List of figures

Figure	Figure caption	Page
		No.
Figure1.1	Classifications of nano-carbon allotropes based on	7
	dimensions scale	
Figure1.2	Pictorial representations of carbon dots and fullerene	8
Figure1.3	Pictorial representations of the MWCNT structures	9
Figure1.4	Pictorial representation of graphene sheet	10
Figure1.5	Different forms of 3D nano-structured carbon derived	12
	from biomass	
Figure1.6	Pictorial representation of heteroatom atom doped 2D	13
	graphene sheet	
Figure1.7	Graphical illustration of the preparation of CuOx/AC	17
	composite	
Figure1.8	Structure of porphyrin (a) and their derivatives, TPP (b)	20
	OEP (c) metal bonded porphyrin (d)	
Figure1.9	Nanohybrid formations between porphyrin and a carbon	21
	nanohorn via covalent and non-covalent bonding	
Figure1.10	Schematics representation of the possible interaction of	23
	conducting PPy with porphyrin	
Figure1.11	Schematics representation of the porphyrin@polypyrrole	23
	hybrid	
Figure1.12	Presentation of bonding between SnTPP and PPy and	24
	synthesis of PPy-SnTPP	
Figure1.13	Monomer units of different CPs	26
Figure1.14	Applications of CPs	29
Figure1.15	Pictorial representation of In-situ interfacial and	29
	interfacial process of CPs synthesis	
Figure1.16	Pictorial representations of applications of carbon-based	30
	nanomaterials	
Figure1.17	Schematic diagram of charge storage mechanism in an	32
	EDLC (at top) and pseudocapacitor (down)	
Figure1.18	Categorically representation of types of supercapacitor	33
Figure1.19	Ragone plot for various energy devices	33
Figure2.1	Real photograph of tubular furnace	38
Figure2.2	TGA instruments and its Block diagram of Thermo-	39
	balance.	

Figure 2.3	Photograph of SEM instruments and schematic layout of	40
	different components of the SEM.	
Figure 2.4	Photograph of TEM instruments.	41
Figure 2.5	Schematic diagram of AFM	42
Figure 2.6	FTIR instruments and schematic illustration about its	43
	different components.	
Figure 2.7	Schematic illustration of the Raman components	45
Figure 2.8	Schematic working layout and photograph of NMR.	46
Figure 2.9	Schematic working layout of the Uv-Vis	47
	spectrophotometer and their photograph.	
Figure 2.10	Layout of the physical process in XPS.	48
Figure 2.11	Photograph of XRD instrument	49
Figure 2.12	Instruments photograph and experimental setup.	49
Figure 2.13	Representation of the CV curve.	50
Figure 2.14	Representation of the Nyquist plot.	51
Figure 3.1	Schematic presentation of PIn structure	59
Figure 3.2	XRD pattern of (a) bare g-C ₃ N ₄ , (b) 1:0.5, (c) 1:2, (d) 1:5	61
	g-C ₃ N ₄ -PIn nanohybrids and (e) pure PIn	
Figure 3.3	Combined UV-Vis spectra of (a) bare $g-C_3N_4$, (b) 1:0.5,	62
	(c) 1:2 g-C ₃ N ₄ -PIn nanohybrids and (d) pure PIn in	
	ethanol	
Figure 3.4	ATR spectra of (a) bare $g-C_3N_4$, (b) 1:0.5, (c) 1:2, (d) 1:5	64
	g-C ₃ N ₄ -PIn nanohybrids and (e) pure PIn	
Figure 3.5	Raman spectra of (a) bare g-C ₃ N ₄ , (b) pure PIn and (c)	65
	1:2 g-C ₃ N ₄ -PIn nanohybrid	
Figure 3.6	XPS spectra of (A) bare $g-C_3N_4$, (B) 1:2, $g-C_3N_4$ -PIn	67
	nanohybrids full survey, (C) and (D) deconvolute peak of	
	N1s and (E) C1s peaks for g-C ₃ N ₄ and 1:2g-C ₃ N ₄ -PIn	
	nanohybrids, respectively	
Figure 3.7	SEM image of (a) bare $g-C_3N_4$, (b) 1:0.5, (c) 1:2, (d) 1:5	69
	$g-C_3N_4$ -PIn nanohybrids, (e) pure PIn and EDX of (a') g-	
	C3N4 and (b') 1:2 g-C ₃ N ₄ -PIn nanohybrids	
Figure 3.8	TEM image of (a) bare $g-C_3N_4$, (b) 1:0.5, (c) 1:2, (d)	70
	1:5 g-C ₃ N ₄ -PIn nanohybrids, (e) pure PIn and (f) SAED	
	pattern of $g-C_3N_4$, (g) 1:2 $g-C_3N_4$ -PIn nanohybrids, (h)	
	pure PIn	
Figure 3.9	TGA curves of (a) bare $g-C_3N_4$, (b) pure PIn and (c) 1:2	71
	g-C ₃ N ₄ -PIn nanohybrid	
Figure 3.10	(A) Combined CV graph of glassy carbon (a), bare g-	74
	C_3N_4 (b), 1:0.5 (c), 1:2 (d), 1:5 (e) g- C_3N_4 -PIn	

