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CHAPTER 6 

TIME HORIZON-BASED MODEL PREDICTIVE VVO IN PRESENCE 

OF ELECTRIC VEHICLE CHARGING LOADS 

 

6.1 Introduction 

The rapid increase in the installation of DERs and higher integration of flexible loads [electric 

vehicles (EVs)] in distribution grid are the major opportunities and challenges for utility 

operators. The existing electric power infrastructure is not yet ready to adopt the large change 

in topologies and such integrations. Although enabling CVR in the presence of PV provides 

significant savings, the system performance is profoundly affected by uncertainties and 

intermittency associated with PV power generation and load demand. Previous efforts [30], 

[138] have included the impact of uncertainty in their VVO formulation; however, they have 

not analyzed its impact on the CVR savings. Moreover, their methodology enables control 

action only in a centralized manner. A centralized manner works well for a fixed time horizon 

interval, but it might be inflexible for fast-response events such as PV intermittency. Hence, 

a multi-time horizon Volt/VAR regulation has introduced in [84], [139]. However, these 

studies do not analyzed the CVR impact under flexible EV loads. 

In the present scenario, EV penetration is one of the fastest growing advanced components 

of modern distribution systems worldwide. Therefore, DNOs and distribution network 

planners have the challenge to determine the new control algorithms that coordinate with 

other components of a network for efficient and optimal operation. In this context, a recent 

study [140] has presented the agent-based approach for EV charging load modelling, 

including the aggregated behavior of vehicles and human nature. Besides, the impact of 
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PHEVs charging on the distribution system and electrified transportation system has also 

been explored in [141]. Investigations for optimal EV charging scheduling with distributed 

renewable power and distributed energy management system for Vehicle-to-Grid (V2G) 

operation has been carried out in [142], [143]. Apart from the use of smart inverter in the 

solar PV system, the EV charging stations inverter can also play a key role to act as a mobile 

storage to feed and consume the active and reactive power from and to the distribution grid. 

In [144]-[146] the various centralized and local control strategies for reactive power 

compensation through EV charging station in low and medium voltage distribution system 

has been studied. Though, the authors of  [145], [146] have included the impact of EVs on 

their VVO methodology. However, very few have [147] examined the impact of EVs in the 

presence of CVR. Though, in [145], [146], authors have analyzed the impact of EV loads 

penetration while obtaining the optimal VVC devices set points through smart grid VVO 

engine assessing the optimal V2G impact on power losses and switching cost. However, this 

study does not include effect of DER and CVR in their VVO formulation in presence of EV 

loads. Moreover, the method also focused on only centralized control in slow time scale 

operation.  

 In this chapter, a multi-time horizon-based model predictive VVO (MP-VVO) engine 

along with autonomous Volt/VAR droop (VVD) controls has been introduced in the real-

time framework. The main objective of proposed VVO is to minimize the CVR cost, network 

losses cost, and VVO devices operating cost. In addition, provision of VAR support from 

V2G  has also been assessed under centralized VVO operation and  voltage control in the 

local domain due to sudden change in DER power output. The proposed MP-VVO 

methodology is beneficial for optimal CVR execution, scheduling the VVC devices [both 
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traditional and power electronics (PE) based], and maintaining the feeder voltage profile even 

in the presence of EV charging loads. Moreover, the autonomous VVD controller is very 

useful to handle the smart inverter’s (both PV and EV) VAR dispatch under the cloud 

transients on PV-based DER power output to control the local voltage during the real-time 

operation. In addition, the proposed control algorithms also tolerate the uncertainties and 

forecast error present in network loads and DER outputs. 

6.2 Time Horizon based Control  

Electric power system operation and control are executed in different time horizons and 

different time scales. In distribution grid, there are mainly two categories of VVO devices, 

which are traditional and PE-based devices. OLTC, AVR and CBs are traditional VVO that 

are controlled in slow time scale (from hour to minutes). The PE-based voltage regulation 

devices, such as smart inverters that can be controlled in slow as well as fast time scale 

(within few seconds) both. The switched traditional controllers are rescheduled only a few 

times in a day due to limited cycles operation constraints and the slow variation in load 

demand. Therefore, control action of these devices in slow time scale is enough for VVC 

execution. However, during a sudden change in network behaviour and DERs, power output 

fluctuation may generate the detrimental impact on grid operation. Hence, there is a need of 

fast-acting distributed control devices, such as smart inverter, that can respond quickly during 

the fast time scale operation to avoid the undesirable issues. Therefore, in this chapter, a time 

horizon-based model predictive control methodology has been introduced that can work 

under both slow and fast time scales. To do so, the entire time horizon (T) is divided into 

prediction time horizon (Tp) slots. The prediction time horizon (Tp) is further sectionalized 

into q subslots having control time horizon (Tc) with a sampling time step (dt) as shown in  
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Figure 6.1 Time horizon-based model predictive control 

 

Figure 6.1. For instance, the value of T is 24 h followed by each Tp of 1 h. If the value of q 

is four then Tc would be 15-min interval with dt time step. A detailed discussion on both 

timescales is given as follows. 

