Bibliography

- Z. Chen, J. M. Guerrero, and F. Blaabjerg, "A review of the state of the art of power electronics for wind turbines," *IEEE Transactions on power electronics*, vol. 24, no. 8, pp. 1859–1875, 2009.
- [2] J. W. Kolar, T. Friedli, F. Krismer, and S. Round, "The essence of three-phase ac/ac converter systems," in 13th EPE Power Electronics and Motion Control Conference(PEMC). IEEE, 2008, pp. 27–42.
- [3] F. Z. Peng, "Z-source inverter," *IEEE Transactions on Industry Applications*, vol. 39, no. 2, pp. 504–510, 2003.
- [4] T. Friedli, J. W. Kolar, J. Rodriguez, and P. W. Wheeler, "Comparative evaluation of three-phase ac-ac matrix converter and voltage dc-link back-to-back converter systems," *IEEE Transactions on industrial electronics*, vol. 59, no. 12, pp. 4487– 4510, 2012.
- [5] A. Alesina and M. G. Venturini, "Analysis and design of optimum-amplitude nineswitch direct ac-ac converters," *IEEE Transactions on Power Electronics*, vol. 4, no. 1, pp. 101–112, 1989.
- [6] G. Roy and G. E. April, "Direct frequency changer operation under a new scalar control algorithm," *IEEE Transactions on Power Electronics*, vol. 6, no. 1, pp. 100–107, 1991.
- [7] J. Holtz and U. Boelkens, "Direct frequency convertor with sinusoidal line currents for speed-variable ac motors," *IEEE Transactions on Industrial Electronics*, vol. 36, no. 4, pp. 475–479, 1989.

- [8] Y. D. Yoon and S. K. Sul, "Carrier based modulation technique for matrix converter," *IEEE Transactions on Power Electronics*, vol. 21, no. 6, pp. 1691–1703, 2006.
- [9] L. Huber and D. Borojevic, "Space vector modulated three-phase to three-phase matrix converter with input power factor correction," *IEEE Transactions on Industry applications*, vol. 31, no. 6, pp. 1234–1246, 1995.
- [10] J. W. Kolar, F. Schafmeister, S. D. Round, and H. Ertl, "Novel three-phase acac sparse matrix converters," *IEEE Transactions on Power Electronics*, vol. 22, no. 5, pp. 1649–1661, 2007.
- [11] X. Guo, Y. Yang, and X. Wang, "Optimal space vector modulation of currentsource converter for dc-link current ripple reduction," *IEEE Transactions on Industrial Electronics*, vol. 66, no. 3, pp. 1671–1680, 2019.
- [12] J. W. Kolar, T. Friedli, J. Rodriguez, and P. W. Wheeler, "Review of three-phase pwm ac-ac converter topologies," *IEEE Transactions on Industrial Electronics*, vol. 58, no. 11, pp. 4988–5006, 2011.
- [13] S. Li, C. Xia, Y. Yan, and T. Shi, "Space-vector overmodulation strategy for ultrasparse matrix converter based on the maximum output voltage vector," *IEEE Transactions on Power Electronics*, vol. 32, no. 7, pp. 5388–5397, 2017.
- [14] S. Li, W. Chen, Y. Yan, T. Shi, and C. Xia, "A multimode space vector overmodulation strategy for ultrasparse matrix converter with improved fundamental voltage transfer ratio," *IEEE Transactions on Power Electronics*, vol. 33, no. 8, pp. 6782–6793, 2017.
- [15] J. I. Itoh, T. Hinata, K. Kato, and D. Ichimura, "A novel control method to reduce an inverter stage loss in an indirect matrix converter," in 35th IEEE Industrial Electronics Society Conference IECON09, 2009, pp. 4475–4480.
- [16] F. Schafmeister and J. W. Kolar, "Novel modulation schemes for conventional and sparse matrix converters facilitating reactive power transfer independent of active power flow," in 35th IEEE Annual Power Electronics Specialists Conference, 2004, pp. 2917–2923.

