CONTENTS

Chapter 1	Introduction and Literature Review	1-40
1.1	Introduction	1
1.2	Perovskites Structure	3
1.2.1	Disordered Perovskite Structure	
1.2.2	Ordered Perovskite Structures	6
1.3	Ferroelectric Materials	9
1.4	Anti-Ferroelectric Materials	11
1.5	Relaxor-Ferroelectric Materials	11
1.6	Piezoelectricity	14
1.7	Morphotropic Phase Boundaries in Ferroelectric Solid Solutions	15
1.8	Recent Developments in Solid Solutions with MPB	16
1.9	Phase Diagram of $(1-x)Pb(Mg_{1/2}W_{1/2})O_3-xPbTiO_3$	22
1.10	Bi-based Perovskite Solid Solutions with MPB	25
1.11	Crystal Structure and Properties of $(1-x)Bi(Ni_{3/4}W_{1/4})O_3$ -xPbTiO ₃ System	25
1.12	Dielectric Properties of (1-x)Bi(Ni _{3/4} W _{1/4})O ₃ -xPbTiO ₃	27
1.13	System The $(1-x)Bi(Mg_{3/4}W_{1/4})O_3-xPbTiO_3$ Solid Solution System	28
1.14	The Reported Crystal Structure of $(1-x)Bi(Mg_{3/4}W_{1/4})O_3$ -xPbTiO ₃ Ceramics	29
1.15	Old Phase Diagram of $(1-x)Bi(Mg_{3/4}W_{1/4})O_3-xPbTiO_3$	30
1.16	Electric Field Induced Phase Transitions in Some Bi- based System	
1.17	Effect of Grain Size on the Crystal Structure and Phase Coexistence in MPB Ceramics	
1.18	Objectives of the Present Thesis Work	
Chapter 2	Synthesis of Phase Pure (1-x)Bi(Mg _{3/4} W _{1/4})O ₃ -xPbTiO ₃	41-55
2.1	Introduction	41
2.2	Characterization Tools	42
2.2.1	X-Ray Diffraction	42
2.2.2	Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS)	43

2.2.3	X-ray Photo-electron Spectroscopy (XPS)	
2.2.4	Raman Spectroscopy	
2.3	Experimental Details	
2.3.1	Weighing and Mixing	
2.3.2	Calcination	
2.3.3	Preparation of Green Pellets	
2.3.4	Sintering	
2.3.5	Microstructure and Compositional Studies	
2.4	Summary	
Chapter 3	Discovery of Ordered Tetragonal and cubic phases in the Morphotropic Phase Boundary region of (1- x)Bi(Mg _{3/4} W _{1/4})O ₃ -xPbTiO ₃ Piezoceramics	
3.1	Introduction	57
3.2	Experimental Procedure	58
3.3	Introduction to the Rietveld Refinement Method	60
3.4	Details of the Rietveld Refinement of (1-x)BMW-xPT	
3.5	Results and Discussion	64
3.5.1	Crystal Structure Analysis by Rietveld Structure Refinement	64
3.5.2	Raman Studies	80
3.5.3	X-ray Photoelectron Spectroscopic (XPS) Characterization	82
3.5.4	High Temperature Dielectric Studies	85
3.5.5	High Temperature XRD Studies	
3.5.6	New Phase Diagram of BMW-xPT Ceramics	
3.6	Conclusions	
Chapter 4	Structural Characterization and high temperature dielectric studies on off Stoichiometric 0.38Bi(Mg _{3/4} W _{1/4})O ₃ -0.62PbTiO ₃ Ceramics	105-131
4.1	Introduction	105
4.2	Experimental Details	107
4.3	Results and Discussion	
4.3.1	Effect of PbO off-stoichiometry on the room temperature crystal structure of 0.38BMW-0.62PT ceramic	108
4.3.2	Effect of Bi_2O_3 off-stoichiometry on the room temperature crystal structure of 0.38BMW-0.62PT	113