6.2.1 STSC: Centralized Approach  

In STSC, the aggregated control algorithms have been applied to coordinate and dispatch the 

control set points over a finite period at the substation level. Therefore, this control is 

alternatively referred to as a centralized control scheme. In STSC, VVO devices can be 

scheduled in different prediction and control horizons (Tp and Tc), having time intervals 

minutes to hour. In present study, Tp of 1 h and Tc of 15-min interval have been taken to 

reschedule the set points/dispatches of OLTC/AVR, CBs, and smart inverters in optimal 

manner under STSC operation, as shown in Figure 6.1. 
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6.2.2 FTSC: Local Control 

In STSC, the VVO devices are scheduled for a defined time horizon. During this time span. 

(set in STSC), however, the deviation in PV power output with respect to the forecasted value 

can be observed because of unexpected situations, such as transient cloud movements or a 

solar eclipse. Consequently, it might cause a violation of voltage limits. Therefore, fast 

control action is needed to maintain the voltage profile limits during the reduction of PV 

power output. The smart inverters have the ability to respond quickly [89] and they can 

absorb and inject reactive power. An autonomous approach is used to control the inverter 

dispatch in a real-time framework. In this study, the dt simulation time step (within the Tc 

range) is considered to control the only smart inverter dispatch in fast time scale, as shown 

in Figure 6.1. 

6.3 Model Predictive VVO  

Generally, the model predictive approach is used to handle the defined finite horizon control 

problem in optimal manner over the prediction horizon (Tp), as shown in Figure 6.2.  

 

Figure 6.2. Illustration of model predictive control 
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The achieved control set points are sent to the system to execute the control action over the 

control horizon Tc (Tc ≤ Tp). In order to obtain the sequence of control sets, the optimal 

control problem has been solved based on forecasted data considering the uncertainty and 

forecasting error. The control variables that lie within the range of tk + Tc (control region) 

have been implemented for the execution of the system operation and the rest have been 

discarded. The above-mentioned procedure is repeated using updated observations at tk + 1. 

Details of uncertainty modeling of loads and DER have been described as under. 

6.3.1 Load Prediction Uncertainty 

The probability density function is commonly used for representing the load forecast 

uncertainty of the forecasted load. The information available in literature reveals that normal 

distribution is an effective method to generate uncertainty in forecasted load consumptions 

[138]. The forecasted load is defined as the mean value of the normal distribution, and 2% of 

the expected load is set as the standard deviation. 

6.3.2 PV Irradiance Uncertainty Prediction 

Solar irradiance is a vital and determinant parameter on which the solar power generated 

from the PV module depends. Therefore, the highest amount of uncertainty in PV power 

generation is exhibited by irradiance itself. In order to model the irradiance uncertainty, the 

beta distribution is considered in this study [138]. The mean of the beta distribution has been 

defined as 𝐼𝑑𝑛𝑜𝑟𝑚 , which represents the value of current irradiance prediction in a time 

horizon. The standard deviation is a function of the mean value. The variable mean, and 

standard deviation depend on A and B parameters. For a predicted irradiance (𝐼𝑑𝑛𝑜𝑟𝑚 ), A and 

B are the parameters used for defining beta function as follows:  

,

( 1) ( 1)( ) (1 )
j t

A B

IdnormF I I I− −= −        (6.1) 
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The above-mentioned beta function models the occurrence of irradiance values I when a 

certain prediction value 𝐼𝑑𝑛𝑜𝑟𝑚  has been forecasted. The connection of A and B with mean 

and variance for each time instant of the prediction interval have been expressed as follows:  

, ,

, ,

( )
j tnorm j t

base j t j t

Id A
Mean

Id A B
 = =

+
         (6.2) 

, ,2

2

, , , ,

( )
(A ) (A 1)

j t j t

j t j t j t j t

A B
Variance

B B
 =

+ + +
      (6.3) 

The value of A and B and can be determined using equations (6.2) and (6.3) with the 

uncertainty produced by equation (6.1). 

6.4 EV loads and Charging Stations 

The impact of EVs at various consumption levels and different places, such as workplaces, 

houses, and shopping malls has directed a significant change in daily demand of the network 

[11]. With the emergence of the smart inverter, EV charging stations have a powerful feature 

to provide the reactive power support to the grid. Enabling of EVs with this feature leads to 

the increase in network capacity, reduction in system losses, and enhancing the voltage 

profile [145], [146]. But these benefits are subjected to system constraints, such as load rise, 

uncertainty in loads, and DER power generations. In order to achieve the above-mentioned 

benefits from EV, the role of EV inverter is very crucial. The EV charging stations equipped 

with smart inverters have the ability to work in different operating modes [146] (shown in 

Figure 6.3), given as follows. 

• Mode 1: On the border between Quadrants I and IV (P > 0, Q = 0) 

• Mode 2: Quadrants I (P > 0, Q > 0) 

• Mode 3: On the border between Quadrants I and II (P = 0, Q > 0) 
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Figure 6.3 Active and reactive power capability of EV inverter 

• Mode 4: Quadrants II (P < 0, Q > 0) 

• Mode 5: On the border between Quadrants II and III (P < 0, Q = 0). 

• Mode 6: Quadrants III (P < 0, Q < 0). 

• Mode 7: On the border between Quadrants III and IV (P =0, Q < 0). 238 

• Mode 8: Quadrants IV (P > 0, Q < 0). 

