tape with different TR, DR and WR	52
Figure 4.3	Tapered wire coil with different configurations and dimensions	53
Figure 4.4	Validation of Nussult number using water with plain tube	60
Figure 4.5	Validation of friction factor using water with plain tube	61
Figure 4.6	Validation of Nussult number using water with plain twisted tape	61
Figure 4.7	Validation of friction factor using water with plain twisted tape	62
Figure 4.8	Variation of heat transfer coefficient with the nanofluid flow rate	64
Figure 4.9	Variation of pressure drop with nanofluid flow rate for different nanofluids	64
Figure 4.10	Variation of Nusselt number with nanofluid flow rate for different nanofluids	65
Figure 4.11	Variation of friction factor with nanofluid flow rate for different nanofluids	65
Figure 4.12	Variation of ratio $h_i \! / \! \Delta p$ with flow rate for different mono/hybrid nanofluids	67
Figure 4.13	Variation of entropy generation with nanofluid flow rate for different nanofluids	67

Figure 4.14	Variation of heat transfer coefficient with flow rate for different concentrations	69
Figure 4.15	Variation of pressure drop with nanofluid flow rate for different concentrations	70
Figure 4.16	Variation of Nusselt number with Reynolds number for different concentrations	70
Figure 4.17	Variation of friction factor with Reynolds number for different concentrations	71
Figure 4.18	Variation of ratio $h_i \! / \! \Delta p$ with nanofluid flow rate for different volume concentration	72
Figure 4.19	Variation of entropy generation with flow rate for different concentrations	72
Figure 4.20	Variation of heat transfer coefficient with different nanofluids for different TR	74
Figure 4.21	Variation of pressure drop with different mono/hybrid nanofluids for different TR	74
Figure 4.22	Variation of Nusselt number with different mono/hybrid nanofluid for different TR	75
Figure 4.23	Variation of friction factor with different mono/hybrid nanofluid for different TR	75
Figure 4.24	Variation of $h_i / \Delta p$ with different mono and hybrid nanofluid for different TR	76
Figure 4.25	Variation of entropy generation with different nanofluid for different TR	76
Figure 4.26	Variation of heat transfer coefficient for different nanofluid, DR and WR	79
Figure 4.27	Variation of pressure drop with different nanofluid, DR and WR	79
Figure 4.28	Variation of Nusselt number with different mono/hybrid nanofluid, DR and WR	80
Figure 4.29	Variation of friction factor with different mono/hybrid nanofluid, DR and WR	80
Figure 4.30	Variation of $h_i \! / \! \Delta p$ with different mono/hybrid nanofluid, DR and WR	81

Figure 4.31	Variation of entropy generation with different mono/hybrid nanofluid, DR and WR	82
Figure 4.32	Variation of heat transfer coefficient with flow rate for different inlet temperatures	83
Figure 4.33	Variation of Pressure drop with nanofluid flow rate for different inlet temperatures	84
Figure 4.34	Variation of Nusselt number with Reynolds number for different inlet temperatures	84
Figure 4.35	Variation of friction factor with Reynolds number for different inlet temperatures	85
Figure 4.36	Variation of $h_i \! / \! \Delta p$ with the volume flow rate for different inlet temperatures	86
Figure 4.37	Variation of entropy generation with flow rate for different inlet temperatures	86
Figure 4.38	Variation of heat transfer coefficient with nanofluid flow rate for different mono and hybrid nanofluid	88
Figure 4.39	Variation of pressure drop with flow rate for different mono/hybrid nanofluid	89
Figure 4.40	Variation of Nusselt number with Reynolds number for different nanofluids	89
Figure 4.41	Variation of friction factor with Reynolds number for different nanofluids	90
Figure 4.42	Variation of $h_i/\Delta p$ with nanofluid flow rate for different mono and hybrid nanofluid	91
Figure 4.43	Variation of entropy generation with nanofluid flow rate for different nanofluids	92
Figure 4.44	Variation of heat transfer coefficient with different mono and hybrid nanofluid for different volume concentration	94
Figure 4.45	Variation of pressure drop with different mono and hybrid nanofluid for different volume concentration	94
Figure 4.46	Variation of Nusselt number with different nanofluids and volume concentrations	95
Figure 4.47	Variation of friction factor with different mono and hybrid nanofluid for different volume concentration	95