- [17] —, "Novel hybrid modulation schemes significantly extending the reactive power control range of all matrix converter topologies with low computational effort," *IEEE Transactions on Industrial Electronics*, vol. 59, no. 1, pp. 194–210, 2012.
- [18] L. Empringham, J. W. Kolar, J. Rodriguez, P. W. Wheeler, and J. C. Clare, "Technological issues and industrial application of matrix converters: A review," *IEEE Transactions on Industrial Electronics*, vol. 60, no. 10, pp. 4260–4271, 2013.
- [19] T. Wijekoon, C. Klumpner, P. Zanchetta, and P. W. Wheeler, "Implementation of a hybrid ac-ac direct power converter with unity voltage transfer," *IEEE Transactions on power electronics*, vol. 23, no. 4, pp. 1918–1926, 2008.
- [20] C. Klumpner and C. Pitic, "Hybrid matrix converter topologies: an exploration of benefits," in *IEEE Power Electronics Specialists Conference*, 2008. IEEE, 2008, pp. 2–8.
- [21] S. Mariéthoz, T. Wijekoon, and P. W. Wheeler, "Analysis, control and comparison of hybrid two-stage matrix converters for increased voltage transfer ratio and unity power factor," *IEEJ Transactions on Industry Applications*, vol. 128, no. 7, pp. 892–900, 2008.
- [22] K. Kato and J. I. Itoh, "Control strategy for a buck-boost type direct interface converter using an indirect matrix converter with an active snubber," in 25th Annual IEEE Applied Power Electronics Conference and Exposition (APEC), 2010. IEEE, 2010, pp. 1684–1691.
- [23] J. Anderson and F. Z. Peng, "Four quasi-z-source inverters," in *IEEE Power Electronics Specialists Conference (PESC)*, 2008, pp. 2743–2749.
- [24] M. Zhu, K. Yu, and F. L. Luo, "Switched inductor z-source inverter," *IEEE Trans*actions on Power Electronics, vol. 25, no. 8, pp. 2150–2158, 2010.
- [25] Y. Tang, S. Xie, C. Zhang, and Z. Xu, "Improved z-source inverter with reduced z-source capacitor voltage stress and soft-start capability," *IEEE Transactions on Power Electronics*, vol. 24, no. 2, pp. 409–415, 2009.
- [26] B. Ge, Q. Lei, W. Qian, and F. Z. Peng, "A family of z-source matrix converters," *IEEE Transactions on Industrial Electronics*, vol. 59, no. 1, pp. 35–46, 2012.

- [27] O. Ellabban, H. Abu-Rub, and S. Bayhan, "Z-source matrix converter: An overview," *IEEE Transactions on Power Electronics*, vol. 31, no. 11, pp. 7436– 7450, 2016.
- [28] S. Zhang, K. J. Tseng, and T. D. Nguyen, "Novel three-phase ac-ac z-source converters using matrix converter theory," in *Energy Conversion Congress and Exposition*. IEEE, 2009, pp. 3063–3070.
- [29] X. Liu, P. C. Loh, P. Wang, and X. Han, "Improved modulation schemes for indirect z-source matrix converter with sinusoidal input and output waveforms," *IEEE Transactions on Power Electronics*, vol. 27, no. 9, pp. 4039–4050, 2012.
- [30] S. Zhang, K.-J. Tseng, D. M. Vilathgamuwa, T. D. Nguyen, and X.-Y. Wang,
 "Design of a robust grid interface system for pmsg-based wind turbine generators," *IEEE Transactions on industrial electronics*, vol. 58, no. 1, pp. 316–328, 2011.
- [31] E. Karaman, M. Farasat, and A. M. Trzynadlowski, "Indirect matrix converters as generator-grid interfaces for wind energy systems," *IEEE Journal of Emerging* and Selected Topics in Power Electronics, vol. 2, no. 4, pp. 776–783, 2014.
- [32] —, "A 3 phase-3 phase quasi z-source matrix converter for residential wind energy systems," in *IEEE Energy Conversion Congress and Exposition (ECCE)*, 2012, pp. 240–246.
- [33] —, "Matrix converter with a series z-source," in 38th Annual Conference on Industrial Electronics Society (IECON). IEEE, 2012, pp. 6093–6098.
- [34] —, "A comparative study of series and cascaded z-source matrix converters," *IEEE Transactions on Industrial Electronics*, vol. 61, no. 10, pp. 5164–5173, 2014.
- [35] P. C. Loh, F. Gao, F. Blaabjerg, S. Y. C. Feng, and K. N. J. Soon, "Pulsewidth modulated z-source neutral-point-clamped inverter," *IEEE Transactions on Industry Applications*, vol. 43, no. 5, pp. 1295–1308, 2007.
- [36] X. Liu, P. C. Loh, F. Z. Peng, P. Wang, and F. Gao, "Modulation of three-level zsource indirect matrix converter," in *Energy Conversion Congress and Exposition*. IEEE, 2010, pp. 3195–3201.

