
Chapter 3

NAGA: New Accelerated Gradient

Algorithm with Convergence and

Stability Guarantees and Applications

3.1 Introduction

Many machine learning problems are designed using a regularized convex minimization

framework, which is described as the minimization of the sum of a smooth convex loss

function f (·) with gradient having Lipschitz constant L and a non-smooth convex regu-

larization function g(·), both defined over d-dimensional real space R
d , as,

min
x∈Rd

F(x) = f (x)+ρ ·g(x). (3.1)

Few classic applications where this framework is applicable include recognition [209,

189, 132], recommender systems [5, 116], natural language processing [68, 60], com-

putational biology [32, 223], web search ranking [51], similarity learning [50] etc. The

main problem in solving (3.1) is due to the non-smooth regularization function. Pre-

viously proposed methods that solve this framework include interior point method (IPM)

[196], projected subgradient method [160], blockwise coordinate descent algorithm [121],

forward-looking subgradients [77] and so on. Although IPMs provide highly accurate

27

Chapter 3. NAGA 28

results in low iteration counts, the iteration cost grows super-linearly with the number

of decision variables [106]. In addition, the convergence of subgradient-based methods

is slow in practice. The computationally cheaper iterations and faster convergence of

proximal-based methods motivated us to analyze them further.

In this work, the nonsmooth sparsity-inducing regularizers are considered, which are de-

fined, based on non-smooth ℓ1 norm. The main reason to employ ℓ1 norm is to induce

sparsity while learning the model, which is suitable for large dimensional problems. A

squared loss function along with the ℓ1 norm formulates the popular LASSO framework

[191], which is well-utilized for the regression problems. Such sparsity-inducing regu-

larizers consider the internal structure of the feature sets, which are efficiently learned

with the help of proximal-based methods. In the settings of machine learning, various

lasso extension based frameworks are available such as Group Lasso [14, 217] via the

ℓ1− ℓ2 block-norm [52] or the ℓ1− ℓq block-norm [200], ℓ2− ℓ0 norm [125], tree struc-

ture [219, 105], fused lasso [192], graph structure [218] etc. We followed the original

lasso framework in the current work, however, a direct extension is also applicable for the

extended lasso settings.

As discussed in Chapter 2, in its standard form, proximal gradient methods (PGA) be-

long to the general class of iterative forward-backward splitting algorithms of convex

optimization theory. The main drawback of the traditional proximal gradient methods is

its slow convergence, which can sometimes be overcome with the help of an additional

acceleration step. Such acceleration step need not necessarily accelerate the speed of con-

vergence. Thus, a detailed study is required for such acceleration based gradient meth-

ods. In the current chapter, we propose a novel accelerated proximal gradient algorithm,

namely New Accelerated Gradient Algorithm (NAGA), which outperforms the traditional

proximal gradient methods (both accelerated and non-accelerated versions). We provide

the convergence and stability analysis of the algorithm. The forward-backward operator

can be both non-expansive and contraction. We provide the convergence proof for both

types of operators. We tested the practical performance of NAGA for three real-world

applications, one of which is the high-dimensional regression/classification problem, the

second one is the joint subspace learning from the cross-domain datasets, and the third is

to solve the extended lasso frameworks with the overlapping group and fused penalties.

We compared its performance against previously proposed proximal algorithms based

on the number of iterations needed to converge, the minimum objective function value

Chapter 3. NAGA 29

achieved and the prediction as well as classification accuracy. Experimental results for

all the tasks (regression, classification and joint subspace learning) conclude that NAGA

outperforms previous proximal algorithms and thus we can claim it to be suitable for use

as the optimization method in machine learning tasks.

3.1.1 Contributions

The contribution of the chapter is five-fold:

• We propose a new extragradient-based acceleration gradient algorithm, named as

NAGA for solving the non-smooth convex optimization problem. We applied the

algorithm to solve the Lasso framework. New definitions of proximal gradient

methods are also designed using latest fixed-point iterations.

