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tick marks above the difference plot show the peak 

positions.  
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Figure 6.2 

(c) 

SEM image of 0.36Bi(Mg3/4W1/4)O3-0.64PbTiO3 

ceramic sample ball prepared by high energy ball 

milling for 52 hrs. 
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Figure 6.3 Room temperature XRD patterns of 

0.40Bi(Mg3/4W1/4)O3-0.60PbTiO3 samples prepared at 

850°C, 900°C, 950°C and 1000°C.  
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Figure 6.4 Evolution of XRD profiles for 0.40Bi(Mg3/4W1/4)O3-

0.60PbTiO3 ceramic samples calcined at different 

temperatures 850, 900, 950 and 1000°C for 3 hrs.  
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Figure 6.5 Experimentally observed (dots), Rietveld calculated 

(overlapping continuous line) and their difference 

(continuous bottom line) XRD profiles for 

0.40Bi(Mg3/4W1/4)O3-0.60PbTiO3 ceramic obtained after 

Rietveld analysis of the structure using (a) cubic (Fm-

3m) (sample prepared at 850
o
C) and (b) coexisting cubic 

and tetragonal (Fm-3m + I4/m) structures (sample 

prepared at 1000
o
C). The vertical tick marks above the 

difference plot show the peak positions.  
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Figure 6.6 Room temperature XRD patterns of 

0.39Bi(Mg3/4W1/4)O3-0.61PbTiO3 ceramic prepared at 

850°C, 900°C, 950°C and 1000°C. 
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Figure 6.7 Evolution of XRD profiles for 0.39Bi(Mg3/4W1/4)O3-

0.61PbTiO3 ceramic calcined at different temperatures 

850, 900, 950 and 1000°C for 3 hrs. 
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Figure 6.8 Experimentally observed (dots), Rietveld calculated 

(overlapping continuous line) and their difference 

(continuous bottom line) XRD profiles for 

0.39Bi(Mg3/4W1/4)O3-0.61PbTiO3 ceramic obtained after 

Rietveld structural using (a) cubic (Fm-3m) (sample 

prepared at 1000
o
C) and (b) cubic and tetragonal (Fm-

3m + I4/m) structures (sample prepared at 850
o
C). The 

vertical tick marks above the difference plot show the 

peak positions.  
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Figure 6.9 Room temperature XRD patterns of 

0.33Bi(Mg3/4W1/4)O3-0.67PbTiO3 sintered at 850°C, 

900°C, 950°C and 1000°C. 
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Figure 6.10 Evolution of the XRD profiles for 0.33Bi(Mg3/4W1/4)O3-

0.67PbTiO3 ceramic prepared at 850, 900, 950 and 

1000°C temperatures for 3 hrs. 
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Figure 6.11 Experimentally observed (dots), Rietveld calculated 

(continuous line) and their difference (continuous 

bottom line) XRD profiles for 0.33Bi(Mg3/4W1/4)O3-

0.67PbTiO3 ceramic obtained after Rietveld structural 

analysis using (a) tetragonal (I4/m) (sample prepared at 

1000 
o
C) and (b) coexisting cubic and  tetragonal (Fm-

3m + I4/m) structures (sample prepared at 850 
o
C). The 

vertical tick marks above the difference plot show the 

peak positions.  
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