Chapter 6

Thermodynamic Analysis of 660 MW Supercritical Power Plant Retrofitted to Oxy-coal combustion

6.1 Overview

This chapter presents thermodynamic analysis of 660 MW pulverized coal fired power plant retrofitted to oxy-coal combustion. Oxy-coal combustion power plant comprises of air separation unit (ASU), oxy-coal combustion unit, steam cycle and CO₂ compression and purification unit (CPU). Incorporation of ASU and CPU in power generation system reduces net plant efficiency as these units consume sufficient power. Advantage of retrofitting conventional air-fired power plant to work under oxy-coal is observed in term of high CO₂ recovery and high CO₂ purity.

6.2 Assumptions and Modelling Approach

There are four subsystems of analysed oxy-coal fired supercritical steam power plant: boiler island, supercritical steam cycle, ASU and CPU units. The developed steady state model in Aspen Plus (V10.0) is based on the following assumptions: (1) Cryogenic ASU was employed for the required oxygen supply to the oxy-coal boiler. (2) The macro thermodynamic feature of complex combustion was considered through the simplified furnace model. (3) The high temperature flue gas produced after combustion was flown through the heat transfer sections of the boiler to change the state of feedwater into steam. (4) The 95% pure oxygen stream supplied to boiler is mixed with recycled flue gas (around 70% of total flue gas produced) and sent to the oxy-coal burner. (5) The oxygen concentration is maintained at 25 vol % in recycle flue gas (RFG) and oxygen mixture. (6) Ambient temperature (T₀) and pressure (P₀) of the reference atmosphere were considered as 33°C and 1.013 bar. (7) The terminal temperature difference (TTD), defined as the difference between bleed steam saturation temperature and feed water exit temperature of HP and LP FWHs was assumed as 0°C and 3°C, respectively. (8) 2% air ingress into the furnace was assumed.

In the initial step, a supercritical power plant configuration is transformed into a process flow diagram, with input from different sources including scientific literatures. A process flow diagram is then used to generate thermodynamic material and energy balance on process simulation tool Aspen plus. This will form the basis for thermodynamic performance analysis.

Proximate analysis (as received wt.%)		Ultimate analysis (dry basis wt.%)		
12	Carbon (C)	39.16		
43	Hydrogen (H)	2.76		
21	Nitrogen (N)	0.78		
24	Sulphur (s)	0.51		
11.73	Oxygen (O)	7.92		
	Ash	48.87		
	12 43 21 24 11.73	As received wt.%)Ultimate analysis (dr.12Carbon (C)43Hydrogen (H)21Nitrogen (N)24Sulphur (s)11.73Oxygen (O)Ash		

Table 6.1 Characteristics of pulverized coal (Naidu et al., 2016)

Table 6.1 summarizes the characteristics of pulverized coal used as fuel in the present study. The coal has higher ash content usually employed for power generation under Indian climatic conditions. The composition of ash (in wt% dry basis) is assumed as Al₂O₃: 13.13, SiO₂: 32.68 and Fe₂O₃: 4.72. The following two cases are considered in the present study:

- A supercritical power plant working under conventional air-fired pulverized coal combustion without CO₂ capture (schematic diagram is shown in Fig. 6.1).
- A supercritical power plant working under oxy-fuel combustion condition with consideration of CO₂ capture (schematic diagram is shown in Fig. 6.2).

Fig. 6.1. Schematic diagram of 660 MW supercritical power plant working under conventional air-fired pulverized coal combustion without CO₂ capture