Generally, EV operates in P > 0, Q = 0 Mode 1 (i.e., unity power factor), which exhibits 

that EV consumes only the real power from the grid. Another possible operating Mode 8 for 

EV charging station inverter is to inject the VAR into the grid, while consuming real power 

for EV battery charging. Apart from the above-mentioned operating Mode 7, there is an 

operation scenario in which charging station can inject the reactive power to the grid when 

there is no EV connected to the charging station. Thus, in near future, charging station may 

be a possible candidate for reactive power support. 
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6.5 Problem Formulation: Stochastic Optimization 

In the present scenario, energy efficiency and demand reduction are the major concerns of 

DNO. In order to achieve this, an advanced way of CVR operation has been incorporated 

into VVO models, where multiple voltages regulating devices, such as OLTC, CBs, and 

smart inverter of PV/EV are coordinated optimally without violating the system constraints. 

In the slow timescale, enabling CVR and total operating cost are the main objectives. In the  

fast timescale, the goal is to control the voltage locally. 

6.5.1 Optimization Model 

 In this optimization model, the MP- VVO tries to minimize the CVR cost, network losses 

cost, and VVO devices operating cost, simultaneously. The proposed MP-VVO objective 

function can be formulated, as shown in the following: 

,

, ,min
k P

EV

k

t T
t t t t t t t

CVR loss VR OLTC CB SI Qpv SI Q

t t

f C C C C C C C
+

=

 = + + + + + +    (6.4) 

Where, 

,

,

1

bus

t

CVR cvr t

i i t

C C
E




= 


         6.5) 

, ,

br

t t

loss loss t br loss

br

C C P


=         (6.6) 

,

vr

t t

VR vr t vr

vr

C C X


=         (6.7) 

, ,

oltc

t t

OLTC l t l oltc

l

C C X


=        (6.8) 



 
 

Page | 162  
 

, ,

CB

t t

CB cb t i cb

cb

C C Q


=         (6.9) 

,

, , ,

pv

t t inv

SI Qpv grid t i pv

i

C C Q


=        (6.10) 

,

, , ,

EV

t t inv

SI QEV grid t i EV

i

C C Q


=        (6.11) 

In equation (6.4), 
t

CVRC ,
t

lossC ,
t

VRC ,
t

OLTCC ,and 
t

CBC  represents the CVR cost, power losses 

cost, operating cost of voltage  regulator, OLTC, and CBs respectively. ,

t

SI QpvC and ,

t

SI QEVC

represents smart inverter reactive compensation cost of PV and EV respectively. Similarly, 

symbols of bus , br , vr , oltc , CB , pv  and EV  represents the set of all buses, 

branches, branches with VRs, OLTCs, buses with CB, PV and EV respectively.  ,  , 

and   are the weighting factors and their summation should be equal to 1.  

6.5.2 Control Variables  

The following control variables are considered in the optimization problem. 

• Tap position of OLTC/AVR (
t

PT ) 

• CBs reactive power ( ,

t

i cbQ ). 

• PV reactive power dispatch (
,

,

t inv

i pvQ ). 

• EV charging station reactive power dispatch (
,

,

t inv

i EVQ ) 

The output of the present optimization is the control set points of OLTC/AVR, CBs, and 

smart inverter in such a way that to achieve the aforementioned goal, the problem has been 

formulated in slow and FTSC objectives. 
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6.5.3 System Constraints 

Equation (6.4) is subjected to the following system operating constraints 

• Transformer/regulator tap constraints: The tap range of OLTC transformers/AVR and 

tap position are given in (6.12) and (6.13) respectively. 

0.90p.u. Tap 1.1p.u.          (6.12) 

Tap 1
100

ttr
P

V
T

   
=    

  
        (6.13) 

where  16,....0......16t

PT  −  , trV  is 0.625 increments in voltage at each step and 
t

PT  is tap 

position. 

• Voltage constraints: Minimum and maximum voltage (Vmin, Vmax) at ith node should 

remain within limits as expressed in the following: 

min max , [ 0.95 1.05]p.u.
t t

ii
VV V V   −       (6.14) 

• Capacitor bank constraints: Reactive power supplied by ith CB ( ,

t

i cbQ ) is determined using 

equation (6.15) 

, , , ;t t t

i cb i cb i cb CBQ Sw Q i=            (6.15) 

where,  max

, ,0,1,2,3......,t

i cb i cbSw Sw= , ,

t

i cbSw ,

t

i cbQ  and 
max

,i cbSw  are the switching step 

number, variation in reactive power per step and available maximum number of switching 

steps at ith CB, respectively. 

• PV smart inverter constraints: The reactive power supplied by ith PV inverter (
, ,

,

t inv stsc

i pvQ

) during slow time scale period (t) is determined using the following 
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, , ,

, ,pv,
;t inv stsc t inv

i pv i pvi pv
Q Q iN=              (6.16) 

where,  max

,pv ,pv0,1,2,3......, Ni iN = , ,pviN , 
,

,pv

t inv

iQ  and 
max

,pvNi  are the switching step 

number, variation in reactive power per step and available maximum number of switching 

steps at ith PV system.  