ceramic

4.3.3	Effect of TiO_2 off-stoichiometry on the room temperature crystal structure of 0.38BMW-0.62PT ceramic		
4.3.4	Effect of H_2WO_4 off-stoichiometry on the room temperature crystal structure of 0.38BMW-0.62PT ceramic	117	
4.3.5	Effect of MgO off-stoichiometry on the room temperature 119 crystal structure of 0.38BMW-0.62PT ceramic		
4.3.6	Effect of off-stoichiometry on the lattice parameters of $0.38Bi(Mg_{3/4}W_{1/4})O_3$ -0.62PbTiO ₃ ceramic		
4.3.7	Microstructure of $0.38Bi(Mg_{3/4}W_{1/4})O_3-0.62PbTiO_3$ ceramic with off-stoichiometry		
4.3.8	Temperature dependent Dielectric studies		
4.4	Conclusions		
Chapter 5	Field Induced phase transition in MPB region of (1- 133-146 x)Bi(Mg _{3/4} W _{1/4})O ₃ -xPbTiO ₃ Piezoceramics		
5.1	Introduction	133	
5.2	Experimental Details	134	
5.3	Results and Discussions	134	
5.3.1	Crystal Structure of Electric Field Poled 0.39BMW- 0.61PT Ceramic	136	
5.3.2	Crystal Structure of Electric Field Poled 0.38BMW- 0.62PT Ceramic	137	
5.3.3	Crystal Structure of Electric Field Poled 0.33BMW- 0.67PT Ceramic	138	
5.3.4	Crystal Structure of Electric Field Poled 0.37BMW- 0.63PT Ceramic	140	
5.3.5	Effect of Electric Field Poling on the Lattice Parameters of (1-x)BMW-xPT Ceramic	143	
5.4	Conclusions	146	
Chapter 6	Grain size-dependent phase Transformation studies on $(1-x)Bi(Mg_{3/4}W_{1/4})O_3$ -xPbTiO ₃ Ceramics.	147-164	
6.1	Introduction	147	
6.2	Experimental Details	148	
6.3	Results and Discussion 149		
6.3.1	$\begin{array}{llllllllllllllllllllllllllllllllllll$	149	

6.3.2	$\begin{array}{llllllllllllllllllllllllllllllllllll$		Changes	in	153
6.3.3	$\begin{array}{llllllllllllllllllllllllllllllllllll$		Changes	in	157
6.3.4	$\begin{array}{llllllllllllllllllllllllllllllllllll$		Changes	in	160
6.4	Conclusions 163				
Chapter 7	Summary of thesis and Suggestions for Future Work 165			165-168	
7.1	Summary of the Present Work				165
7.1.1	Discovery of Ordered Tetragonal Morphotropic Phase Bounda x)Bi(Mg _{3/4} W _{1/4})O ₃ -xPbTiO ₃ Ceran	ry Regi			165
7.1.2	Structural Characterization and High Temperature 166 Dielectric Studies on off-Stoichiometric 0.38BMW- 0.62PT Ceramics		166		
7.1.3	Electric Field Induced Phase Transformations in $(1-166 \text{ x})Bi(Mg_{3/4}W_{1/4})O_3$ -xPbTiO ₃ Ceramics		166		
7.1.4	Grain Size Dependent Phase Transformation Studies on $(1-x)Bi(Mg_{3/4}W_{1/4})O_3-x$ PbTiO ₃ Ceramics 167		167		
7.2	Suggestions for Future Work				167
	References				169-180