6.3 Air Separation Unit (ASU) Modelling

Air separation unit (ASU) consumes substantial amount of power of oxy-coal combustion steam power plant. The present work employs two column cryogenic distillation-based ASU for oxygen production. At present, the cryogenic ASU is the only technology capable of guaranteeing required volume and purity of O_2 for the larger-scale boilers. The major drawback of this oxygen production technology is its high energy demand, which amounts to 0.22-0.24 kWh/kgO₂ at a purity of 95% (Skorek-Osikowska et al., 2015). ASU consists of a multi-stage compressor, heat exchanger, expansion valve and distillation column. The compressed air fed to the multi-stage compressor at atmospheric temperature and pressure is the driving power of the separation process. For the simplified calculations, the composition of air is assumed to be 20.9% oxygen and 78.2% nitrogen and 0.9% argon. The schematic of air separation unit is shown in Fig. 6.2 (a). In the first step, air is compressed in four stage compressor with intersectional cooling down to 30°C and 6.3 bar. Constant pressure ratio was maintained for each stage. After compression, air is cooled in multi-stream heat exchanger. Liquified air entering the distillation column is separated into liquid O₂ as bottom product and vapor N₂ as top product. Both top and bottom products have some impurities. Main operation parameters of ASU are given in Table 6.2.

Parameter	Unit	Value
Air temperature at inlet to ASU installation	°C	33
Air pressure at inlet to ASU installation	bar	1.013
Air supplied to ASU	Kg/s	608.1
Percentage of nitrogen in air	%	78.2
Percentage of oxygen in air	%	20.9
Air temperature at the outlet of the intersectional coolers	°C	30
Pressure in the high-pressure column	bar	6.3
Pressure in the low-pressure column	bar	1.3
Purity of separated oxygen	%	95
Isentropic efficiency of air compressor	-	0.85
Mechanical efficiency of air compressor	-	0.98

 Table 6.2 Main operation parameters of the ASU installation

Fig. 6.2. Schematic of 660 MW power plant comprising of (**a**) ASU (**b**) supercritical Rankine cycle and (**c**) CPU retrofitted to oxy-fuel combustion

6.4 Description of Model for Oxy-Coal Combustion

The coal combustion phenomenon under oxy-fuel combustion atmosphere takes place under following assumptions: (1) The pulverized coal combustion process under oxy-fuel atmosphere has four sequential stages: drying, devolatilization, combustion and the removal of flue gas dust. (2) Stable and time independent operation of the blocks are assumed. (3) Homogeneous mixing of pulverized coal and air takes place in the reactor. (4) The coal pyrolysis vaporises the constituents of coal O, N, H and S into the gaseous phase, whereas element C is transformed into pure coke. Ash doesn't participate in the reaction during PC combustion.

Fig. 6.3 displays the flowsheet of oxy-coal combustion. In the first step, drying block (RStoic) reduces the moisture level of wet coal from 12% to 2%. Flashing block (FLASH2) evaporates remaining traces of H_2O . Pyrolysis of completely dry pulverized coal takes place in decomposition block (RYield). The products of the pyrolysis are analysed by calculator block. The combustion process is simulated by Gibbs reactor (RGibbs).

Fig. 6.3. Flowsheet of oxy-coal combustion of pulverized coal

	Wet coal	Air supplied to dry	Oxidizer supplied for	
		reactor	combustion	
Temperature (°C)	33	300	350	
Pressure (bar)	1.03	1.03	1.03	
Mass flow rate (kg/s)	102.9	200	499.832	
Composition	-	$21\%\ O_2 + 79\%\ N_2$	25% O ₂ +RFG	

Table 6.3 Essential input parameters for oxy-fuel combustion

The combustion process is simulated by Gibbs reactor (RGibbs). In the Gibbs reactor, the mixture of recycled flue gas (RFG) and O_2 are employed as oxidizer. At the minimum value of Gibbs free energy, chemical reaction finishes completely. The separation of ash from the flue gases takes place in the separation block (SSplit). Around 70% of the total flue gas produced is recycled to mix with O_2 and supplied to RGibbs. Remaining flue gas is allowed to flow through the heat transfer sections of boiler to change the state of feed water into steam. The essential input parameters of oxy-coal combustion are given in Table 6.3.