	nanohybrids and pure PIn (f) electrodes at 50	
	$mVs^{-1}scan$ rate in 1.0 M H ₂ SO ₄ : (B) CV curves of 1:2	
	g-C ₃ N ₄ -PIn nanohybrid electrode in1.0 M H ₂ SO ₄ at	
	various scan rates: (C) combined GCD graph of bare g-	
	C_2N_4 (a) 1:0.5 (b) 1:2 (c) 1:5 (d) σ - C_2N_4 -PIn	
	nanohybrids and pure PIn (e) electrodes in 1.0 M H ₂ SO ₄	
	at 2 Ag ⁻¹ current density: (D) GCD curves of 1.2 g-	
	C_2N_4 -PIn nanohybrid electrode in 1.0 M H ₂ SO ₄ at	
	various current density.	
Figure 3.11	Nyquist plots of (a) bare g-C ₃ N ₄ , (b) 1:0.5, (c) 1:2, (d)	76
_	1:5 g-C ₃ N ₄ -PIn nanohybrids and (e) pure PIn electrodes	
	at their OCP (inset shows enlarged view of 1:2 g- C_3N_4 -	
	PIn nanohybrid electrode)	
Figure 3.12	Cyclic stability test of 1:2 g-C ₃ N ₄ -PIn nanohybrid	77
	electrode at 5Ag ⁻¹	
Figure 3.13	SEM image of (I) 1:1, (II) 1:2 and (III) 1:4::Indole :	79
	APS ratios, and its CV graph as (a) 1:1, (b) 1:2 and (c)	
	1:4 respectively.	
Figure 4.1	Schematic representation for the synthesis of ECCs	86
Figure4.2	XRD analysis of the as-prepared ACs prepared at	87
	different temperatures (a) ECC 600, (b) ECC 700 and	
	(c) ECC 800	
Figure 4.3I	FT-IR analysis of the as-prepared ACs prepared at	88
	different temperatures (a) ECC 600, (b) ECC 700 and	
	(c) ECC 800	
Figure	Raman spectra of ECC 800	88
4.3II		
Figure 4.4	SEM image of (a) ECC 600, (b) ECC 700, (c) ECC 800	89
Figure 4.5	BET surface area and other parameters for ECC 600,	91
	ECC 700, and ECC 800	
Figure 4.6	TGA of (I) (a) ECC 600, (b) ECC 700, (c) ECC 800,.	93
	Inset shows TGA of (a) dried Eichhorniacrassipes.	
Figure 4.7	CV of (I) ECC 600 (II) ECC 700, (III) ECC 800 at	95
	different scan rates in 1.0 M H_2SO_4 and (d) comparative	
	CV of (a) ECC 600, (b) ECC 700, and (c) ECC 800 at 150	
	mV/s scan rate and (VI) current density vs. square root of	
	scan rate plot for ECC 800.	
Figure 4.8	GCD profiles of (I) ECC 600, (II) ECC 700 and (III)	96
	ECC 800 at various current densities and (IV)	
	comparative charge-discharge profiles of (a) ECC 600	