LIST OF FIGURES

Figure No.	Figure Caption	
Figure 1.1	The ideal cubic (aristotype) perovskite of formula ABX_3 (A, B = cation, X = anion). The anions are at the vertices of the octahedra. Black circles B cations, hatched circle a cation [(taken from Megaw, 1973)].	No. 5
Figure 1.2	Crystal structure of the ordered cubic and ordered tetragonal perovskite of (1-x)BMW-xPT [Verma, N.K. and Singh A.K. (2019)].	8
Figure 1.3	Typical polarization (P)-Electric field (E) hysteresis loop for a ferroelectric material.	10
Figure 1.4	Temperature dependence of real and imaginary parts of dielectric permittivity measured at various frequencies for a crystal of the relaxor $Pb(Mg_{1/3}Nb_{2/3})O_3$ [After Bokov and Ye (2000)].	13
Figure 1.5	(a) Phase diagram of $Pb(Zr_xTi_{1-x})O_3$ piezoceramics [After Jaffe et al. (1971)].	17
Figure 1.5	(b) Dielectric constant and planar coupling coefficient vs composition [After Jaffe et al. (1971)].	18
Figure 1.6	(a) Modified Phase diagram of $Pb(Zr_xTi_{1-x})O_3$ [After Noheda et al. (2002)].	19
Figure 1.6	(b) Modified Phase diagram of $Pb(Zr_xTi_{1-x})O_3$ [after Pandey et al. (2008)].	20
Figure 1.7	(a) Modified Phase diagram of $(1-x)Pb(Mg_{1/3}Nb_{2/3})O_3-xPbTiO_3$ [Singh et al. (2006)].	21
Figure 1.7	(b) Maximization of piezoelectric strain coefficient near the morphotropic phase boundaries in $(1-x)Pb(Mg_{1/3}Nb_{2/3})O_3-xPbTiO_3$ [After Guo et al. (2003)].	22
Figure 1.8	Partial Phase diagram of $(1-x)Pb(Mg_{1/2}W_{1/2})O_3-xPbTiO_3$ [Singh et al. (2011)].	23
Figure 1.9	Lattice parameter and weight fraction of $(1-x)Pb(Mg_{1/2}W_{1/2})O_3-xPbTiO_3$ [Singh et al. (2011)].	24
Figure 1.10	Powder X-ray diffraction patterns of xBNW-(1-x)PT ceramics with $x = 0.1-0.4$ (left); the enlarged XRD profiles of (200) reflections for MPB compositions (right) [Pang et al. (2017)].	26

- **Figure 1.11** (a) The unit cell parameters a, c for various 27 compositions; (b) the tetragonality c/a for various compositions [Pang et al. (2017)].
- **Figure 1.12** Temperature dependence of dielectric permittivity and dielectric loss for xBNW-(1-x)PT ceramics: (a) x = 0.20 (b) x = 0.30 (c) x = 0.34 (d) x = 0.36 [Pang et al.(2017)].
- Figure 1.13 XRD pattern of $(1-x)Bi(Mg_{3/4}W_{1/4})O_3-xPbTiO_3$ [After 29 Snel et al. (2006)].
- **Figure 1.14** Composition dependence of lattice parameters for $(1-x)Bi(Mg_{3/4}W_{1/4})O_3-xPbTiO_3$ reported by Stringer et al. (2005).
- **Figure 1.15** Phase diagram of $(1-x)Bi(Mg_{3/4}W_{1/4})O_3-xPbTiO_3$ 31 reported by Stringer et al. (2005).
- Figure 1.16Evolution of the pseudocubic (111), (200) and (220)33XRD profiles for $0.42Bi(Mg_{1/2}Zr_{1/2})O_3$ -0.58PbTiO3
ceramics electrically poled at various field strengths
[After Upadhyay et al. (2017)].
- **Figure 1.17** Variation of lattice parameters with composition (x) of $(1-x)Bi(Mg_{1/2}Zr_{1/2})O_3-xPbTiO_3$ piezoceramics poled at an electric field of 30kV/cm along with the unpoled sample [Upadhyay et al. (2017)].
- Figure 1.18Experimentally observed (dots), Rietveld calculated
(continuous line, and their difference (continuous
bottom line) profiles for pseudocubic (110), (111) and
(200) reflections obtained after Rietveld analysis of
XRD data for 0.65Bi(Mg_{1/2}Ti_{1/2})O₃-0.35PbTiO₃ using
coexistence monoclinic + tetragonal (Pm-P4mm)
structures for various heat treatment temperatures. The
vertical tick marks above the bottom line show peak
position [After Upadhyay and Singh (2015)].
- Figure 1.19 Variation of monoclinic phase fraction with increasing 37 heat treatment for $0.65Bi(Mg_{1/2}Ti_{1/2})O_3$ - $0.35PbTiO_3$ [Upadhyay and Singh (2015)].
- Figure 1.20Variation of lattice parameters with increasing heat38treatment temperature (increased grain size) for
 $0.65Bi(Mg_{1/2}Ti_{1/2})O_3$ -0.35PbTiO3 [Upadhyay and Singh
(2015)].38
- Figure 1.21SEM images of $0.65Bi(Mg_{1/2}Ti_{1/2})O_3$ - $0.35PbTiO_3$ 39ceramics prepared at 850°C, 900°C, 950°C and 1000°Ctemperatures [After Upadhyay and Singh (2015)].

