List of Figures

Fig. No.	Title	Page No.
Fig. 1.1	Schematic diagram of oxy-fuel combustion based CCS (adapted	4
	from Cormos, 2016)	
Fig. 2.1	CFD modelling of pulverized coal combustion: An overview of	21
	basic modules (Adopted from Sankar et al., 2019)	
Fig. 3.1	The geometry of (a) oxy-fuel furnace and (b) swirl burner (all	38
	dimensions are in mm)	
Fig. 3.2	Schematic diagram of the formation/destruction of fuel NO_x	55
	(Adopted from Al-Abbas et al., 2012)	
Fig. 3.3	Computational mesh used in the present 2D axisymmetric	59
	simulation	
Fig. 3.4	Radial profile of (a) axial velocity (m/s) and (b) temperature (K) at	60
	axial location 0.05 m for grid independence test	
Fig. 3.5	Comparison of RANS prediction of axial velocity (m/s) with LES	61
	result and experimental data at different axial locations from	
	burner (a) 0.025 m (b) 0.05 m (c) 0.2 m and (d) 0.3 m	
Fig. 3.6	Comparison of RANS prediction of tangential velocity (m/s) with	63
	experimental data at different axial locations from burner (a) 0.025	
	m (b) 0.05 m (c) 0.2 m and (d) 0.3 m	
Fig. 3.7	Comparison of RANS prediction of temperature (K) with LES	64
	result and experimental data at different axial locations from	
	burner (a) 0.05 m (b) 0.2 m (c) 0.3 m and (d) 0.5 m	
Fig. 3.8	Comparison of RANS prediction of O2 mole fraction (%) with	66
	LES result and experimental data at different axial locations from	
	burner (a) 0.05 m (b) 0.2 m (c) 0.3 m and (d) 0.5 m	
Fig. 4.1	Axial velocity (m/s) contour for different swirl numbers (a)	71

S=0.06 (b) S=0.57 (c) S=1.0 (d) S=1.25

- Fig. 4.2Radial variation of axial velocity (m/s) for different swirl number72at axial location (a) 0.05 m and (b) 0.2 m
- Fig. 4.3 Radial variation of tangential velocity (m/s) for different swirl 72 number at axial location (a) 0.05 m and (b) 0.2 m
- Fig. 4.4 Contour of temperature (K) distribution for different swirl 73 numbers (a) S=0.06 (b) S=0.57 (c) S=1.0 (d) S=1.25
- Fig. 4.5 Radial variation of temperature (K) for different swirl number at 73 axial location (a) 0.05 m and (b) 0.2 m
- Fig. 4.6 Contour of axial velocity (m/s) under different combustion 75 conditions (a) 21% O₂/79% CO₂ (b) 25% O₂/75% CO₂ (c) 30% O₂/70% CO₂ (d) 35% O₂/65% CO₂
- Fig. 4.7 Contour of temperature (K) under different combustion conditions 77
 (a) 21% O₂/79% CO₂ (b) 25% O₂/75% CO₂ (c) 30% O₂/70% CO₂
 (d) 35% O₂/65% CO₂
- Fig. 4.8 Radial variation of gas temperature (K) under different 77 combustion environment at axial locations (a) 0.05 m and (b) 0.2 m
- Fig. 4.9 Predicted char burning rate inside combustion chamber under (a) 78 oxy-21 (b) oxy-25 (c) oxy-30 and (d) oxy-35 combustion conditions
- Fig. 4.10 Predicted oxygen mole fraction inside combustion chamber under 79(a) oxy-21 (b) oxy-25 (c) oxy-30 and (d) oxy-35 combustion conditions
- Fig. 4.11 Radial variation of O₂ mole fraction under different combustion 79 environment at axial locations (**a**) 0.05 m and (**b**) 0.2 m
- Fig. 4.12 Axial variation of gas temperature (K) for various combustion 82 cases
- Fig. 4.13 Axial variation of surface incident radiation (kW/m²) along the 82