	(b) ECC 700, (c) and ECC 800 at current	
	density=0.78A/g	
Figure 4.9	EIS of (a) ECC 600, (b) ECC 700 and (c) ECC 800	97
Figure 4.10	Stability test of the ECC 800 via multiple CV at 50	98
	mV/s scan rate	
Figure 5.1	Schematic representation of ECC surface modification	106
	with PAni	
Figure 5.2	XRD of (a) Ox- ECC 800, (b) OX-ECC/PAni and (c)	109
	PAni.	
Figure 5.3	FT-IR analysis of (a) Ox- ECC 800, (b) OX-ECC/PAni	110
	and (c) PAni.	
Figure 5.4	Raman of (a) Ox-ECC, (b) Ox-ECC/PAni and (c) PAni.	112
Figure 5.5	XPS of Ox-ECC for (a) survey spectrum, (c) C1s, (e)	114
	N1s(g) O1sand Ox-ECC/PAni for (b) survey spectrum,	
	(d) C1s, (f)N1s (h) O1s respectively.	
Figure 5.6	SEM image of (a) Ox-ECC (b) PAni, (c) Ox-ECC/PAni,	115
	TEM image of (d) Ox-ECC, (e) Ox-ECC/PAni and (f)	
	SAED of Ox-ECC/PAni. Inset of Fig. 5.6d showing	
	SAED of Ox-ECC.	
Figure 5.7	N_2 adsorption-desorption isotherm of (a) Ox- ECC 800,	117
	(b) PAni and (c).OX-ECC/PAni.	
Figure 5.8	Comparative TGA of (I) (a) Ox-ECC (b) ECC 800, and	118
	(II) (a) Ox-ECC, (b) Ox-ECC/PAni, and (c) PAni.	
Figure 5.9	CV at different scan rate of (I) PAni, (II) Ox-ECC (III)	121
	Ox-ECC/PAni and comparative CV of (IV) (a) PAni,	
	(b) Ox-ECC and (c) Ox-ECC/PAni. (V) comparative	
	CV of (a) Ox-ECC, (b) ECC 800 at scan rate 150 mVs-	
	1in 1.0M H2SO4 electrolyte and (VI) current density	
F	vs. square root of scan rate plot of Ox-ECC/PAni.	100
Figure 5.10	GCD of (I) PAni, (II) Ox-ECC (III) Ox-ECC/PAni at	123
	different current density and (IV) comparative GCD of	
	(a) PAni, (b) Ox-ECC and (c) Ox -ECC/PAni, (V)	
	comparative GCD of (a) Ox-ECC and (b) ECC 800 at	
F ¹	current density 0.78 A/gin 1.0M H ₂ SO ₄ electrolyte.	105
Figure 5.11	(I) EIS OF (a) EUC 600, (b) EUC 700, (c) EUC 800, (d) PAri (c) Or EUC and (b) Or EUC 800, (d)	125
	PANI, (e) UX-EUU and (I) UX-EUU800/PANI. Inset	
	shows an emarged view of a similar curve and (II) Plot of θ rotantion us, number of system	
Figure 6 1	UV via absorption apactra of (a) Din (b) Eq. (CED/DL	127
rigure 0.1	by brid and inset represent the LW via character	13/
	nyoria, and inset represent the UV-vis absorption	

	spectra of (a) OEP (b) Fe-OEP	
Figure 6.2	FTIR spectra of (Ia) PIn and (Ib) Fe-OEP/PIn composite	138
0	and (IIa) OEP (IIb) Fe-OEP.	
Figure 6.3	H-NMR spectra of (a) OEP, (b) FeOEP/PIn composite	140
	and (c) PIn	
Figure 6.4	XRD spectra of (a) OEP, (b) Fe-OEP/PIn hybrid, and	141
	(c) Pure PIn	
Figure 6.5	XPS spectra of (I) N1s, (II) C1s and (III) Fe2p of	143
	corresponding to (a) FeOEP, (b) Fe-OEP/Pin hybrid	
	respectively.	
Figure 6.6	SEM of Fe-OEP/PIn at different magnifications (a and	147
	b), pure PIn (c) and EDX of Fe-OEP/PIn (d)	
Figure 6.7	AFM image of pure PIn (a) and FeOEP/PIn (d), 3D	148
	image in (b) and (e), and KPFM in (c) and (f)	
	respectively.	
Figure 6.8	CV of (a) Fe-OEP/PIn and (b) pure PIn respectively.	149
Figure 6.9	Nyquist plot of (a) Fe-OEP/PIn and (b) pure PIn	151
	respectively.	
Figure 6.10	GCD of Fe-OEP/PIn at different current density as as	152
	(a) 2.5A/g, (b) 5A/g, (c) 7A/g, (d) 9A/g and (e) 10A/g	
	respectively.	
Figure 6.11	GCD cyclic stability test of FeOEP/PIn at current	153
	density 9A/g.	
Figure 6.12	J-V (b) semilog plot (c) $J^{1/2}$ vs. V characteristics of Fe-	156
	OEP/PIn.	
Scheme 6.1	Schematic representation of progress of reaction and	144
	interaction between Fe-OEP/PIn.	