- Figure 2.1Powder XRD patterns of starting ingredients (a) Bi_2O_3 ,48(b) MgO, (c) H_2WO_4, (d) PbO and (e) TiO_2.48
- Figure 2.2 Powder XRD patterns of $(1-x)Bi(Mg_{3/4}W_{1/4})O_3$ -xPbTiO₃ 50 ceramic with composition x = 0.62 calcined at different temperatures 500°C, 600°C, 700°C, 750°C, 800°C and 850°C.
- Figure 2.3 Powder XRD patterns of $(1-x)Bi(Mg_{3/4}W_{1/4})O_3-xPbTiO_3$ 51 ceramic with compositions x = 0.45, 0.55, 0.60, 0.61, 0.62, 0.63, 0.64, 0.65, 0.66, 0.67, 0.68, 0.69, 0.70, 0.72and 0.75 respectively calcined at 850°C temperatures.
- Figure 2.4Powder XRD patterns of $(1-x)Bi(Mg_{3/4}W_{1/4})O_3$ -xPbTiO353ceramic with compositions x = 0.45, 0.55, 0.60, 0.61, 0.62, 0.63, 0.64, 0.65, 0.66, 0.67, 0.68, 0.69, 0.70, 0.72530.75 and 1.0 respectively sintered at 990°C temperature.
- Figure 2.5SEM images (left panels) and EDS spectra (right panels)54of $(1-x)Bi(Mg_{3/4}W_{1/4})O_3$ -xPbTiO_3 ceramics with
compositions x = 0.60, 0.63 and 0.67. The inset
histograms show the distribution of grain size in the
samples.54
- Figure 3.1Powder XRD patterns of $(1-x)Bi(Mg_{3/4}W_{1/4})O_3$ -xPbTiO365ceramics with x = 0.45, 0.50, 0.55, 0.60, 0.61, 0.62, 0.63, 0.64, 0.65, 0.66, 0.67, 0.68, 0.69, 0.70, 0.72 0.7565and 1.0 sintered at 990°C. Miller indices using tetragonal structure is given for <math>x = 1.0.
- **Figure 3.2** Evolution of the selected profiles with composition for $(1-x)Bi(Mg_{3/4}W_{1/4})O_3-xPbTiO_3$ ceramics. The superlattice peak (111) indexed using cubic space group (*Fm-3m*) and (011) indexed using tetragonal space group (*I4/m*) arise due to B-site cationic ordering. The peaks marked with "C" and "T" are due to cubic (*Fm-3m*) and tetragonal (*I4/m*) phases respectively.
- **Figure 3.3** Observed (red dots), Rietveld calculated (continuous 70 black line) and their difference (continuous blue curve) profiles for $(1-x)Bi(Mg_{3/4}W_{1/4})O_3-xPbTiO_3$ with (a) x = 0.75 (b) x = 0.61 and (c) x = 0.55 obtained after Rietveld analysis of the powder XRD data using cubic (*Fm-3m*), Cubic + tetragonal (*Fm-3m* + *I4/m*) and tetragonal (*I4/m*) structures, respectively. The vertical bars above the difference plot show the peak positions. The inset illustrates the goodness of the fit.
- Figure 3.4Composition dependence of (a) cubic and tetragonal
phase fractions and (b) permittivity at room temperature
for $(1-x)Bi(Mg_{3/4}W_{1/4})O_3$ -xPbTiO3 ceramics.73
- Figure 3.5 Composition dependence of (a) lattice parameters (b) 75

unit cell volume and tetragonality for $(1-x)Bi(Mg_{3/4}W_{1/4})O_3$ -xPbTiO₃ ceramics.