6.4.1 Coal Drying Unit

Coal dying is modelled in RStoic block according to Eq. (6.1). Drying unit reduces moisture level from 12% to 2% with the help of Fortran calculator block.

$$COAL(wet) \rightarrow 0.0555084H_2O + COAL(dry) \tag{6.1}$$

6.4.2 Decomposition Unit

Pulverized coal is decomposed into its constituents and ash in RYield block. During the decomposition the heat released is sent to RGibbs for combustion. Fortran block calculates

the decomposition products and ash. The enthalpy balance equation of unit is given in Eqⁿ. (6.2).

$$\sum_{i=1}^{I} m_i \Delta H^0_{f,i,298} + \sum_{i=1}^{I} m_i \int_{298}^{T} c_{p,T,i} dT = \sum_{j=1}^{J} n_j \Delta H^0_{f,i,298} + \sum_{j=1}^{J} n_j \int_{298}^{T} c_{p,T,i} dT + Q_P$$
(6.2)

6.4.3 Burn Unit

The phase and chemical equilibrium of the chemical reactions are modelled by RGibbs unit through the minimization of the system's Gibbs free energy (Pei et al., 2013). CO₂, CO, H₂O, N₂, SO₂, SO₃, NO, NO₂ and ash are main combustion products. The mathematical model for Gibbs free energy minimization is shown below

$$MinG, G = \sum_{j=1}^{s} n_{j}^{c} G_{J}^{0} + \sum_{j=s+1}^{M} \sum_{l=1}^{P} n_{jl} G_{jl}$$
(6.3)

Where G is system's Gibbs free energy. S, M and P represent single phase, number of phases and components, respectively.

6.5 Description of Model for Steam Cycle

The oxy-coal combustion system analysed in this study is a 660 MW supercritical plant that includes boiler, turbines and feedwater heaters, high-pressure turbine (HPT), intermediate pressure turbine (IPT) and low-pressure turbines (LPT) shown in Fig. 6.2(b). The live steam (S-22) is supplied to the HPT at 537°C temperature and 242.2 bar pressure. The pressure and temperature of reheated steam (S-26) supplied to IPT are 42.40 bar and 565°C. After the turbine expansion is completed, steam (92.60% quality) enters the steam condenser operating at 0.103 bar pressure. Cooling water fed to the water-cooled condenser at 33°C, gains 10°C temperature in the condenser. Four low-pressure feedwater heaters (LPFWH) and three high-pressure feedwater heaters (HPFWH) heat the condensate leaving the condenser.

	Super critical parameters				
-	P (bar) T(°C) Steam mass flow Isen			Isentropic	
			rate (kg/s)	efficiency (%)	
HP Turbine inlet	242.2	537	550.7	89.6	
IP Turbine inlet	42.0	565	466.2	91.7	
LP Turbine inlet	2.9	215.6	173.0	85.7	
Steam quality (at LPT exhaust)			0.93		
Condenser pressure (kPa)			10.3		

Table 6.4 Steam cycle parameters of the 660 MW Super critical power plant

Open-contact heat exchanger (OCFWH) working as deaerator at 21 bar pressure, a condensate pump, a main feedwater pump (FWP) and a circulating pump are also included in the steam cycle. The present study assumes TTD in high pressure and low-pressure regenerative heat exchanger as 0°C and 3°C, respectively. The essential input parameters for 660 MW supercritical power plant is given in Table 6.4.

6.6 Description of Model for CO₂ Compression and Purification Unit

Fig. 6.2 (c) displays the schematic diagram of the CPU. The design of CPU has been adopted from optimized study of Jin et al. (2015a). They have performed multivariable optimization of CPU to achieve the best possible operating conditions and establish reliable

control of desirable operations. The CPU unit consists mainly of multi-stage CO_2 compressor (MCC), two multi steam heat exchangers, two flash separators, compressor, valves and cooler. The flue gas fed to the multi-stage compressor is compressed to 30 bar. The impurities of the compressed flue gas are removed in the cold box mainly consisting of two multi-stream heat exchangers (MHX) and two flash separators. The first multi-stream heat exchangers (MHX) and two flash separators. The first multi-stream heat exchangers (MHX1) cool downs flue gas to -24.64°C, then it enters in flash separator 1 (FS1). The bottom product of FS1 is liquid CO₂, the top product is further cooled down in MHX2 to -55°C. Then the flue gas is fed to FS2, where bottom stream provides CO_2 product and the top stream is vent gas. At last, the second CO_2 products are mixed with the first CO_2 products for storage or utilization.