The available (
, ,max

,

t inv

i pvQ ) is dependent upon the real power generation for a time instance t 

(
,

,

t inv

i pvP ) which is governed by the following  

( ) ( )
2 2

, ,max ,max ,

, , ,

t inv inv t inv

i pv i pv i pv pvQ S P i= −         (6.17) 

On the basis of  
,

,

t inv

i pvP  and 
,max

,

inv

i pvS , 
, ,max

,

t inv

i pvQ  is recalculated at every time period (t). 

• EV constraints:  Minimum and maximum limits of voltage, active and reactive power of 

EV as follows 

min max

,EV ,EV ,EV

t

i i iV V V            (6.18) 

, , ,max

,EV ,EV0 t inv t inv

i iP P           (6.19) 

, , ,max

,EV ,EV0 t inv t inv

i iQ Q  −          (6.20) 

The reactive power supplied by ith EV inverter during slow time scale period (t) is 

determined using the following: 

, , ,

,EV ,EV EV,EV
;t inv stsc t inv

i ii
Q Q iN=                (6.21) 

where,  max

,EV ,EV0,1,2,3......, Ni iN = , ,EViN , ,

,EV

t inv

iQ  and max

,EVNi
 are the switching step 



 
 

Page | 165  
 

number, variation in reactive power per step and available maximum number of switching 

steps at ith EV system.  

The available (
, ,max

,EV

t inv

iQ ) is dependent upon the real power charging load for a time instance 

t (
,

,EV

t inv

iP ) which is governed by the following  

( ) ( )
2 2

, ,max ,max ,

,EV ,EV ,EV EV

t inv inv t inv

i i iQ S P i= −         (6.22) 

On the basis of  
,

,EV

t inv

iP  and 
,max

,EV

inv

iS , 
, ,max

,EV

t inv

iQ is recalculated at every time period (t). 

6.6 Solution method and Procedure 

6.6.1 Prediction Error and Scenario Generation 

In this work, the PV power generation has been considered as DER. It is well known that the 

prediction models are always prone to errors. The beta distribution is used to represent solar 

irradiance prediction errors, as discussed in subsection 6.3.1. Based on uncertain prediction 

errors and forecasted power, the monte-carlo simulation has been utilized to generate 

scenarios (N) for solar irradiance and load consumptions. Various distributions and their 

parameter settings can be varied depending upon the information available regarding the 

system. 

6.6.2 Scenario Reduction and Aggregation 

The larger number of scenarios make improvement in the uncertainty model. However, it 

creates higher computation complexity and enhances computational time. Therefore, in this 

study, K-means clustering based scenario reduction technique is employed in order to reduce 

the number of scenarios (N’). While reducing the number of scenarios, a good amount of 

approximation of the system uncertainty should be maintained. In this method, the data is 
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clustered based on minimum distance from the centroid of each cluster. After generating N 

(N=500) scenarios, they have been reduced to N’ (15) scenarios using K-means clustering 

[148] and getting 15 probability of occurrence of each scenario. After implementing the 

scenario reduction technique, the probability of the achieved scenarios is normalized as 

follows: 

(Probability of occurance of one of reduced scenario)

(Sum of porbability of occurance of reduced scenarios)

norm

s =   (6.23) 

The number of scenarios N reduces to N’ by deploying the above procedures. Hence, the 

problem defined in (6.4) could be rewritten as a stochastic optimization problem with reduced 

scenarios as given (6.24) 

'

1
min

N norm

s ss
f

=
 
           (6.24) 

The VVO problem redefined in (6.24) is solved by discrete DPSO followed by the system 

constraints from equations (6.4) – (6.24). PSO is a population-based heuristic optimization 

technique [149]. The controlling parameters of DPSO used in this study are depicted in 

appendix  C, Table C.1. The achieved optimal control set points from the above formulation 

are dispatched to the VVO devices for the current prediction horizon based on predicted DER 

outputs to minimize operating cost of VVO (in this study CVR) implementation. This 

procedure is repeated when different observations come at tk + 1. Figure 6.4 shows the 

flowchart of the implementation of the proposed scheme. 
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Distribution

 Network Model

Load Uncertainty

(Normal Distribution)

PV Uncertainty

(Beta Distribution)

Generate N scenarios for prediction 

using Monte Carlo simulation 

Reduce the N (500) scenarios to N      

using K-means clustering 

Calculate the normalized probability

 of each scenario using (6.23)

Solve the MP -VVO objective (6.24) 

using DPSO 

Obtain the VVO schedule for

 the predicted time period [tk, tk+Tp] 

Implement the VVO schedule for 

the control time period [tk, tk+Tc] 
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 Daily VVO Scheduling

Completed ?

End

Tp = Tp+1

No

Yes

 

Figure 6.4 Flowchart of MP-VVO execution in STSC 

6.6.3 Droop Controller for Smart Inverter 

The control set points obtained from model predictive VVO can directly be implemented 

for CVR under STSC. However, under FTSC, the autonomous approach has been suggested. 