- [37] F. B. Effah, A. J. Watson, P. W. Wheeler, J. C. Clare, and L. De-Lillo, "Space vector modulated three-level z-source hybrid direct ac-ac power converter," in 15th European Conference on Power Electronics and Applications (EPE). IEEE, 2013, pp. 1–10.
- [38] G. Roy and G. E. April, "Cycloconverter operation under a new scalar control algorithm," in 20th Annual IEEE Power Electronics Specialists Conference(PESC), 1989. IEEE, 1989, pp. 368–375.
- [39] P. C. Loh, R. Rong, F. Blaabjerg, and P. Wang, "Digital carrier modulation and sampling issues of matrix converters," *IEEE Transactions on Power Electronics*, vol. 24, no. 7, pp. 1690–1700, 2009.
- [40] X. Liu, P. Wang, P. C. Loh, and F. Blaabjerg, "A compact three-phase singleinput/dual-output matrix converter," *IEEE Transactions on Industrial Electronics*, vol. 59, no. 1, pp. 6–16, 2011.
- [41] X. Liu, P. C. Loh, P. Wang, F. Blaabjerg, Y. Tang, and E. A. Al-Ammar, "Distributed generation using indirect matrix converter in reverse power mode," *IEEE Transactions on Power Electronics*, vol. 28, no. 3, pp. 1072–1082, 2012.
- [42] L. Huber and D. Borojevic, "Space vector modulator for forced commutated cycloconverters," in *IEEE Industry Applications Society Annual Meeting*. IEEE, 1989, pp. 871–876.
- [43] T. Friedli and J. W. Kolar, "Milestones in matrix converter research," *IEEJ Jour*nal of industry applications, vol. 1, no. 1, pp. 2–14, 2012.
- [44] G. T. Chiang and J. i. Itoh, "Comparison of two overmodulation strategies in an indirect matrix converter," *IEEE Transactions on Industrial Electronics*, vol. 60, no. 1, pp. 43–53, 2013.
- [45] Y. Zhang, J. Liu, and C. Zhang, "Improved pulse-width modulation strategies for diode-assisted buck-boost voltage source inverter," *IEEE Transactions on Power Electronics*, vol. 28, no. 8, pp. 3675–3688, 2013.

- [46] A. H. Abosh, Z. Zhu, and Y. Ren, "Reduction of torque and flux ripples in space vector modulation-based direct torque control of asymmetric permanent magnet synchronous machine," *IEEE Transactions on Power Electronics*, vol. 32, no. 4, pp. 2976–2986, 2017.
- [47] X. Liang and O. Ilochonwu, "Induction motor starting in practical industrial applications," *IEEE Transactions on Industry Applications*, vol. 47, no. 1, pp. 271–280, 2011.
- [48] S. Liu, B. Ge, X. Jiang, H. Abu-Rub, and F. Z. Peng, "Comparative evaluation of three z-source/quasi-z-source indirect matrix converters," *IEEE Transactions on Industrial Electronics*, vol. 62, no. 2, pp. 692–701, 2015.
- [49] S. Liu, B. Ge, Y. Liu, H. Abu-Rub, R. S. Balog, and H. Sun, "Modeling, analysis, and parameters design of lc-filter-integrated quasi-z-source indirect matrix converter," *IEEE Transactions on Power Electronics*, vol. 31, no. 11, pp. 7544–7555, 2016.
- [50] A. M. Bozorgi and M. Farasat, "Improved design and space vector modulation of a z-source ultra-sparse matrix converter: Analysis, implementation and performance evaluation," *IEEE Transactions on Industry Applications*, vol. 54, no. 4, pp. 3737– 3748, 2018.
- [51] S. Liu, B. Ge, H. Abu-Rub, X. Jiang, and F. Z. Peng, "A novel indirect quasi-zsource matrix converter applied to induction motor drives," in *Energy Conversion Congress and Exposition (ECCE), 2013 IEEE.* IEEE, 2013, pp. 2440–2444.
- [52] S. S. Nag and S. Mishra, "Current fed switched inverter," *IEEE Transactions on Industrial Electronics*, vol. 61, no. 9, pp. 4680–4690, 2014.
- [53] M. Baumann, F. Stogerer, and J. Kolar, "Part ii: experimental analysis of the very sparse matrix converter," in 17th IEEE Applied Power Electronics Conference and Exposition, vol. 2. IEEE, 2002, pp. 788–791.
- [54] M. Y. Lee, P. Wheeler, and C. Klumpner, "Space vector modulated multilevel matrix converter," *IEEE Transactions on Industrial Electronics*, vol. 57, no. 10, pp. 3385–3394, 2010.