• We present the convergence and stability guarantees of the proposed algorithm. We

derived the boundedness and convergence of the algorithm and proved that with the

contraction mappings, the proposed fixed-point scheme is stable. The convergence

of the proposed algorithm is proved under two cases. The first case considers the

contraction mapping, whereas the second case considers the more general nonex-

pansive mappings.

• We applied all the algorithms to the task of the high-dimensional regression/clas-

sification problem, and experiments are performed on nine publicly available real

datasets.

• We also applied the algorithm to the task of unified sparse representation learning,

and present the experiments and result analysis with two real cross-modal datasets.

• In the end, we applied the algorithm to solve few extended-lasso frameworks, in-

cluding overlapped group lasso and fused lasso penalties, and demonstrated the

performance with three publicly available real datasets.

Chapter 3. NAGA 30

3.1.2 Outline

The organization of this chapter is as follows. Section 3.2 describes the background of the

problem, few mathematical terms, and related concepts. Section 3.3 introduces our pro-

posed algorithm to solve the LASSO problem. The mathematical derivations and analysis

are discussed in section 3.4. Section 3.5 includes the experimental analysis of the algo-

rithm, where several publicly available real-world datasets were utilized, and a detailed

comparison between traditional proximal algorithms are presented. We also present the

performance of the proposed NAGA algorithm on the tasks of unified sparse representa-

tion learning and to solve the extended lasso frameworks with several publicly available

real datasets in this section. Finally, we conclude our work in Section 3.6.

3.2 Related Concepts

We focus to solve the following problem,

min
x∈Rd

F(x) = f (x)+g(x), (3.2)

which can be solved by traditional PGA defined by the following iterative scheme,

xn+1 ← proxλg(Id−λ∇ f)(xn), (3.3)

where xn denotes the nth iteration of the algorithm. In order to accelerate the convergence

of PGA, the following Acceleration Gradient Algorithm (AGA) was proposed in [23],

yn ← xn +αn(xn− xn−1),

xn+1 ← proxλg(Id−λ∇ f)(yn) ∀n ∈ N.
(3.4)

Here αn =
(

tn−1−1
tn

)

with tn+1 ← 1+
√

1+4t2
n

2
and g(·) is a ‖ · ‖1 function. Other definitions

for αn are also available, for example [47, 138].

We already defined the proximal gradient methods in more general settings of the infinite

dimensional Hilbert space H in Chapter 2. The forward-backward operator J
f ,g
λ

= (I +

Chapter 3. NAGA 31

λ∂g)−1(I−λ∇ f) can be denoted as T and J
f ,g
λn

= (I+λn∂g)−1(I−λn∇ f) can be denoted

as Tn for the sake of simplicity in the proofs.

In order to guarantee the convergence, the value of λn ∈ (0,2/L) [23]. The iterative

procedure in (3.3) can be rewritten as,

xn+1 ← Tn(xn), (3.5)

which is called the Picard fixed-point iterations. Considering the definition of Tn as a

forward-backward operator, it is also called the Forward-Backward Algorithm (FBA). In

the field of fixed point theory, this scheme plays an important role because of the Banach

Contraction Principle, which states that for contraction type mappings, this scheme con-

verges to a fixed point in Banach space. Many iterative schemes are proposed thereafter

for different mappings and spaces in the field of fixed point theory. In the similar spirit

Mann in [128] proposed another fixed point iteration as follows:

xn+1 ← γnxn +(1− γn)Tnxn, for n≥ 0, (3.6)

for an arbitrary x1 ∈H . In other words, it is the successive average iteration, that consid-

ers the following conditions on the sequence {xn},
(A1) 0≤ γn < 1,

(A2) ∑
∞
n=1 γn = ∞.

If we consider the operator Tn as a forward-backward operator, we will call (3.6) as

the Mann-based Forward-Backward Algorithm (MFBA). In [1], authors successfully de-

signed a new iterative scheme which converges with a rate similar to Picard iterations, but

faster than Mann iteration for contraction mappings. The authors called this iteration as

the S-iteration process defined for x1 ∈H as follows,

yn ← (1−βn)xn +βnTnxn,

xn+1 ← (1− γn)Tnxn + γnTnyn,
(3.7)

where {γn} and {βn} are two real sequences in the interval (0,1] with the following con-

dition,

(B1)∑
∞
n=1 γnβn(1−βn) = ∞.