A droop-based control scheme has been deployed to enable the autonomous operation of the 

smart inverter to compensate the additional reactive power support. The detailed description 

can be seen chapter 5. The compensated reactive power (
, ,

, /

t inv com

i PV EVQ ) at any instant, t can be 

determined using equation (6.25). 
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   (6.25) 

where 
,inv,av max

,PV/EV

t

iQ  is the maximum available VAR capacity of smart inverter of PV/EV for 

droop controller at an instant t that is determined by the following: 

,inv,av max ,inv,max ,inv,stsc

,PV/EV ,PV/EV ,PV/EV

t t t

i i iQ Q Q= −           (6.26) 

The total VAR support with droop controller (
,inv

,PV/EV

t

iQ ) at an instant t is determined by the 

following 

,inv ,inv,stsc , nv,com

,PV/EV ,PV/EV ,PV/EV

t t t i

i i iQ Q Q= +         (6.27) 

6.6.4 Implementation of proposed coordinated scheme 

In this subsection, the coordinated operation of STSC and FTSC devices have been 

implemented using aggregated and autonomous approach as shown in Figure 6.5. This figure 

demonstrated that in centralized control, MP-VVO executes every 15 minutes interval and 

generate the optimal set points for STSC devices. However, in local control, droop controller 

runs autonomously and generates desired set points for FTSC devices in near real time 

operation. 
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Figure 6.5 Implementation of the proposed coordinated scheme 

6.7 Case Study and Simulations 

6.7.1 Test system description 

In order to validate the proposed VVO methodology, a modified IEEE-34 node test 

feeder[114] has been considered as shown in Figure 6.6. The slack bus is at the primary side 

of the 2.5 MVA D–Y substation transformer with 69/24.9 kV voltage rating with a fixed ratio 

equal to 2.56. There are two automatic voltage regulators connected between nodes 814 - 850 

(AVR-1) and 852-832 (AVR-2) and each one has 16 tap increments of 0.625% at the 

secondary side. Two three-phase CBs are connected to buses 844 and 848 with the ratings of 

300 kVAR and 450 kVAR with step variations from 0 to 3 respectively.  
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The additional three 3 phase PV plants at nodes 848 (PV1), 890 (PV2) and 840 (PV3) having 

inverter ratings 200kVA, 300kVA and 400kVA respectively. Per step reactive power 

variation from PV and EV charging station inverter is 10 kVAR and 5kVAR for slow time 

scale operation respectively. For EV charging mode, the constant power load characteristics 

with type 1 and type 4 [146] and charging level 2 of 6 kW power rating [142] have been 

assumed in this study.  

 

Figure 6.6 Modified IEEE 34 bus distribution system 

 
Figure 6.7 EV load profiles 
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Three different EV charging load profile for a typical day have been used in this study as 

shown in Figure 6.7. The normal EV penetration range with a maximum of 20% of the system 

load has been considered. For EV charging outlet and charging stations locations are referred 

from [141], where the authors have mapped the IEEE 34 bus system to a real-world 

transportation system and define the EV charging location as shown in Table 6.1. The 

charging points are divided into two categories. The first type charging outlet which does not 

participate in VAR support means they are operating in Mode1 (P>0 and Q=0) and second is 

charging stations that have the ability to inject and absorb the reactive power even when there 

is no EV is connected (i.e. Mode 7). It is further assumed that EV inverter support’s reactive 

power only if when it has not reached its maximum allowable kW power ratings. Note that 

charging station 890 and 844 follows the EV charging load profile 1 and EV charging load 

profile 3 respectively. Rest of the EV charging outlets follow the EV charging load profile 2 

as shown in Figure 6.8. The quasi-real-time load and PV profile for a typical day have been 

shown in Figure 6.9. Similarly, grid price has been shown in Figure 6.9. the cost parameters 

have been taken from [146]. 

 

Figure 6.8 Forecasted load and solar irradiance 
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Figure 6.9 Grid price over a day 

Table 6.1 EV Charging Location and Ratings 

S.no.  Location / node 

(a,b,c phase) 

Maximum 

Rated Power 

Charging Point 

(Outlet/Station) 

1 846_848b 12 kW Outlet (Only P) 

2 844_846b 6 kW Outlet (Only P) 

3 858_834b 6 kW Outlet (Only P) 

4 830c 12 kW Outlet (Only P) 

5 834_860b 6 kW Outlet (Only P) 

6 844 120 kW Station (P, Q) 

7 860 18 kW Outlet (Only P) 

8 890 180 kW Station (P, Q) 

9 834_860a 6 kW Outlet (Only P) 

 

6.7.2  Simulations and Results Analysis 

The proposed VVO methodology has been developed in Python while the test system 

modeled and load flow analysis has been done in the OpenDSS platforms interfaced through 

the component object model (COM). The quasi-static time series simulations have been 

carried out for 24 hours at fifteen minutes interval for the following cases. 
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• Case 1: ADN without MP-VVO and without EV (Base) 

• Case 2: ADN with MP-VVO 

• Case 3: ADN in the presence of EV without MP-VVO 

• Case 4: ADN with MP-VVO in the presence of EVs as reactive power support 

• Case 1. ADN Without MP-VVO and Without EV (Base) 

In this case the simulation has been carried out without VVO and EV penetration. The CVR 

has not been performed. The line drop compensation scheme has been used to execute the 

VVC operation. Simulation results are depicted in the second column of Table 6.2. The 

energy demand (Edemand) and energy losses (Elosses) of the system have been observed as 

102.37 MWh, and 6.869 MWh respectively. The total operating cost of the distribution 

system is calculated as $29997.45 for 24 hours. 