6.7 Methodologies

The thermodynamic calculations are based on the steady-state assumption. Each component of the schematic diagram Fig. 6.1-6.3 is control volume. Each block is in equilibrium of mass and energy.

$$\sum m_{in} = \sum m_{out} \tag{6.4}$$

$$\dot{Q} - W = \sum m_{in} h_{in} - \sum m_{out} h_{out}$$
(6.5)

The net efficiency of plant power η_{net} , %, is defined as:

$$\eta_{net} = \frac{W_{net}}{Q_s} \times 100\% \tag{6.6}$$

Where Q_s and W_{net} represent heat supplied and the net power output.

Net power output is estimated as follows:

$$W_{net} = W_{st} - \sum W_{aux,i} \tag{6.7}$$

 W_{st} is the steam turbine power output; $\sum W_{aux,i}$ are the auxiliary power consumption of technical installations of oxy-coal combustion system. These auxiliary-power consuming technical installations include ASU, steam boiler island and steam cycle and CPU unit.

Aspen Plus (V 10.0) has been used to develop the steady-state model of power plants configurations. Aspen plus consists of integrated programs capable of easily assembling the energy generation plants from various energy component modules. Thermodynamically rigorous material and energy balance have been established on process flow diagrams employing this kind of process simulation tools. The present work primarily consists of models for turbines/compressors, heat exchangers, pumps, separators and reactors. Compressors/turbines and pumps use Compr and Pump blocks for expansion and pressurization of gases or fluids. HeatX block has been employed for modelling of heat exchangers. RYield and RGibbs blocks have been combined for describing the combustion reactions in the furnace. The properties have been satisfactory calculated by employing the PRBM method.

6.8 Validation

The validation of simulation results obtained by employing process simulation tool Aspen plus for 660 MW pulverized coal-fired supercritical power plant has been presented in Table 6.5. The corresponding stream number given in Table 6.5, can be seen in the schematic diagram of the conventional air-fired power plant shown in Fig. 6.1. The operational values of the supercritical power plant have been taken from the work of Suresh et al. (2010). From Table 6.5, it can be seen that the stream flow data values are close to the corresponding operational values having a maximum deviation below 5%.

Table 6.5 Validation of stream data of 660 MW supercritical power plant (correspondingstream numbers can be seen in Fig. 6.1)

		Te	Temperature (°C)		Mass flow rate (kg/s)		
Stream	Pressure	Operation	Simulation	%	Operation	Simulation	%
no.	(bar)			Variation			Variation
S-1	1.030	33	33	0	102.9	102.9	0
S-2	1.013	33	33	0	608.1	608.1	0
S-3	1.030	272.1	272.3	+0.0735	608.1	608.1	0
S-4	1.010	1771.9	1798.63	+1.5	700.9	700.5	-0.057
S-5	1.005	905.2	897.84	-0.813	700.9	700.5	-0.057
S-6	1.005	542.4	535.009	-1.36	700.9	700.5	-0.057
S-7	1.000	319	313	-1.88	700.9	700.5	-0.057
S-8	1.060	130	128.321	-1.29	700.9	700.5	-0.057
S-9	242.2	537	537	0	550.7	550.7	0
S-10	66.8	340	332.85	-2.1	36.2	36.2	0
S-11	44.3	288.7	275.857	-4.44	466.2	466.2	0
S-12	44.3	288.7	275.857	-4.44	48.3	48.3	0
S-13	42	565	565	0	466.2	466.2	0
S-14	21	459.9	442.85	-3.70	14.4	14.4	0
S-17	11.9	381.1	372.495	-2.31	22.4	22.4	0
S-18	6.1	295.4	286.767	-2.92	19.2	19.1942	-0.030
S-19	2.9	215.6	206.767	-4.09	173	173	0
S-20	2.98	215.6	206.767	-4.09	31.4	31.292	-0.344
S-21	0.64	87.6	89.7497	+2.45	14.1	14.1485	+0.344
S-22	0.27	66.7	69.2461	+3.81	13.5	13.4297	-0.520