- **Figure 3.6** Schematic unit Cells for (a) Cubic (Fm-3m), (b) 79 Tetragonal (I4/m) and (c) Tetragonal (P4mm) phases of (1-x)Bi(Mg_{3/4}W_{1/4})O₃-xPbTiO₃ ceramics.
- Figure 3.7 Raman spectra of (a) $(1-x)Bi(Mg_{3/4}W_{1/4})O_3-xPbTiO_3$ 81 with x = 0.55, 0.62, 0.66, 0.75 and (b) pure PbTiO_3.
- **Figure 3.8** X-ray photoelectron spectra (XPS) of W4f and O1s core levels for $(1-x)Bi(Mg_{3/4}W_{1/4})O_3$ -xPbTiO₃ ceramics with x = 0.64 and 0.75. Symbols for curves obtained after deconvolution of various contributions and peak fittings, are specified in the insets.
- **Figure 3.9** Temperatue dependence of the real (ε') part of the permittivity for various compositions of $(1-x)Bi(Mg_{3/4}W_{1/4})O_3-xPbTiO_3$ ceramics (a) x = 0.45, (b) 0.55, (c) 0.61, (d) 0.64, (e) 0.72 and (f) 0.75 measured in the frequencie range from 100 KHz to 2 MHz. Inset of (a) shows the Arrehenius and Vogel-Fulcher fits for the relaxation time at various frequencies.
- **Figure 3.10** Temperature dependence of the dielectric loss $(\tan \delta)$ for various compositions of $(1-x)Bi(Mg_{3/4}W_{1/4})O_3$ -xPbTiO₃ ceramics measured in the frequencies range 100 KHz to 2 MHz.
- **Figure 3.11** Temperature dependence of real (ϵ') and imaginary (ϵ'') 91 parts of the permittivity for (1-x)Bi(Mg_{3/4}W_{1/4})O₃-xPbTiO₃ ceramics with compositions x = 0.45, 0.55, 0.61, 0.64, 0.72 and 0.75 measured at 100KHz frequency.
- Figure 3.12 Composition dependence of the peak/anomaly 92 temperatures in the real (Tm') and imaginary parts (Tm'') of the permittivity and their difference [Tm/-Tm''], measured at 100 kHz for relaxor peak of $(1-x)Bi(Mg_{3/4}W_{1/4})O_3$ -xPbTiO₃ ceramics.
- **Figure 3.13** Temperature evolution of selected XRD peak profiles of 94 0.36BMW-0.64PT ceramics. The peaks marked with "C" and "T" is due to the cubic and tetragonal phases.
- Figure 3.14Rietveld fits for the selected XRD peaks of 0.36BMW-
0.64PT ceramics using coexisting tetragonal (I4/m) and
cubic (Fm-3m) phases at lower temperatures and single
cubic (Fm-3m) phase at higher temperatures.96
- Figure 3.15 Rietveld fits for the structure of $0.36Bi(Mg_{3/4}W_{1/4})O_3$ 97

0.64PbTiO₃ using Cubic (*Fm*-3*m*) + tetragonal (*I*4/*m*) and cubic (*Fm*-3*m*) structures, for the XRD pattern measured at 150 °C (two phase region) and 650 °C (cubic phase region), respectively.

- Figure 3.16 Temperature dependence of (a) Lattice parameters, (b) 98 phase fraction of cubic and tetragonal phases (c) unit cell volume and tetragonality for 0.36BMW-0.64PT ceramic.
- Figure 3.17 New Phase diagram of $(1-x)Bi(Mg_{3/4}W_{1/4})O_3-xPbTiO_3$ 100 ceramics.
- Figure 4.1 Powder XRD patterns of $0.38Bi(Mg_{3/4}W_{1/4})O_3$ 110 0.62PbTiO₃ ceramics having 1, 2, 3 and 5 mol% excess amount of PbO. The lower pattern is for stoichiometric sample.
- Figure 4.2 Experimentally observed (red dots), Rietveld calculated 111 (overlapping black line) and their difference (continuous profiles stoichiometric blue curve) XRD for $0.38Bi(Mg_{3/4}W_{1/4})O_3-0.62PbTiO_3$ (lower panel) and with excess of 5 mol% PbO (upper panel), obtained after Rietveld structural analysis. The stoichiometric sample has coexisting cubic (Fm-3m) and tetragonal (I4/m) structures while 5 mol% excess PbO sample has coexisting cubic (Pm-3m) and tetragonal (P4mm)structures, respectively. The vertical bars upper (tetragonal), lower (cubic) above the difference plot show the peak positions.
- Figure 4.3 Powder XRD patterns of $0.38Bi(Mg_{3/4}W_{1/4})O_3$ 114 0.62PbTiO₃ ceramics modified with 1, 2, 3 and 5 mol% excess amount of Bi₂O₃ sintered at 990°C.
- **Figure 4.4** Experimentally observed (red dots), Rietveld calculated 115 (overlapping black line) and their difference (continuous blue curve) XRD profiles for $0.38Bi(Mg_{3/4}W_{1/4})O_3$ - $0.62PbTiO_3$ with 5 mol% excess Bi_2O_3 , obtained after Rietveld structural analysis using coexisting Cubic (*Fm*-3m) and tetragonal (*I*4/*m*) structures. The vertical bars upper (tetragonal), lower (cubic) above the difference plot show the peak positions.
- **Figure 4.5** Powder XRD patterns of $0.38Bi(Mg_{3/4}W_{1/4})O_3$ 116 0.62PbTiO₃ ceramics chemically modified with 1, 2, 3 and 5 mol% excess amount of TiO₂ sintered at 990°C.
- Figure 4.6 Experimentally observed (red dots), Rietveld calculated 117