- [55] Y. Shi, X. Yang, Q. He, and Z. Wang, "Research on a novel multilevel matrix converter," in 35th IEEE Power Electronics Specialists Conference, vol. 3. IEEE, 2004, pp. 2413–2419.
- [56] P. C. Loh, F. Gao, P. C. Tan, and F. Blaabjerg, "Three-level ac-dc-ac z-source converter using reduced passive component count," *IEEE Transactions on Power Electronics*, vol. 24, no. 7, pp. 1671–1681, 2009.
- [57] V. Somasekhar and K. Gopakumar, "Three-level inverter configuration cascading two two-level inverters," *IEE Proceedings Electric Power Applications*, vol. 150, no. 3, pp. 245–254, 2003.
- [58] C. Klumpner, T. Wijekoon, and P. Wheeler, "A new class of hybrid ac-ac direct power converters," in 14th Industry Applications Society Annual Meeting, 2005, vol. 4. IEEE, 2005, pp. 2374–2381.
- [59] Y. Xia, X. Zhang, M. Qiao, F. Yu, Y. Wei, and P. Zhu, "Research on a new indirect space-vector overmodulation strategy in matrix converter," *IEEE Transactions on Industrial Electronics*, vol. 63, no. 2, pp. 1130–1141, 2016.
- [60] P. D. Ziogas, Y.-G. Kang, and V. R. Stefanovic, "Rectifier-inverter frequency changers with suppressed dc link components," *IEEE Transactions on industry applications*, no. 6, pp. 1027–1036, 1986.
- [61] A. Alesina and M. Venturini, "Solid-state power conversion: A fourier analysis approach to generalized transformer synthesis," *IEEE Transactions on circuits* and systems, vol. 28, no. 4, pp. 319–330, 1981.
- [62] M. Venturini and A. Alesina, "The generalised transformer: a new bidirectional, sinusoidal waveform frequency converter with continuously adjustable input power factor," in *Power Electronics Specialists Conference(PESC)*. IEEE, 1980, pp. 242–252.
- [63] C. Klumpner, T. Wijekoon, and P. Wheeler, "New methods for the active compensation of unbalanced supply voltages for two-stage direct power converters," *IEEJ Transactions on Industry Applications*, vol. 126, no. 5, pp. 589–598, 2006.