Thermodynamic analysis of 660 MW supercritical power plant						141	
S-23	0.103	46.4	48.3095	+4.11	318.5	319.6	+0.345
S-24	0.103	46.4	48.3095	+4.11	429.5	430.15	+0.1513
S-25	11.9	46.5	48.3834	+4.05	429.5	430.15	+0.1513
S-35	308.7	193.9	187.717	-3.188	550.7	550.7	0
S-38	308.7	279.6	272.733	-2.456	550.7	550.7	0
S-39	308.7	341	341	0	550.7	550.7	0

6.9 Results of Thermodynamic Analysis

 Table 6.6 Summary of thermodynamic performance

Parameter		Conventional	Oxy-fuel
		combustion	combustion
Air separation unit (ASU)			
Oxygen purity	mol%	-	95.00
Oxygen produced	kg/s	-	108.287
Specific power consumption	kW.hr/tonne	-	295.85
Power consumption	MW	-	115.296
CO ₂ compression and purification unit (CPU)			
Power consumption	MW		42.512
Specific power consumption	kW.hr/tonne	-	97.552
Miscellaneous power consumption			
Condensate pump	MW	1.6234	1.6234
Boiler feed water pump	MW	30.7348	30.7348
Net power consumption	MW	32.3534	190.1662
CO ₂ purity	mol%	13.15	95
CO ₂ recovery	%	-	96
Gross power output	MW	692.523	692.523
Heat supplied	MW	1518.726	1518.726
Net power output	MW	660.1696	502.3568
Gross efficiency	%	45.60	45.60
Net efficiency	%	43.47	33.07

Table 6.6 displays the summary of thermodynamic performance of both convention air fired and oxy-coal fired supercritical power plant. The mole fraction of O_2 in the oxidizer is maintained at 25% with the help of design specification block for oxy-fuel combustion case at recycle ratio of 0.7. The oxy-fuel combustion power generation case has 10.4% reduction in net efficiency due to incorporation of ASU and CPU. Oxy-coal combustion power generation case is able to capture carbon dioxide with 95% purity and 96% recovery rate.

6.10 Results of Sensitivity Analysis

6.10.1 Influence of Oxygen Concentration in the Oxidizer

This section insight the influence of the concentration of oxygen on the composition of the flue gas produced in oxy-coal combustion atmosphere. To access the influence of oxygen concentration, the recycle ratio is fixed at 0.7.

Fig. 6.4-6.6 displays the influence of oxygen mole fraction in oxidizer on the composition of flue gas produced under oxy-fuel combustion condition. With an increase in oxygen concentration, the amounts of CO₂, NO_x and SO₃ increases in the flue gas. Increase in oxygen concentration decreases the amounts of CO and N₂, whereas the mass flow rate of SO₂ increases initially up to oxygen concentration 24% and after that start decreasing. From Fig. 6.4, it can be observed that the nature of the curve for both CO₂ and CO mass flow rate tends to be asymptotic at the higher oxygen concentration. With an increase in oxygen concentration, the formation of CO₂ is promoted. In contrast, the formation of CO is suppressed due to the availability of excess oxygen on the carbon surface, which promotes complete combustion.