(overlapping black line) and their difference (continuous blue curve) XRD profiles for $0.38Bi(Mg_{3/4}W_{1/4})O_3$ -0.62PbTiO₃ with 5mol% excess of TiO₂ obtained after Rietveld structural analysis using coexisting cubic (*Fm*-3*m*) and tetragonal (*I*4/*m*) structures. The vertical bars upper (tetragonal), lower (cubic) above the difference plot show the peak positions.

- **Figure 4.7** Powder XRD patterns of $0.38Bi(Mg_{3/4}W_{1/4})O_3$ 118 0.62PbTiO₃ ceramic samples chemically modified with 1, 2, 3 and 5 mol% excess amount of H₂WO₄ sintered at 990°C. The lower pattern is for the stoichiometric sample.
- **Figure 4.8** Experimentally observed (red dots), Rietveld calculated 119 (overlapping black line) and their difference (continuous blue curve) XRD profiles for $0.38Bi(Mg_{3/4}W_{1/4})O_3$ - $0.62PbTiO_3$ with excess of 5mol% H₂WO₄, obtained after Rietveld structural analysis using coexisting cubic (*Fm-3m*) and tetragonal (*I*4/*m*) structures. The vertical bars upper (tetragonal), lower (cubic) above the difference plot show the peak positions.
- Figure 4.9 Powder XRD patterns of $0.38Bi(Mg_{3/4}W_{1/4})O_3$ 120 0.62PbTiO₃ ceramics modified with 1, 2, 3 and 5 mol% excess amount of MgO sintered at 990°C.
- **Figure 4.10** Experimetnally observed (red dots), Rietveld calculated 121 (overlapping black line) and their difference (continuous blue curve) XRD profiles for $0.38Bi(Mg_{3/4}W_{1/4})O_3$ - $0.62PbTiO_3$ with excess of 5mol% MgO, obtained after Rietveld structural analysis using coexisting cubic (*Fm-3m*) and tetragonal (*I*4/*m*) structures. The vertical bars upper (tetragonal), lower (cubic) above the difference plot show the peak positions.
- **Figure 4.11** Variation of the lattice parameters, unit cell volume and 123 tetragonality for 0.38BMW0.62PT ceramic chemically modified by 1, 2, 3 and 5 mol% excess of Bi₂O₃, TiO₂, PbO, H₂WO₄ and MgO.
- Figure 4.12SEM micrographs of 0.38BMW-0.62PT and modified125with 5 mol% of Bi_2O_3 , MgO, H_2WO_4 , PbO and TiO_2 .
- **Figure 4.13** EDS spectrum of stoichiometric 0.38BMW-0.62PT and 126 chemically modified with 5 mol% excess of Bi_2O_3 , MgO, H₂WO₄, PbO and TiO₂.
- Figure 4.14 Temperature dependent dielectric permittivity of 128

stoichiometric 0.38BMW-0.62PT and chemically modified with 5 mol% excess of Bi₂O₃, MgO, H₂WO₄, PbO and TiO₂ at various frequencies.