Chapter 3. NAGA 32

Since the S-iteration process cannot reduce to the Mann iterative scheme, so this algorithm

is free from the Mann algorithm. In the field of fixed point theory, S-iteration and similar

schemes are known as extra-gradient fixed-point methods. A brief discussion about the ex-

tragradient methods is presented in Chapter 2. With respect to the forward-backward op-

erator Tn, we name (3.7) as the S-iteration-based Forward-Backward Algorithm (SFBA).

In [173], author presented normal S-iteration algorithm as follows,

xn+1 ← Tn((1−βn)xn +βnTnxn), (3.8)

where {βn} ∈ (0,1]. This scheme is also referred as hybrid Picard-Mann iteration in the

literature of fixed point theory. The author also claimed that the proposed fixed-point

iterative scheme converges faster than the Picard iterative scheme. We name (3.8) with

respect to the forward-backward operator Tn as, the Normal S-iteration-based Forward-

Backward Algorithm (NSFBA). It should be noted that corresponding to these fixed point

iterative schemes, different definitions of proximal gradient algorithms can be given.

In this work, it is the first time that we applied these methods to the problem of convex

minimization for the task of machine learning and compare the performance of these

algorithms on the real datasets. In addition, we combine the Normal S-iteration-based

Forward-Backward Algorithm with an inertial step to design its accelerated version. We

investigate the behavior of the proposed algorithm for the task of prediction. Note that in

the similar work, [127] included the inertial term with the Mann iteration process.

3.3 NAGA

In this section, the New Inertial-based Forward-Backward Algorithm (NIFBA) is pro-

posed. The algorithm is a modification of classic inertial-based forward-backward split-

ting algorithm (3.4). Consider A : H → 2H and B : C→H are two maximal monotone

operators, and B has the co-coercive property with respect to the solution set. Let {αn}
and {βn} are two sequences in (0,1] and {λn} is a regularization sequence in (0,2/L). We

define T = JA
λ (I−λB) and Tn = JA

λn
(I−λnB), where lim

k→∞
λn = λ . For any x0 and x1 ∈H ,

Chapter 3. NAGA 33

the NIFBA is defined as follows:

yn ← xn +αn(xn− xn−1)

zn ← (1−βn) yn +βn Tnyn

xn+1 ← Tnzn

(3.9)

The term yn introduces an inertial extrapolate step that produces acceleration with proper

parameter settings. In our experiments, the sequence αn is generated in a way similar to

[47]. This algorithm is applied to solve the Lasso problem given as follows.

Consider a learning framework with the training dataset with m instances denoted as

D = {(xi,yi), xi ∈ R
d, and yi ∈ R for i = 1, · · · ,m}. Here, each pair (xi,yi) represents ith

input-output pair. We consider function f (·) of (3.1) as the squared loss function and func-

tion g(·) as non-smooth l1 norm, which reduces problem (3.1) into the popular LASSO

framework [191] as follows,

min
w∈Rd

1

2
‖Y −Xw‖2

2 +ρ‖w‖1. (3.10)

Note that X = {x1,x2, · · · ,xi} where i = 1,2, · · · ,m, and each xi ∈ R
d for d−dimensions

and Y is a set of m real values (outcomes) for regression or the distinct class labels for

classification, i.e. Y = {y1,y2, · · ·yi} for i = 1,2, · · · ,m. The parameter w ∈ R
d is the

weight parameter, which sets weights to each dimension subject to the minimum loss.

The ℓ1 norm on parameter w shows that the resulting weights are required to be sparse.

The parameter ρ is the sparsity controlling parameter and ‖ · ‖2 is the Euclidean norm.