Fig. 6.4. Influence of oxygen concentration on the CO₂ and CO produced in the flue gas (RR=0.7)

Fig. 6.5. Influence of oxygen concentration on the NO_x and N_2 produced in the flue gas (RR=0.7)

Fig. 6.6. Influence of oxygen concentration on the SO₂ and SO₃ produced in the flue gas (RR=0.7)

Fig. 6.7. Influence of oxygen concentration on the power consumption of ASU, CPU and total power consumption (RR=0.7)

Fig. 6.5 shows that the NO_x formation is enhanced with an increase in oxygen concentration in the oxidizer. The formation of thermal and prompt NO_x has been reduced to almost zero under oxy-coal combustion atmosphere due to replacement of air (the nitrogen present in the air contribute to thermal and prompt NO_x) with the mixture of oxygen and recycled flue gas (RFG). Under oxy-coal combustion, only fuel NO_x has a considerable contribution to the total NO_x produced (Jin et al., 2015b). With an increase in the concentration of oxygen, the conversion of NH₃ and HCN into NO_x has been enhanced, which increased total NO_x concentration.

Fig. 6.6 displays that the amount of both SO_2 and SO_3 increase up to oxygen concentration 24%, after that amount of SO_2 in flue gas tends to decrease, whereas amount of SO_3 increases. At oxygen concentration beyond 24%, some amount of SO_2 is easily oxidized to SO_3 due to the presence of higher concentration of oxygen. That's why the concentration of SO_2 in flue gases tends to decrease at higher oxygen concentration.

Fig. 6.7 shows the influence of the concentration of oxygen on the power consumption of ASU, CPU and total power consumption. It can easily be observed that the increase in oxygen concentration has affected power consumption of ASU and CPU. The increase in the concentration of oxygen has a more pronounced influence on ASU power consumption than the CPU power consumption. Increase in oxygen concentration from 21% to 36%, has increased the power consumption of ASU and CPU by 51% and 15% respectively. To increase the oxygen concentration in oxidizer, the amount of air supplied to ASU increases, that is the primary cause of the increase in power consumption of ASU. As recycle ratio of 0.7 is maintained while increasing the oxygen concentration, only 30% of flue gas

produced is flown through the CPU. That's why the power consumption of CPU is not much affected with an increase in oxygen concentration.

Fig. 6.8. Influence of oxygen concentration on the CO₂ product purity and CO₂ recovery rate (RR=0.7)

Fig. 6.9. Influence of oxygen concentration on the Specific energy consumptions of CO_2 and O_2 (RR=0.7)

Fig. 6.8 shows the influence of the oxygen concentration in the oxidizer on the CO_2 product purity and CO_2 recovery rate obtained after the CPU unit. Initially with an increase in oxygen concentration, CO_2 product purity rises, reaches its maximum value at oxygen concentration of 24%. The further increase in oxygen concentration diminishes the CO_2 purity obtained after CPU. The oxygen concentration of 36% produced CO_2 purity of around 90% only. CO_2 recovery rate rises sharply with the increase in oxygen concentration. Increase in oxygen concentration beyond 25% has less influence on CO_2 recovery rate. At oxygen concentration of 25%, the optimum values of both CO_2 purity and CO_2 recovery rate can be observed.

Fig. 6.9 displays the influence of the concentration of oxygen in the oxidizer on the specific energy consumption of CO₂ and O₂. At oxygen concentration of 21%, the specific energy consumption was very high (around 170 kW.hr/tonne CO₂). With an increase in oxygen concentration, specific energy consumption reduces. The oxygen concentration of 25%, has a specific energy consumption of 100 kW.hr/tonne CO₂. Further increase in oxygen concentration, the specific energy consumption rises slowly. The oxygen concentration of 36% has 122 kW.hr/tonne CO₂ energy consumption. Specific energy consumption of O₂ is independent on the amount of oxygen concentration in the oxidizer. The value of specific energy consumption for O₂ is constant at 295.85 kW.hr/tonne O₂.

6.10.2 Influence of Recycle Ratio (RR)

This section insight the influence of recycle ratio (RR) on the composition of flue gas produced under oxy-coal combustion atmosphere. Recycle ratio (RR) is defined as the ratio of the mass flow rate of recycled flue gas to the mass flow rate of total flue gas produced. To access the influence of recycle ratio (RR), the oxygen concentration is fixed at 25% by using the design specification block.

