CONTENTS

	Page No.
List of figures	i-vii
List of tables	viii
List of abbreviations	ix-x
Preface	xi-xv
Chapter 1: Introduction and literature review	1-56
1.1 Introduction	1
1.2 Organic conducting polymers	6
1.3 Doping in organic conducting polymers	11
1.3.1 Types of doping: Polarons, bipolarons and solitons	13
1.3.2 Methods of doping	17
1.4 Polyalkylthiophenes (PATs): A potent polymer for engineering	
purpose	21
1.4.1 The alkyl side chains	22
1.4.2 Regioregularity	24
1.4.3 Orientations in PAT chains: Edge- on, Face-on and End-on	25
1.4.4 Charge transport in oriented PATs	26
1.4.5 Various strategies for orientations of PATs	28
1.4.6 General aspects of rr-P3HT, rr-PQT-12 and rr-pBTTT-C14	29
1.5 General terminologies in conducting polymer/metal interface	31
1.5.1 Metal–Semiconductor interface	33
1.5.2 Theory of Schottky/Ohmic contacts	34
1.5.3 Current transport mechanisms in the Schottky diode	42
1.5.4 Extraction of device parameters from J-V and C-V characterist	ics
of Schottky diode	45
1.6 Requirements for Materials' engineering for different applications	47
1.7 Motivations and research work outlines	55
Chapter 2: Theories and applications of characterization tools	57-74
2.1 UV visible spectroscopy	58
2.2 Photoluminescence spectroscopy	59
2.3 Atomic force microscopy	61
2.4 X-ray photoelectron spectroscopy	62
2.5 Scanning electron microscopy	64
2.6 Transmission electron microscopy	66
2.7 Fourier transforms infrared spectroscopy	67
2.8 Raman spectroscopy	68
2.9 Cyclic Voltammetry	69
2.10 Dual channel source meter	70
2.11 Device fabrications	71
2.12 Device measurement	73

Chapter 3: Optimization of rr-pBTTT-C14 fibril formation and study of its	charge
transport properties	75-96
3.1 Introduction	75
3.2 Experimental	77
3.2.1 Materials	77
3.2.2 Optimization of rr-pBTTT-C14 fibril formation	77
3.3 Results and discussion	78
3.4 Conclusions	96
Chapter 4: Optimization of rr-PQT-C12 fibril formation and study of its ch	arge
transport properties	97-109
4.1 Introduction	97
4.2 Experimental	98
4.2.1 Materials	98
4.2.2 Optimization of rr-PQT-C12 fibril formation	98
4.3 Results and discussion	99
4.4 Conclusions	109
Chapter 5: Optimization of DNA guided rr-PQT-12 fibril formation and stu	ıdy of its
charge transport properties	111-131
5.1 Introduction	111
5.2 Experimental	113
5.2.1 Materials	113
5.2.2 Optimization of DNA guided rr-PQT-12 fibril formation	114
5.3 Results and discussion	115
5.4 Conclusions	131
Chapter 6: Preparation of stabilized Ag NPs/rr-PQT-C12 composite for stud	dy of
optoelectronic property	133-150
6.1 Introduction	133
6.2 Experimental	136
6.2.1 Materials	136
6.2.2 Preparation of stabilized AgNPs/rr-PQT-C12 composite	136
6.3 Results and discussion	137
6.4 Conclusions	150
Chapter 7: Preparation of fibrous SnO ₂ /GO composite for study of optoelec	tronic
property	151-170
7.1 Introduction	151
7.2 Experimental	154
7.2.1 Materials	154
7.2.2 Preparation of fibrous SnO ₂ /GO composite	154
7.3 Results and discussion	156
7.4 Conclusions	170
Chapter 8: Summary and suggestions for future work	171-174
References	175-202
List of Research Publications	
Reprints of Publications	