- [64] P. D. Ziogas, S. I. Khan, and M. H. Rashid, "Some improved forced commutated cycloconverter structures," *IEEE Transactions on Industry Applications*, no. 5, pp. 1242–1253, 1985.
- [65] H. W. Van Der Broeck, H. C. Skudelny, and G. V. Stanke, "Analysis and realization of a pulsewidth modulator based on voltage space vectors," *IEEE Transactions on Industry Applications*, vol. 24, no. 1, pp. 142–150, 1988.
- [66] B. Wang and G. Venkataramanan, "A carrier-based pwm algorithm for indirect matrix converters," in 37th IEEE Power Electronics Specialists Conference. IEEE, 2006, pp. 2780–2787.
- [67] P. Correa, J. Rodríguez, M. Rivera, J. R. Espinoza, and J. W. Kolar, "Predictive control of an indirect matrix converter," *IEEE Transactions on Industrial Electronics*, vol. 56, no. 6, pp. 1847–1853, 2009.
- [68] V. Padhee, A. K. Sahoo, and N. Mohan, "Modulation techniques for enhanced reduction in common-mode voltage and output voltage distortion in indirect matrix converters," *IEEE Transactions on Power Electronics*, vol. 32, no. 11, pp. 8655–8670, 2017.
- [69] T. D. Nguyen and H.-H. Lee, "A new svm method for an indirect matrix converter with common-mode voltage reduction," *IEEE Transactions on Industrial Informatics*, vol. 10, no. 1, pp. 61–72, 2014.
- [70] L. Wei, T. A. Lipo, and H. Chan, "Matrix converter topologies with reduced number of switches," in 33rd IEEE Annual Power Electronics Specialists Conference(PESC), 2002, vol. 1. IEEE, 2002, pp. 57–63.
- [71] Y. Liu, H. Abu-Rub, B. Ge, F. Blaabjerg, O. Ellabban, and P. C. Loh, "Z-source matrix converter," *Impedance Source Power Electronic Converters*, pp. 148–178, 2016.
- [72] J. Rodriguez, M. Rivera, J. W. Kolar, and P. W. Wheeler, "A review of control and modulation methods for matrix converters," *IEEE Transactions on industrial electronics*, vol. 59, no. 1, pp. 58–70, 2012.

- [73] A. M. Bozorgi, A. Hakemi, M. Farasat, and M. Monfared, "Modulation techniques for common-mode voltage reduction in the z-source ultra-sparse matrix converters," *IEEE Transactions on Power Electronics*, vol. 34, no. 1, pp. 958–970, 2019.
- [74] T. D. Nguyen and H.-H. Lee, "Modulation strategies to reduce common-mode voltage for indirect matrix converters," *IEEE Transactions on Industrial Electronics*, vol. 59, no. 1, pp. 129–140, 2012.
- [75] A. M. Bozorgi and M. Farasat, "An in-depth investigation of z-source ultra-sparse matrix converter in buck and boost modes of operation," *IEEE Transactions on Industrial Electronics*, vol. 65, no. 6, pp. 5177–5187, 2018.
- [76] B. Axelrod, Y. Berkovich, and A. Ioinovici, "Switched-capacitor/switchedinductor structures for getting transformerless hybrid dc-dc pwm converters," *IEEE Transactions on Circuits and Systems I: Regular Papers*, vol. 55, no. 2, pp. 687–696, 2008.
- [77] Y. Minari, K. Shinohara, and R. Ueda, "Pwm-rectifier/voltage-source inverter without dc link components for induction motor drive," in *IEE Proceedings B* (*Electric Power Applications*), vol. 140, no. 6. IET, 1993, pp. 363–368.
- [78] M. Raghuram, A. K. Chauhan, and S. K. Singh, "Switched capacitor impedance matrix converter," in *Energy Conversion Congress and Exposition (ECCE)*. IEEE, 2017, pp. 1071–1075.
- [79] F. Z. Peng, X. Yuan, X. Fang, and Z. Qian, "Z-source inverter for adjustable speed drives," *IEEE power electronics letters*, vol. 1, no. 2, pp. 33–35, 2003.
- [80] M. Hamouda, H. F. Blanchette, and K. Al-Haddad, "Unity power factor operation of indirect matrix converter tied to unbalanced grid," *IEEE Transactions on Power Electronics*, vol. 31, no. 2, pp. 1095–1107, 2016.
- [81] F. Z. Peng, M. Shen, and Z. Qian, "Maximum boost control of the z-source inverter," *IEEE Transactions on Power Electronics*, vol. 20, no. 4, pp. 833–838, 2005.

- [82] Y. P. Siwakoti, F. Z. Peng, F. Blaabjerg, P. C. Loh, and G. E. Town, "Impedancesource networks for electric power conversion part i: A topological review," *IEEE Transactions on Power Electronics*, vol. 30, no. 2, pp. 699–716, 2015.
- [83] P. Szczesniak, "Three-phase ac-ac power converters based on matrix converter topology," Springer, 2013.