• Case 2:  ADN with MP-VVO 

In this case, proposed MP-VVO has been implemented aiming to CVR execution. Impact of 

EV penetrations in ADN has not been considered in this case. The results are depicted in the 

third column of Table 6.2. From results, it is observed that significant energy demand 

reduction about 5.024% and 14.383% losses reduction have, respectively, been achieved as 

compared to case 1. Moreover, the lowest voltage profile has also been improved, which is 

above the lower voltage limit (0.95 p.u.). The total operating cost of distribution network has 

also been reduced to $28172.327. The remarkable cost savings of about $1825.123 has been 

achieved after the inclusion of CVR. Reported savings in terms of energy and cost reveal the 

effectiveness of proposed VVO methodology for CVR execution. 
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• Case 3: ADN in the Presence of EV Without MP-VVO 

This case deals with the simulation of ADN in the presence of EV penetration without 

involving VVO. The execution of CVR also has not been included. The load flow and VVC 

have been performed using a line drop compensation method. The obtained results of this 

case have been portrayed in the fourth column of Table 6.2. The energy demand and energy 

losses of the system have been observed as 107.396 and 7.625 MWh, respectively. The total 

operating cost of the distribution system has been calculated to be $34719.54. 

 

Table 6.2 Results of different cases 

Parameters Without EV With EV 

Case 1 Case 2 Case 3 Case 4 

Edemand (MWh) 102.37 97.226 107.396 103.821 

∆Edemand  (MWh) ---- 5.144 ---- 3.575 

∆Edemand savings (%) ---- 5.024 ---- 3.328 

Elosses (MWh) 6.869 5.881 7.625 6.587 

∆Elosses (%) ---- 14.383 ------ 13.61 

Minimum voltage (pu) 0.9252 0.9501  0.95 

Cost of energy 

purchased from grid ($) 

29348.28 27549.81 34022.83 32453.39 

Active power loss cost 

($) 

639.77 550.01 686.16 592.91 

PV SI VAR 

compensation cost ($) 

----- 61.08 ---- 37.67 

EV SI VAR 

compensation cost ($) 

---- ----- ---- 9.404 

VR, CBs switching 

operating cost ($) 

9.4 11.2 10.55 11.8 

CVR cost ($) ----- 0.227 ----- 0.335 

Total operating cost ($) 29997.45 28172.327 34719.54 33105.509 

Cost of energy savings 

($) 

----- 1825.123 ----- 1614.031 
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• Case 4. ADN With MP-VVO in the Presence of EVs as Reactive Power Support:  

In this case, proposed MP-VVO has been utilized in the presence of EV penetration aiming 

to CVR execution. EV charging stations are participating partially in reactive power support. 

They can inject about 60% of the maximum EV KVA inverter capability. In this study, only 

two charging stations at nodes 890 and 844 are providing VAR support with the maximum 

value of 100 and 50 kVAR, respectively. The simulation results of this case have been shown 

in the fifth column of Table 6.2. The reported energy demand and losses of the system are 

103.821 and 6.587 MWh, respectively. In comparison to Case 3, the significant reduction in 

energy demand and losses about 3.328% and 13.61% have, respectively, been achieved. 

Moreover, the total operating cost of distribution network is reduced to $33105.509, as shown 

in Table 6.2. The remarkable cost savings about $1614.031 have been reported after inclusion 

of CVR. Reported savings in terms of energy cost reveal that proposed VVO methodology 

works well in the presence of EV as well. 

• Minimum voltage profile under different cases 

Figure 6.10(a) shows the voltage profile of the node where the voltage is lowest without EV 

penetration with and without VVO impact. From this figure, it can be seen that in Case 1, the 

lower limit violates at different instances. Moreover, the lowest voltage varies from 1.012 to 

0.9242 p.u., which is in a high range. In Case 2 operation, VVO execution with proposed 

method yield voltage profile improvement with less voltage deviation in the lowest voltage 

profile. Further, it can be clearly seen that no lower limit violation occurs with the enabling 

of MP-VVO during the whole operation. On the other hand, Figure 6.10(b) shows the lowest 

voltage profile of Cases 3 and 4, which includes the EV penetration impact. Similar to Case 

1, Case 3 does not include VVO, which also results in lower voltage limit violations. 
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However, Case 4 operation that enabled with proposed VVO does not result in lower voltage 

limit violations. 

 

Figure 6.10: Lowest voltage under (a) case 1 and case 2 (b) case 3 and case 4 

 

• Energy demand and dynamic CVR savings under different cases 

The impact of proposed VVO methodology on energy demand and CVR savings has been 

discussed under different cases. Figure 6.11(a) shows the varying power demand for Case 1 

and Case 2, and dynamic CVR saving at each 15-min interval. Figure 6.11 shows that CVR 

savings are changing dynamically. It can be observed from this figure that most of the time 

CVR saving is reported on peak loading scenario. On the other hand, in the presence of EV 

in ADN, the power demand and CVR savings for Cases 3 and 4 have been shown in Figure 

6.11(b). From this figure, it can be observed that the proposed VVO method reduces the 



 
 

Page | 177  
 

energy demand and also coordinates the EV impact in VVO to variation in load demand. At 

some points, the CVR saving is negative due to the constant power characteristics of EV 

charging loads. It is a fact that CVR has a negative impact on the constant power load 

characteristics. Further, in the presence of EV in ADN without VVO, i.e., Case 3, the feeder 

voltage suffers a higher violation of lower limit. But the execution of VVO in the presence 

of EV does not result in any voltage violations; it means that it increases the voltage profile 

of the system. As a consequence, CVR savings may or may not be positive in such conditions. 