- **Figure 4.15** Temperature dependent dielectric loss of 0.38BMW- 130 0.62PT and 5 mol% of (MgO, Bi₂O₃, H₂WO₄, TiO₂ and PbO) at various frequencies.
- **Figure 5.1** Powder XRD patterns of $(1-x)Bi(Mg_{3/4}W_{1/4})O_3$ -xPbTiO₃ 135 piezoceramics with compositions x = 0.61, 0.63 and 0.67 in the 2 θ range of 10°- 100°. The inset shows the zoomed (111) superlattice reflection appearing due to Bsite cationic ordering.
- **Figure 5.2** Evolution of the pseudocubic (110), (111) and (200) 137 XRD profiles of 0.39BMW- 0.61PT pellets poled at different poling field strength.
- **Figure 5.3** Evolution of the pseudocubic (110), (111) and (200) 138 XRD profiles of 0.38BMW-0.62PT pellets poled at different poling field strength.
- **Figure 5.4** Evolution of the pseudocubic (110), (111) and (200) 140 XRD profiles of 0.33BMW- 0.67PT pellets poled at different poling field strength.
- **Figure 5.5** Evolution of the pseudocubic (110), (111) and (200) 141 XRD profiles of 0.37BMW-0.63PT pellets poled at different poling field strength.
- **Figure 5.6** Experimentally Observed (red color dots), Rietveld 142 calculated (continuous black line) and their difference (continuous bottom blue line) profiles obtained after full pattern Le-Bail profile matching analysis of the powder XRD data using *P4mm* space group for (1-x)BMW-xPT ceramics with compositions x = 0.61, 0.63 and 0.67 poled at 30 kV/cm. The vertical bars (green) above the difference plot show the Bragg peaks.
- **Figure 5.7** Comparison of lattice parameters for poled (30 kV/cm) 144 and unpoled samples of (1-x)BMW-xPT ceramics with compositions x = 0.61, 0.62, 0.63 and 0.67.
- Figure 5.8Poling field dependent variations of lattice parameters145and unit cell volume of the tetragonal phase for
0.39BMW-0.61PT ceramic. Inset shows the c-axis
lattice strain for different fields for the tetragonal phase.145
- Figure 6.1 Room temperature XRD patterns of 150 $0.36Bi(Mg_{3/4}W_{1/4})O_3$ -0.64PbTiO₃ ceramic high energy ball milled for 5, 10, 15, 20, 25, 30, 35 and 52 hrs

(bottom to top).

- Figure 6.2Experimentally observed (dots), Rietveld calculated151(a,b)(overlapping continuous line) and difference (bottom
curve) profiles for $0.36Bi(Mg_{3/4}W_{1/4})O_3-0.64PbTiO_3$
ceramic obtained after Rietveld analysis of the structure
using (a) tetragonal (*P4mm*) and (b) coexisting cubic
(*Fm-3m*) and tetragonal (*I4/m*) structures. The vertical
tick marks above the difference plot show the peak
positions.
- Figure 6.2SEM image of $0.36Bi(Mg_{3/4}W_{1/4})O_3$ - $0.64PbTiO_3$ 152(c)ceramic sample ball prepared by high energy ball
milling for 52 hrs.
- Figure 6.3 Room temperature XRD patterns of 154 $0.40Bi(Mg_{3/4}W_{1/4})O_3$ -0.60PbTiO₃ samples prepared at 850°C, 900°C, 950°C and 1000°C.
- Figure 6.4 Evolution of XRD profiles for $0.40Bi(Mg_{3/4}W_{1/4})O_3$ 155 $0.60PbTiO_3$ ceramic samples calcined at different temperatures 850, 900, 950 and 1000°C for 3 hrs.
- Experimentally observed (dots), Rietveld calculated Figure 6.5 156 (overlapping continuous line) and their difference (continuous bottom line) XRD profiles for 0.40Bi(Mg_{3/4}W_{1/4})O₃-0.60PbTiO₃ ceramic obtained after Rietveld analysis of the structure using (a) cubic (Fm-3m) (sample prepared at 850°C) and (b) coexisting cubic and tetragonal (Fm-3m + I4/m) structures (sample prepared at 1000°C). The vertical tick marks above the difference plot show the peak positions.
- Figure 6.6 Room temperature XRD patterns of 157 $0.39Bi(Mg_{3/4}W_{1/4})O_3$ -0.61PbTiO₃ ceramic prepared at 850°C, 900°C, 950°C and 1000°C.
- Figure 6.7Evolution of XRD profiles for $0.39Bi(Mg_{3/4}W_{1/4})O_3$ -
 $0.61PbTiO_3$ ceramic calcined at different temperatures
850, 900, 950 and 1000°C for 3 hrs.158
- Figure 6.8 Experimentally observed (dots), Rietveld calculated 160 (overlapping continuous line) and their difference (continuous bottom line) XRD profiles for 0.39Bi(Mg_{3/4}W_{1/4})O₃-0.61PbTiO₃ ceramic obtained after Rietveld structural using (a) cubic (Fm-3m) (sample prepared at 1000° C) and (b) cubic and tetragonal (*Fm*-3m + I4/m) structures (sample prepared at 850°C). The vertical tick marks above the difference plot show the peak positions.