For any λn ∈ (0,2/L], the corresponding forward backward operator J
f ,g
ρλn

is defined as

follows,

J
f ,g
ρλn

(w) = proxρλng(w−ρλn f (w)),

The proximity operator for l1-norm is the shrinkage operator, defined as follows [151],

proxρλn‖·‖1
(w) = (|wi|−ρλn)+ sgn(wi),

where sgn(·) is signum function. We define the new proximal gradient algorithm with

respect to the NIFBA (3.9) as New Accelerated Gradient Algorithm (NAGA). The pseudo-

code of NAGA is given in algorithm 2.

Chapter 3. NAGA 34

Algorithm 2: NAGA

Data: Training/Testing Data, ρ , tol

Result: wn+1

begin

w0 = w1 ∈H ,λ1 = 1,α1 = 0,n = 0;

repeat

n← n+1;

Find λn using backtracking step-size rule, and compute αn and βn;

Tn ← wn +αn(wn−wn−1);

un ← proxρλn‖·‖1
(Tn−λn(X

T XTn−XTY));

vn ← (1−βn)Tn +βnun;

wn+1 ← proxρλn‖·‖1
(vn−λn(X

T Xvn−XTY));

until converge;

The condition converge is considered to be achieved when the difference between the

function value at the previous step and the function value at the current step becomes lesser

than a previously defined tolerance value tol. In our experiments, we set the value of tol as

10e-5. We have considered that the value of L is not known in advance and thus we adopt

the backtracking line search in each iteration, as considered in [23] and almost all the

proximal gradient techniques proposed thereafter. Also, to establish the convergence, we

ensure that value of λn belongs to set (0,2/L]. It should be noted that the computational

cost of each iteration is slightly higher than the classic accelerated method. However,

the reduction in the number of iterations due to the proposed arrangement compensates

for this overhead. In the next section, we will discuss the mathematical properties of the

algorithm.

3.4 Analysis of NAGA

In this section, the convergence of the algorithm for the contraction as well as non-

expansive mappings are presented. In order to analyze the method, we will utilize the

following lemmas and theorems.

Lemma 3.1. [127] Assume φn ∈ [0,∞) and δn ∈ [0,∞) satisfy:

(1) φn+1−φn ≤ θn(φn−φn−1)+δn,

(2) ∑
+∞
n=1 δn < ∞,

Chapter 3. NAGA 35

(3) {θn} ⊂ [0,θ], where θ ∈ [0,1).

Then, the sequence {φn} is convergent with ∑
+∞
n=1[φn+1−φn]< ∞, where [t]+ = max{t,0}

for any t ∈ R.

From the property of projection operator we have,

∀x∗ ∈C, we have 〈x− JA
λn
(x),x∗− JA

λn
(x)〉 ≤ 0 (3.11)

Lemma 3.2. [149] Let H be a Hilbert space and {xn} a sequence such that there exists

a nonempty set S⊂H verifying:

(i) For every x̄ ∈ S, limn→∞|xn− x̄| exists.

(ii) If xv weakly converges to x ∈H for a subsequence v→ ∞, then x ∈ S.

Then, there exists x∗ ∈ S such that {xn} weakly converges to x∗ in H .

Lemma 3.3. [27] Let δ be a real number satisfying 0≤ δ < 1 and {εn}∞
n=0 be a sequence

of positive numbers such that limn→∞ εn = 0. Then, for any sequence of positive numbers

{un}∞
n=0 satisfying un+1 ≤ δun + εn, for n = 0,1, · · · , we have limn→∞ un = 0.

We start the mathematical analysis with the boundedness proof of the sequence generated

by the proposed algorithm.