Fig. 6.10-6.12 displays the influence of RR on the composition of flue gas produced in oxy-coal combustion atmosphere. With an increase in RR, the formation of CO_2 , NO_x , N_2 , SO_2 and SO_3 is promoted, whereas the formation of CO is suppressed. As flue gas produced under oxy-coal combustion atmosphere has the highest amount of CO_2 , with an increase in recycle ratio (RR), more CO_2 is supplied in oxidizer. That's why amount of CO_2 increases and CO decreases in the flue gas. Increase of recycle ratio from 0.7 to 0.75 increases NO_x flow rate from 358 kg/hr to 634 kg/hr. Increasing recycle ratio (RR) increases the formation of SO_2 and SO_3 .

Fig. 6.13 displays the influence of recycle ratio (RR) on the CO₂ product purity and CO₂ recovery rate obtained at the outlet of CPU. CO₂ product purity diminishes with the increase in recycle ratio. CO₂ recovery rate rises initially with an increase in RR, reaches its maximum value at RR 0.715. CO₂ recovery rate starts decreasing with an increase in RR beyond RR 0.715. Both CO₂ product purity and CO₂ recovery rate have their lowest values at RR 0.75.

Fig. 6.14 shows the influence of recycle ratio (RR) on the specific energy consumption of CO_2 and O_2 at a fixed O_2 content of 25 vol % in the oxidizer at the inlet to the furnace. RR

0.71 has the lowest specific CO_2 energy consumption, and RR 0.75 has the largest CO_2 energy consumption. Specific O_2 energy consumption is independent of RR.

Fig. 6.10. Influence of recycle ratio (RR) on the CO_2 and CO produced in the flue gas (25 mol % O_2)

Fig. 6.11. Influence of recycle ratio (RR) on the NO_x and N_2 produced in the flue gas (25 mol % O_2)

Fig. 6.12. Influence of recycle ratio (RR) on the SO₂ and SO₃ produced in the flue gas (25 mol % O₂)

Fig. 6.13. Influence of recycle ratio (RR) on the CO_2 product purity and CO_2 recovery rate (25 mol % O_2)

Fig. 6.14. Influence of recycle ratio (RR) on the Specific energy consumptions of CO_2 and O_2 (25 mol % O_2)

Fig. 6.15. Influence of recycle ratio (RR) on the power consumption of ASU and CPU

Fig. 6.15 shows the sensitivity analysis of the RR on the power consumptions of both ASU and CPU. With an increase in recycle ratio, the power consumption of both ASU and CPU rises gradually. As RR increases, the flue gas supplied at the inlet of the combustion chamber increases. To maintain constant oxygen concentration at that point, ASU has to increase the amount of oxygen slightly, that is the major cause of the increase in ASU power consumption. With an increase in RR, the production of flue gas rises, which in turn results in slightly more flue gas supplied to CPU. Due to the rise in the amount of flue gases at CPU inlet, the power consumption of CPU rises slightly.

6.10.3 Influence of oxygen purity

The sensitivity analysis of O_2 purity produced by air separation unit (ASU) on the mole fraction of O_2 supplied for combustion (S-11), and mole fractions of O_2 and CO_2 entering to the CPU unit (S-21) along with the power consumption (MW) of CPU have been studied in this section. The range of O_2 concentration from ASU has been set to be 0.95-0.98 at a step size of 0.05. Fig. 6.16 shows influence O_2 concentration from ASU on the optimal recycle ratio and CPU power consumption. The mole fraction of O_2 supplied for combustion (S-11) has been fixed at 25% in the mixture of O_2 and recycled flue gas (RFG) by changing recycle ratio (RR). From Fig. 6.16, it can be seen that O_2 concentration range of 95-98% has varied optimal recycle ratio from 0.7-0.709 and CPU power consumption from 51.1-48.1 MW.