- Figure 6.9 Room temperature XRD patterns of 161 $0.33Bi(Mg_{3/4}W_{1/4})O_3$ -0.67PbTiO₃ sintered at 850°C, 900°C, 950°C and 1000°C.
- **Figure 6.10** Evolution of the XRD profiles for $0.33Bi(Mg_{3/4}W_{1/4})O_3$ 162 0.67PbTiO₃ ceramic prepared at 850, 900, 950 and 1000°C temperatures for 3 hrs.
- **Figure 6.11** Experimentally observed (dots), Rietveld calculated 163 (continuous line) and their difference (continuous bottom line) XRD profiles for $0.33Bi(Mg_{3/4}W_{1/4})O_3$ - $0.67PbTiO_3$ ceramic obtained after Rietveld structural analysis using (a) tetragonal (*I*4/*m*) (sample prepared at 1000 °C) and (b) coexisting cubic and tetragonal (*Fm*-3m + I4/m) structures (sample prepared at 850 °C). The vertical tick marks above the difference plot show the peak positions.

LIST OF TABLES

Table No.	Table Caption	
Table 2.1	Observed and Experimental atomic percentages for $(1-x)Bi(Mg_{3/4}W_{1/4})O_3$ -xPbTiO ₃ ceramics determined from EDS studies.	No. 55
Table 3.1	Refined Lattice parameters of $(1-x)Bi(Mg_{3/4}W_{1/4})O_3$ - xPbTiO ₃ ceramics for the composition range $0.45 \le x \le 1.0$.	71
Table 3.2	Positional coordinates and thermal parameters obtained from structure refinement of $(1-x)Bi(Mg_{3/4}W_{1/4})O_3$ - xPbTiO ₃ ceramics with x = 0.55, 0.61 and 0.75 using cubic (<i>Fm</i> -3 <i>m</i>), coexisting cubic (<i>Fm</i> -3 <i>m</i>) +Tetragonal (<i>I</i> 4/ <i>m</i>) and tetragonal (<i>I</i> 4/ <i>m</i>) structures respectively. Occupancy of atoms is kept to the nominal values.	76
Table 3.3	Selected bond lengths (Å) and bond angles (degree) extracted from the refined structures of $(1-x)Bi(Mg_{3/4}W_{1/4})O_3$ -xPbTiO ₃ Ceramics.	78
Table 4.1	Rietveld refined structural parameters of 0.38BMW-0.62PT for stoichiometric and 5 mole% excess PbO samples.	112
Table 4.2	Lattice parameters of off-stoichiometric 0.38BMW0.62PT ceramic chemically modified by 1, 2, 3 and 5 mol% excess of PbO, Bi_2O_3 , MgO, H_2WO_4 and TiO ₂ respectively.	124
Table 4.3	Dielectric anomaly temperatures and peak permittivity value at Tm_1 for stoichiometric and chemically modified with 5 mol% excess of Bi_2O_3 , MgO, H_2WO_4 , PbO and $TiO_2 TiO_2$ samples measured at 1 kHz.	129
Table 5.1	Lattice parameters of unpoled and poled sample of $(1-x)Bi(Mg_{3/4}W_{1/4})O_3$ -xPbTiO ₃ ceramics.	146

List of Abbreviations

AFE	Anti-ferroelectricity
Å	Angstrom
BE	Binding energy
°C	Degree Celsius
EDS	Energy dispersive spectroscopy
FE	Ferroelectricity
FWHM	Full width half maxima
Hrs	Hours
ICDD	International centre for diffraction data
kHz	Kilohertz
MHz	Megahertz
Min	Minute(s)
MPB	Morphotropic phase boundary
Nm	Nano-meter
Р	Polarization
E	Electric field
PT	Lead titanate
PVA	Polyvinyl alcohol
SEM	Scanning electron microscope
Т	Temperature
XPS	X-ray photoelectron spectroscopy
XRD	X-ray diffraction