3.4.1 Boundedness of {xn} from NAGA

Let x∗ is the solution of problem (3.1), then can write, x∗ = JA
λn
(x∗) and B(x∗) = 0. For

convenience, we define the following terms,

φn =
‖xn− x∗‖2

2
, δn =

‖xn− xn−1‖2

2
, Γn =

‖xn− yn‖2

2

We will use the following identity in our proofs,

〈a−b,a− c〉= 1

2
‖a−b‖2 +

1

2
‖a− c‖2− 1

2
‖b− c‖2 (3.12)

Chapter 3. NAGA 36

From the definition of Tn, non-expansivity of the resolvent operator JA
λn

and coercivity of

B, we get

φn+1 =
1

2
‖xn+1− x∗‖2 =

1

2
‖JA

λn
(I−λnB)zn− x∗‖2

≤ 1

2
‖(zn− x∗)−λnB(zn)‖2

=
1

2
[‖zn− x∗‖2−2〈zn− x∗,B(zn)−B(x∗)〉+λ 2

n ‖B(zn)‖2]

≤ 1

2
[‖zn− x∗‖2 +λ 2

n ‖B(zn)‖2− 2λn

L
‖B(zn)‖2]

=
1

2
‖zn− x∗‖2−

(
λn

L
− λ 2

n

2

)

‖B(zn)‖2. (3.13)

Note that, from the property of non-expansivity of operator Tn and (3.9), we have,

1

2
‖zn− x∗‖2 =

1

2
‖(1−βn)yn +βnTnyn− x∗‖2

=
1

2
[(1−βn)

2‖yn− x∗‖2 +β 2
n ‖Tnyn− x∗‖2 +2(1−βn)βn〈yn− x∗,Tnyn− x∗〉]

≤ 1

2
‖yn− x∗‖2.

Substituting back this value in (3.13) we get,

φn+1 =
1

2
‖yn− x∗‖2−

(
λn

L
− λ 2

n

2

)

‖B(zn)‖2. (3.14)

From the definition of yn in (3.9), we get,

1

2
‖yn− x∗‖2 =

1

2
‖xn +αn(xn− xn−1)− x∗‖2

=
1

2
[‖xn− x∗‖2 +α2

n‖xn− xn−1‖2 +2αn〈xn− x∗,xn− xn−1〉]

= φn +α2
n δn +αn〈xn− x∗,xn− xn−1〉

From identity (3.12), we get,

1

2
‖yn− x∗‖2 = φn +

α2
n +αn

2
δn +αn(φn−φn−1). (3.15)

Chapter 3. NAGA 37

Substituting back in (3.14), we get,

φn+1 ≤ φn +
α2

n +αn

2
δn +αn(φn−φn−1)−

(
λn

L
− λ 2

n

2

)

‖B(zn)‖2. (3.16)

Since 0 < λn < 2
L

, we have (λn

L
− λ 2

n

2
) > 0. Also from the conditions on αn, we have

α2
n+αn

2
≤ αn. Thus, we derive,

φn+1 ≤ φn +αnδn +αn(φn−φn−1). (3.17)

Following the same line of derivation of [123], we deduce that {φn} is convergent. Thus,

the sequence {xn} is bounded. Notice that at this point we get the first requirement of

Opial’s theorem.

3.4.2 Convergence with Contraction Mappings

Let {xn} be a sequence in H , and T : H →H be a contraction mapping. Let p be a

fixed point of T . In [35] authors proved that every contraction mapping that has a fixed

point, satisfies the following inequality, for 0≤ δ < 1,

‖p−T x‖ ≤ δ‖p− x‖ for x ∈H . (3.18)

The property of non-expansivity of the operator Tn holds if 0 ≤ λn ≤ 2/L. However, to

prove the convergence and stability guarantee with the contraction property, we assume

the contraction property of the operators, which holds for 0 < λn < 2/L [6].

Theorem 3.4. Let H be a Hilbert space and T : H →H be a contraction mapping that

satisfies the condition (3.18) for 0≤ δ < 1 and fixed point p. For the initial points x0 and

x1, let {xn}∞
n=0 is a sequence generated by (3.9), where {αn} and {βn} ∈ (0,1]. Let the

sequence {xn} satisfies the following condition,

‖xn− xn−1‖/αn → 0 as n→ ∞. (3.19)

Then {xn}∞
n=0 converges to p.