Fig. 6.16. Variation of optimal recycle ratio (RR) and CPU power consumption corresponding to the different O_2 concentrations from ASU

Fig. 6.17. Sensitivity analysis for the different O₂ concentrations from ASU

Effect of O_2 concentration from ASU on the mole fraction of O_2 supplied for combustion (S-11), and mole fractions of O_2 and CO_2 entering to the CPU unit (S-21) along with the power consumption (MW) of CPU at fixed recycle ratio (RR) of 0.7 have been shown in Fig. 6.17. Varying the O_2 concentration produced by ASU from 95-98% has changed the mole fraction of O_2 in S-11 by 0-2.4%, O_2 in S-21 by 0-2.6% and CO_2 in S-21 by 0-2.11%, respectively. The CPU power consumption has also been reduced by 0-3.72% points for O_2 concentration range of 95-98% from ASU. Thus, based on the above sensitivity analysis, it can be concluded that the O_2 concentration of 95% is well enough for the oxy-fuel combustion-based power generation. To produce higher O_2 concentration requires both the higher capital investment and more auxiliary power consumptions in different units and instalments are needed to be computed together to estimate the actual power consumption. However, these computations are beyond the scope of this work.

6.11 Environmental interaction

Environmental interaction of both conventional air-fired and oxy-fired supercritical power plant, describing the main streams into and out of the system is displayed in Fig. 6.18 and Fig. 6.19 respectively. From Fig. 6.18, it can be seen that the flue gas produced by the combustion of 102.9 kg/s of coal under the base case of conventional air fired combustion has the highest content of N₂, which amounts to be 480 kg/s. The conventional air-fired case has released 128.129 kg/s of CO₂ having mole fraction of 13.15% along with 1.15 kg/s CO, 2.35 kg/s NO and 0.93 kg/s SO₂.

Fig. 6.18. Schematic of environmental interaction of conventional air-fired supercritical power plant

Fig. 6.19. Schematic of environmental interaction of oxy-fired supercritical power plant

On the other hand, oxy-fuel combustion-based supercritical power generation case has produced the highest amount of CO_2 in the flue gas. From Fig. 6.19, it can be seen that flue gas supplied to CPU and obtained after CPU for sequestration has 70% and 92% CO_2 , respectively. In the oxy-fuel combustion-based supercritical power generation case, CO_2 concentration has been enriched to around 95% by flashing flue gas by the low temperature circuit. The small amount of CO_2 (7.72 kg/s) escaping with the gas phase has been vented into the atmosphere. From the analysis, it has been found that the around 94 mass % of CO_2 produced during combustion can be captured.

6.12 Summary

As a closure, in this chapter the oxy-fuel combustion concept has been implemented on 660 MW supercritical power plant to investigate the influence of important operating parameters on operational characteristics. It has been found in previous chapters that the oxy-coal combustion has flame stability issues at lower oxygen concentration. The combustion characteristics such as temperature and radiative heat transfer in oxy-coal combustion comparable to conventional air-fired combustion atmosphere can be obtained by increasing oxygen concentration. Thus, the basic understanding of oxy-coal combustion from previous chapters helped in the 0 D thermodynamic model prediction while investing the influence of oxygen concentration and recycle ratio on the performance of 660 MW supercritical power plant under oxy-coal combustion atmosphere in this chapter.

The excellent performance of oxy-coal combustion power plant has been observed in this chapter in term of its ability to capture carbon dioxide with 95% purity and 96% recovery rate. Based on the discussions held in this chapter, it can be concluded that the 10.4% reduction in net efficiency due to incorporation of energy consuming ASU and CPU units is acceptable as the prime objective of oxy-fuel combustion is to reduce the greenhouse gases emission. From the environmental interaction shown in this chapter, it has been found that the CO₂ content in the flue gas was 14.58% and 70% under air-fired combustion case and oxy-coal combustion case, respectively.