 

Figure 6.11. Power demand and CVR savings under (a) case 1 and case 2, and (b) case 3 

and case 4. 

 

• Smart inverter reactive power support from PV and EV under different cases  

Figure 6.12 shows the optimal reactive power dispatch from PVs and EV smart inverters. 

These figures demonstrate that the need for reactive power is much higher in either peak 
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loads when there 653 is no PV power or higher penetration of EVs. The reactive power 

dispatch from smart inverters reduces the VAR support from capacitors. It can be said that 

smart inverter (PV and EV) may limit the use of CBs and emerge as a potential future 

candidate for VAR support in the global and local domain. 

• Illustration under FTSC: local control 

In order to validate the proposed control methodology under FTSC, the effect of cloud 

transient has been studied. An arbitrary instantaneous point between time intervals from 

14:00 to 14:15h has been selected. The load demand is 91% of peak demand at this point and 

forecasted solar irradiation is 81% of the peak. During this time span, the lowest voltage 

profile at node 890 becomes vulnerable to any reduction in kW power. Status of VVO devices 

AVRs and CBs remain the same, as determined in STSC, as shown in Table 6.3. The FTSC 

has been applied and illustrated for two cases. The droop parameters used in this study have 

been shown in Appendix C in Table C.2. 

 

Figure 6.12. Reactive power support from PV/EV smart inverter under (a) case 2 and      

 (b) case 4. 
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Table 6.3: STSC set point at 14:00 h to 14:15 h 

Tap position ( t

PT ) AVR-1 {1, -5, -2}; AVR-2 {5,6,6} 

CBs reactive power ( ,

t

i cbQ ).  CB844{200}; CB848{150} 

PV reactive power dispatch (
,

,

t inv

i pvQ ). PV1 {0}; PV2{100}; PV3{0} 

EV charging station reactive power dispatch  

(
,

,

t inv

i EVQ ) 

EV#1{40}; EV#2{10} 

 

(i) Case I. Effect of Cloud Transient in the Absence of EV: 

 In this case, the sudden drop in solar irradiation from 0.81 to 0.4 kW/m2 is observed due to 

the cloud movement. Accordingly, the reduction in active power from the PVs plant is 

reported. Hence, there is a voltage drop occurs due to such incidents. Figure 6.13 shows the 

drop in the lowest voltage profile with respect to fall in solar irradiation and total VAR 

support from PV inverters. 

(ii) Case II. Effect of Cloud Transient in the Presence of EV: 

In this case, the sudden drop in solar irradiation from 0.81 to 0.3 kW/m2 is observed due to 

cloud movement in the presence of EV in ADN. Figure 6.14 shows the drop in the lowest 

voltage profile with respect to fall in solar irradiation. Figure 6.14 clearly demonstrates the 

droop control-based approach for local control that helps to mitigate the lower voltage limit 

violation by providing additional reactive power compensation from PV inverters up to 0.4 

kW/m2 reduction in solar irradiation. However, after further reduction, PV inverters alone 

are not capable of maintaining the lower voltage limit. This happens because PV inverters 

have already reached their maximum allowable reactive power capacity. In such conditions, 

EV inverters from the charging station equipped with droop control feed the additional VAR 

support. Figure 6.14 clearly shows that after injecting the VAR from EV inverters, the lower 
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voltage violations have been mitigated. It is to be noted that the limit of reactive power 

compensation from EV inverter should also meet their maximum allowable range. If both 

PV and EV inverters fail to maintain the lower feeder voltage limit, in such conditions, the 

operator has to reschedule the VVO set points using centralized control approach. 

 

 
Figure 6.13 Lowest voltage profile and compensated VAR support from PV inverters 

 

 
Figure 6.14. Lowest voltage profile and compensated VAR support from PV and EV 

inverters 
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6.7.3 Validation of Droop Controls in the Real-Time Simulation Platform 

The droop controllers operate autonomously for local control actions in real-time. Therefore, 

in this study, the proposed droop control actions have been validated in a real-time simulation 

platform using a real-time digital simulator (RTDS).  