Chapter 3. NAGA 38

Proof. From (3.18) and (3.9), we have

‖xn+1− p‖= ‖Tn[(1−βn)yn +βnTnyn]− p‖
≤ δ ‖((1−βn)yn +βnTnyn)− p‖
≤ δ ((1−βn) ‖yn− p‖+βn ‖Tnyn− p‖)
≤ δ ((1−βn(1−δ)) ‖yn− p‖)

≤ δ
[

(1−βn(1−δ)) ‖xn− p‖+αn(1−βn(1−δ)) ‖xn− xn−1‖
]

≤ δ
[

(1−βn(1−δ))‖xn− p‖+(1−βn(1−δ))
‖xn− xn−1‖

αn

]

Since {αn} and {βn} ∈ (0,1], 0 ≤ δ < 1, from condition (3.19) and lemma (3.3), we get

limn→∞‖xn+1− p‖= 0. This ends the proof.

3.4.3 Convergence with Non-expansive Mappings

Theorem 3.5. Let H be a Hilbert space and T : H →H be a non-expansive mapping.

Let x∗ is the solution of problem 3.1. For the initial points x0 and x1, let {xn}∞
n=0 is a

sequence generated by (3.9), where αn and βn ∈ (0,1]. Let the sequence {xn} satisfies the

following condition:
∞

∑
n=1

αn‖xn− xn−1‖2 < ∞.

Then {xn}∞
n=0 converges to x∗.

Proof. Since the sequence {φn} is convergent (proved in section 3.4.1), from (3.17) and

Lemma (3.1), we have ∑
+∞
n=1[‖xn− x∗‖2−‖xn−1− x∗‖2] < ∞. Thus, from (3.16) we can

write,
(

λn

L
− λ 2

n

2

)

‖B(zn)‖2 ≤ φn−φn+1 +αnδn +αn(φn−φn−1) (3.20)

Thus,
+∞

∑
n=1

(
λn

L
− λ 2

n

2

)

‖B(zn)‖2 < ∞

Chapter 3. NAGA 39

Since 0 < λn <
2
L

, we have B(zn)→ 0. Also, we can write,

‖xn+1− x∗‖2 = ‖(xn+1− yn)+(yn− x∗)‖2

= ‖xn+1− yn‖2 +‖yn− x∗‖2 +2〈xn+1− yn,yn− xn+1〉
+2〈xn+1− yn,xn+1− x∗〉

Rearranging the terms, we get,

‖xn+1− yn‖2 = ‖yn− x∗‖2−‖xn+1− x∗‖2 +2〈xn+1− yn,xn+1− x∗〉

Substituting value of ‖yn− x∗‖2 from (3.15) we get,

‖xn+1− yn‖2 = 2φn +(α2
n +αn)δn +2αn(φn−φn−1)

−‖xn+1− x∗‖2 +2〈xn+1− yn,xn+1− x∗〉
= (‖xn− x∗‖2−‖xn+1− x∗‖2)+αn(‖xn− x∗‖2−‖xn−1− x∗‖2)

+2αnδn +2〈xn+1− yn,xn+1− x∗〉 (3.21)

Now, for projection operator JA
λn

, we put x = zn−λnB(zn) in (3.11) to get the following

inequality,

0≥ 〈zn−λnB(zn)− xn+1,x
∗− xn+1〉

λn〈B(zn),x
∗− xn+1〉 ≥ 〈xn+1− zn,xn+1− x∗〉

λn〈B(zn),x
∗− xn+1〉 ≥ 〈xn+1− yn,xn+1− x∗〉+βn〈yn−Tnyn,xn+1− x∗〉. (3.22)

From (3.9), and the nonexpansivity of operator Tn we can write,

‖yn−Tnyn‖= ‖yn− xn+1‖+‖xn+1−Tnyn‖
≤ ‖xn− xn+1‖+αn‖xn− xn−1‖+‖zn− yn‖
= ‖xn+1− xn‖+αn‖xn− xn−1‖+βn‖yn−Tnyn‖

≤ 1

(1−βn)
[αn‖xn− xn−1‖+‖xn− xn+1‖]→ 0 as n→ ∞

Thus, from (3.22), we can write,

〈xn+1− yn,xn+1− x∗〉 ≤ λn〈B(zn),x
∗− xn+1〉 → 0 as n→ ∞

Chapter 3. NAGA 40

Hence, from (3.21), we get,

‖xn+1− yn‖→ 0

In last step, we will show that the solution x∗ is the solution of the problem (3.1). In

the previous subsection we proved that the sequence {xn} generated by (3.9) is bounded.