lateral wall from burner for various combustion case

Fig. 4.14	Temporal history of particle volatile mass fraction for (a) different	84
	particle sizes under oxy-21 combustion atmosphere (b) 95.9 μ m	
	particle under various combustion atmosphere	
Fig. 4.15	Temporal history of particle char mass fraction for (a) different	85
	particle sizes under oxy-21 combustion atmosphere (b) 95.9 μ m	
	particle under various combustion atmosphere	
Fig. 4.16	Variation of particle temperature history for (a) different particle	85
	sizes under oxy-21 combustion atmosphere (b) 95.9 μ m particle	
	under various combustion atmosphere	
Fig. 4.17	Contour of axial velocity (m/s) for different inlet feed gas	87
	temperatures (a) 313 K (b) 500 K and (c) 800 K	
Fig. 4.18	Radial variation of axial velocity (m/s) for different inlet feed gas	88
	temperatures at axial locations (a) 0.05 m and (b) 0.2 m	
Fig. 4.19	Contour of temperature (K) for different inlet feed gas	89
	temperatures (a) 313 K (b) 500 K and (c) 800 K	
Fig. 4.20	Radial variation of temperature (K) for different inlet feed gas	89
	temperatures at axial locations (a) 0.05 m and (b) 0.2 m	
Fig. 4.21	Axial velocity (m/s) contour for different inlet feed gas pressures	91
	(a) 1.0 Bar (b) 5.0 Bar (c) 10 Bar	
Fig. 4.22	Radial variation of axial velocity (m/s) for different inlet pressures	91
	at axial locations (a) 0.05 m and (b) 0.2 m	
Fig. 4.23	Temperature contour (K) for different inlet feed gas pressures (a)	93
	1 Bar (b) 5 Bar (c) 10 Bar	
Fig. 4.24	Radial variation of temperature (K) for different inlet pressures at	93
	axial locations (a) 0.05 m and (b) 0.2 m	
Fig. 4.25	The effect of swirl strength, combustion environment, inlet	95
	temperature and pressure of feed gas on length of IRZ (m) and	
	flame length (m)	

Fig. 5.1 100 Contour of axial velocity distribution (m/s) under the studied combustion cases having (a) 0% H₂O (b) 10% H₂O (c) 20% H₂O (d) 30% H₂O (e) 40% H₂O (f) 50% H₂O and (g) oxy-steam combustion Fig. 5.2 101 Axial profile of axial velocity (m/s) along centerline for the studied combustion cases Fig. 5.3 101 Contour of temperature distribution under various oxy-fuel combustion cases having (a) 0% H₂O (b) 10% H₂O (c) 20% H₂O (d) 30% H₂O (e) 40% H₂O (f) 50% H₂O and (g) oxy-steam combustion 103 Fig. 5.4 Axial variation of temperature under various oxy-fuel combustion cases having 0-50% H₂O in oxidizer and oxy-steam combustion case 103 Fig. 5.5 Influence of various combustion environment obtained by varying steam content of oxidizer on (a) length of internal recirculation zone (IRZ) and (b) maximum temperature (K) 105 Fig. 5.6 Contour of oxygen mole fraction distribution under various oxyfuel combustion cases having (a) 0% H₂O (b) 10% H₂O (c) 20%H₂O (d) 30% H₂O (e) 40% H₂O (f) 50% H₂O and (g) oxy-steam combustion Fig. 5.7 Axial variation of incident radiation under various oxy-fuel 105 combustion cases having 0-50% H₂O in oxidizer and oxy-steam combustion case 106 Fig. 5.8 Temporal variation of particle volatile mass fraction under various oxy-fuel combustion cases having 0-50% H₂O in oxidizer and oxy-steam combustion case (d=95.9 µm) Fig. 5.9 Temporal variation of particle char mass fraction under various 106 oxy-fuel combustion cases having 0-50% H₂O in oxidizer and oxy-steam combustion case (d=95.9 µm)

Fig. 5.10	Axial variation of O ₂ mole fraction under various oxy-fuel	108
	combustion cases having 0-50% H_2O in oxidizer and oxy-steam	
	combustion case	

- Fig. 5.11 Axial variation of CO₂ mole fraction under various oxy-fuel 109 combustion cases having 0-50% H₂O in oxidizer and oxy-steam combustion case
- Fig. 5.12 Axial variation of H₂O mole fraction under various oxy-fuel 109 combustion cases having 0-50% H₂O in oxidizer and oxy-steam combustion case
- Fig. 5.13 Axial profile of CO mole fraction under various oxy-fuel 111 combustion cases having 0-50% H₂O in oxidizer and oxy-steam combustion case
- Fig. 5.14 Axial profile of H₂ mole fraction under various oxy-fuel 111 combustion cases having 0-50% H₂O in oxidizer and oxy-steam combustion case
- Fig. 5.15 Axial variation of predicted temperature with and without 113 consideration of gasification reaction
- Fig. 5.16 Axial variation of predicted CO₂ and H₂O mass fraction with and 113 without consideration of gasification reaction
- Fig. 5.17 Profiles of particle char mass fraction v/s residence time 114
- Fig. 5.18 Comparison of current numerical result of NOx concentration 116 (ppm) with experimental data and available numerical result at different axial locations from burner (a) 0.05 m (b) 0.2 m (c) 0.3 m and (d) 0.5 m
- Fig. 5.19 Distribution of NO_x concentration (ppm) inside the combustion 117 chamber under various oxy-coal combustion cases (a) 21% $O_2/79\%$ CO₂ (b) 25% $O_2/75\%$ CO₂ (c) 30 % $O_2/70\%$ CO₂ (d) 35 % $O_2/65\%$ CO₂
- Fig. 5.20 Influence of various oxy-coal combustion atmosphere on radial 119

profile of NO_x concentration (ppm) at axial different locations (a) 0.05 m (b) 0.2 m (c) 0.3 m and (d) 0.5 m