Figure 4.48	Variation of $h_i \! / \! \Delta p$ with different nanofluids and volume concentrations	96
Figure 4.49	Variation of entropy generation with different nanofluid and volume concentration	96
Figure 4.50	Variation of heat transfer coefficient with different mono and hybrid nanofluid for different coil configurations	98
Figure 4.51	Variation of pressure drop with different mono and hybrid nanofluid for different coil configurations	98
Figure 4.52	Variation of Nusselt number with different nanofluids and coil configurations	99
Figure 4.53	Variation of friction factor with different nanofluids and coil configurations	99
Figure 4.54	Variation of $h_i/\Delta p$ with different mono/hybrid nanofluids and coil configurations	100
Figure 4.55	Variation of entropy generation with different nanofluids and coil configurations	101
Figure 4.56	Variation of heat transfer coefficient with different configurations of tapered wire coil inserts for different inlet temperatures	103
Figure 4.57	Variation of pressure drop with different configurations of tapered wire coil inserts for different inlet temperatures	103
Figure 4.58	Variation of Nusselt number with different configurations of tapered wire coil inserts for different inlet temperatures	104
Figure 4.59	Variation of friction factor with different configurations of tapered wire coil inserts for different inlet temperatures	104
Figure 4.60	Variation of $h_i/\Delta p$ with different configurations of tapered wire coil insert for different inlet temperatures	105
Figure 4.61	Variation of entropy generation with different configurations of tapered wire coil inserts for different inlet temperatures	105
Figure 4.62	Variation of effectiveness with Reynolds number for different	107
Figure 5.1	configurations of enhancers Schematic diagram of the experimental setup (STHX)	113
Figure 5.2	Photographs of shell-and-tube heat exchanger (a) Horizontal section (b) tubes	113
Figure 5.3	(a) Nusselt number and (b) Friction factor Validation with DI water	118

Figure 5.4	Heat transfer coefficient versus nanofluid flow rate for different nanofluids	120
Figure 5.5	Pressure drop versus nanofluid flow rate for different mono and hybrid nanofluid	121
Figure 5.6	Variation of ratio $h_i \! / \! \Delta p$ with flow rate for different mono/hybrid nanofluids	121
Figure 5.7	Nusselt number versus Reynolds number for different mono and hybrid nanofluid	122
Figure 5.8	Friction factor versus Reynolds number for different mono and hybrid nanofluid	123
Figure 5.9	Variation of heat transfer coefficient with different particle volume concentration	124
Figure 5.10	Variation of pressure drop with different particle volume concentration	125
Figure 5.11	Variation of ratio $h_i / \Delta p$ with different particle volume concentration	125
Figure 5.12	Variation of Nusselt number with different particle volume concentration	127
Figure 5.13	Variation of friction factor with different particle volume concentration	127
Figure 5.14	Variation of effectiveness with different mono/hybrid nanofluids	128
Figure 6.1	Layout of studied shell and tube condenser	133
Figure 6.2	Variation of coolant mass flow rate with nanoparticle volume concentration	141
Figure 6.3	Variation of mass flow rate reduction (%) with volume concentration	141
Figure 6.4	Variation of overall heat transfer coefficient with volume concentration	142
Figure 6.5	Variation of condenser effectiveness with nanoparticle volume concentration	143
Figure 6.6	Variation of coolant pressure drop with nanoparticle volume concentration	143
Figure 6.7	Variation of pumping power with nanoparticle volume concentration	144

VIII

Figure 6.8	Variation of irreversibility with nanoparticle volume concentration	145
Figure 6.9	Variation of second law efficiency with nanoparticle volume concentration	145
Figure 6.10	Variation of operational cost condenser with nanoparticle volume concentration	147
Figure 6.11	Variation of operational cost reduction with nanoparticle volume concentration	147
Figure 6.12	Variation of payback period with nanoparticle volume concentration	148