6.7.3.1 Real-Time Simulation using RTDS  

This thesis intended to use the RTDS in order to perform the real-time simulation. It has its 

own internal clock, unlike pure computer-based simulations. The RTDS will never stop its 

real-time simulations; either it does not receive the external command from other simulation 

platforms timely or waits for such command [150], [151]. Therefore, simulations in RTDS 

reflects the actual behavior of the grid operations. RTDS can be functionally divided into two 

main parts as software and hardware. A dedicated software named RSCAD is used to model 

the network and hardware is used for run time [152]. Apart from normal or Power System 

simulation mode (50 microsecond time step), RTDS simulator (Version 5.0 or after that) also 

offering a special mode of operation named as Distribution Mode with time step range of 

100-200 microsecond to simulate large-scale distribution feeders in real Distribution Mode 

with time step range of 100-200 microsecond to simulate large-scale distribution feeders in 

real-time and can perform various studies and validate their controllers related to distribution 

system [152], [153]. Therefore, this work intends to use the Distribution Mode simulation to 

test the developed control algorithms in a large-scale test system. A schematic of RTDS 

Novacor, interacting with RSCAD (version 5.007)/ run time, has been shown in Figure 6.15. 

The simulation has been carried out in distribution mode with simulation time step (dt) of 

120 μs. The modeling of DERs and EV loads are built using average models [153].  
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Figure 6.15: Schematic of RTDS (both software and hardware) 

6.7.3.2 Real-time implementation under FTSC  

In order to validate the droop control action in real-time, the instantaneous point at time 

period (14:00 to 14:15 h) and set point parameters as depicted in Table 6.3 have been used. 

The load demand is 91% of peak demand at this point and forecasted solar irradiation is 81% 

of the peak. During this time span, the lowest voltage profile at node 890 becomes vulnerable 

to any further reduction in kW power. The FTSC under cloud transient has been applied and 

illustrated without and with EV load penetrations as given in the following. 

• Case I. Cloud Transient Impact in the absence of EV Loads 

The sudden fall in solar irradiation from 0.81 to 0.4 kW/m2 has been considered to analyze 

the cloud movement impact. Accordingly, the active power from the PVs plant has been 

reduced. As a result, drop in voltage occurs due to sudden fall in PV power output. This 

resulted in lower voltage limit violation, as seen from Figure 6.16, with red color line. Under 

the circumstances, the droop controller is enabled in order to rescue from voltage droop 

below the prescribed lower limit (as set in droop controller). The enabled droop controller 

RSCAD/Visualization 
in Run time

Network 
Connection

RTDS

(Ethernet)
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injects the additional VAR support to compensate the voltage deviation. It can be clearly seen 

from Figure 6.16 that droop control action is able to control the voltage profile locally. The 

node 890 is most vulnerable node for voltage deviation. Hence, the PV2 inverter reactive 

power dispatch is critical for droop operation. The reactive power (Q) support by PV2 

inverter with and without droop controller has been shown in Figure 6.17. The reactive power 

dispatch with droop controller indicates the reactive power that is additive to centralized PV2 

reactive power dispatch. 

 

 

Figure 6.16 Lowest voltage profile without and with droop controllers 

 

 
Figure 6.17 PV inverter reactive power compensation without and with droop controls 
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• Case II. Cloud Transient Impact in Presence of EV Loads 

In this case, the sudden drop in solar irradiation from 0.81 to 0.3 kW/m2 is observed due to 

the cloud movement. Figure 6.18 shows the lowest voltage profile. In both scenarios, when 

only PV inverters and combined PV and EV inverters are providing the droop-based VAR 

support. Figure 6.18 clearly shows that up to 0.4 kW/m2 reduction in solar irradiation, VAR 

compensation from PV inverters, is alone proficient to maintain the lower voltage limit. 

However, after further reduction, PV inverters alone are not capable of maintaining the lower 

voltage limit. This is due to PV2 inverter having already reached its maximum allowable 

reactive power capacity. In such conditions, EV inverters from the charging station equipped 

with droop control feed the additional VAR support. Figure 6.18 clearly shows that after 

injecting the VAR from EV inverters, the lower voltage violation has been mitigated. Figure 

6.19 shows the compensated VAR support from PV2 and EV inverter at node 890. 

 

 

Figure 6.18. Lowest voltage profile with PV and EV inverters VAR support 
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Figure 6.19. Compensated VAR support from PV2 and EV inverter at node 890 

 

6.8 Conclusion 

An investigation on CVR energy savings and impact of EV penetration in ADN has been 

carried out. A time horizon-based model predictive control method has been employed to 

handle the uncertainties in the system. The impact of different charging levels has been 

included in VVO formulation. Apart from PV inverters, the provision of reactive power 

support through EV charging station has been examined during centralized as well as local 

control. Most of the current EVs exhibit the constant power load characteristics; hence, CVR 

saving would reduce as EV penetration increases. Besides, the dynamic voltage control using 

VVD controller has been implemented on RTDS platform. The major findings of the present 

investigations are as follows. 

• Significant reduction in energy demand, system losses, and saving in operating costs have 

been achieved with MP-VVO based CVR.  
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• The developed control method is capable of handling uncertainty and intermittency, such 

as cloud transient, without violating the feeder voltage profile.  

• Reactive power compensation through EV charging stations may be a potential candidate 

for VAR support in the future.  

• The simulation results show that EV charging load characteristics also influence the energy 

savings achieved by CVR.  

The implementation of a real-time droop controller validates the proposed dynamic voltage 

control scheme. Thus, it can be concluded that enabling the CVR through proposed MP-VVO 

method yields better performance in terms of energy savings, cost savings, and voltage 

profile improvement even in the presence of EV charging loads. 

  