- Fig. 5.21 Distribution of NO_x concentration (ppm) inside the combustion 121 chamber under various inlet feed gas temperature (**a**) 313 K (**b**) 500 K (**c**) 800 K
- Fig. 5.22 Effect of the inlet feed gas temperature on radial profile of NO_x 121 concentration (ppm) at axial locations (**a**) 0.05 m and (**b**) 0.2 m
- Fig. 5.23 Distribution of NOx concentration (ppm) inside the combustion 123 chamber under various inlet feed gas pressure (a) 1 Bar (b) 5 Bar and (c) 10 Bar
- Fig. 5.24 Effect of the inlet feed gas pressure on radial profile of NO_x 123 concentration (ppm) at axial locations (**a**) 0.05 m and (**b**) 0.2 m
- Fig. 5.25 Distribution of NOx concentration (ppm) inside the combustion 125 chamber under various wet oxy-coal combustion cases having (a)
 0% H2O (b) 20% H2O (c) 40% H2O and (d) oxy-steam combustion case
- Fig. 5.26 Radial variation of NO_x concentration (ppm) under various oxycoal combustion cases having 0-50% H₂O in oxidizer and oxysteam combustion case at axial locations (**a**) 0.05 m and (**b**) 0.2 m
- Fig. 5.27 Influence of (a) various oxy-coal combustion atmosphere (b) inlet 127 temperature of feed gas (c) inlet feed gas pressure and (d) H2O concentration in oxidizer on NOx concentration (ppm) obtained at the outlet of combustion chamber
- Fig. 6.1 Schematic diagram of 660 MW supercritical power plant working 131 under conventional air-fired pulverized coal combustion without CO₂ capture
- Fig. 6.2 Schematic of 660 MW power plant comprising of (a) ASU, 133 supercritical Rankine cycle and CPU retrofitted to oxy-fuel combustion

Fig. 6.3	Flowsheet of oxy-coal combustion of pulverized coal	134
Fig. 6.4	Influence of oxygen concentration on the CO2 and CO produced in	143
	the flue gas (RR=0.7)	
Fig. 6.5	Influence of oxygen concentration on the NO_x and N_2 produced in	143
	the flue gas (RR=0.7)	
Fig. 6.6	Influence of oxygen concentration on the SO2 and SO3 produced in	144
	the flue gas (RR=0.7)	
Fig. 6.7	Influence of oxygen concentration on the power consumption of	144
	ASU, CPU and total power consumption (RR=0.7)	
Fig. 6.8	Influence of oxygen concentration on the CO ₂ product purity and	146
	CO ₂ recovery rate (RR=0.7)	
Fig. 6.9	Influence of oxygen concentration on the Specific energy	146
	consumptions of CO2 and O2 (RR=0.7)	
Fig. 6.10	Influence of recycle ratio (RR) on the CO2 and CO produced in the	149
	flue gas (25 mol % O2)	
Fig. 6.11	Influence of recycle ratio (RR) on the NOx and N2 produced in the	149
	flue gas (25 mol % O2)	
Fig. 6.12	Influence of recycle ratio (RR) on the SO2 and SO3 produced in the	150
	flue gas (25 mol % O ₂)	
Fig. 6.13	Influence of recycle ratio (RR) on the CO ₂ product purity and CO ₂	150
	recovery rate (25 mol % O ₂)	
Fig. 6.14	Influence of recycle ratio (RR) on the Specific energy	151
	consumptions of CO2 and O2 (25 mol % O2)	
Fig. 6.15	Influence of recycle ratio (RR) on the power consumption of ASU	151
	and CPU	
Fig. 6.16	Variation of optimal recycle ratio (RR) and CPU power	153
	consumption corresponding to the different O2 concentrations from	
	ASU	
Fig. 6.17	Sensitivity analysis for the different O2 concentrations from ASU	153

- Fig. 6.18 Schematic of environmental interaction of conventional air-fired 155 supercritical power plant
- Fig. 6.19 Schematic of environmental interaction of oxy-fired supercritical 155 power plant