Thus, we have a convergent subsequence xs such that xs ⇀ x∗. From the definition of yn

in (3.9), we can write ys ⇀ x∗. Also, since ‖yn−Tnyn‖→ 0, we get,

‖zn− xn‖ ≤ ‖yn− xn‖+βn‖yn−Tnyn‖,

which gives zs ⇀ x∗. Thus, from (3.9), we get the following:

x∗ = (1−βn)x
∗+βn(I +λnA)−1(I−λnB)x∗ and

x∗ = (I +λnA)−1(I−λnB)x∗,

which is equivalent to −B(x∗) ∈ A(x∗), which proves that x∗ is a solution. Thus, from

Lemma 3.2, we conclude the proof.

3.4.4 Stability Analysis of NAGA

The concept of T -stability of an iterative process is defined as follows. Let T : H →H

be an operator. Let {xn}n∈N ∈H be the sequence generated by an iterative procedure

involving T which is defined by,

xn+1 = h(T,xn) for n ∈ N, (3.23)

where h is some function, that defines the iteration scheme. Suppose {xn}n∈N ∈H con-

verges to a fixed point p of T . Let {yn}n∈N ∈H and set εn := d(yn+1,h(T,yn)) for n∈N,

where d(·) is a distance function (‖ · ‖ in real normed linear space). Then, the iteration

process (3.23) is said to be T -stable or stable with respect to T if lim
n→∞

εn = 0 implies

lim
n→∞

yn = p.

Theorem 3.6. Let H be a Hilbert space and T : H →H be a contraction mapping

that satisfies the condition (3.18) for 0 ≤ δ < 1 and fixed point p. For the initial points

Chapter 3. NAGA 41

x0 and x1, let {xn}∞
n=0 is a sequence generated by (3.9), where αn and βn ∈ (0,1]. Let the

sequence satisfies condition (3.19). Then the iterative scheme in (3.9) is T -stable.

Proof. Let {pn}∞
n=0 is a real sequence in H . According to (3.23) and (3.9), We define

εn = ‖pn+1−Tn[(1−βn)qn+βnTnqn]‖, where qn = pn+αn(pn− pn−1). Let limn→∞ εn =

0. Then we shall prove that limn→∞ pn = p.

‖pn+1− p‖= ‖pn+1−Tn[(1−βn)qn +βnTnqn]+Tn[(1−βn)qn +βnTnqn]− p‖
≤ εn +δ ‖(1−βn) qn +βnTnqn− p‖
≤ εn +δ [(1− (1−δ) βn) ‖qn− p‖

≤ εn +δ
[

(1− (1−δ) βn) ‖pn− p‖+αn(1− (1−δ) βn) ‖pn− pn−1‖
]

≤ εn +δ
[

(1− (1−δ) βn) ‖pn− p‖+(1− (1−δ) βn)
‖pn− pn−1‖

αn

]

Since {αn} and {βn} ∈ (0,1], 0≤ δ < 1, from condition (3.19) and lemma (3.3), we have

limn→∞ pn = p.

Conversely, let limn→∞ pn = p, we shall show that limn→∞ εn = 0. We have,

εn = ‖pn+1−Tn[(1−βn)qn +βnTnqn]‖
≤ ‖pn+1− p‖+δ ‖(1−βn)qn +βnTnqn− p‖

≤ ‖pn+1− p‖+δ
[

(1− (1−δ)βn) ‖qn− p‖
]

≤ ‖pn+1− p‖+δ
[

(1− (1−δ)βn) ‖pn− p‖+(1− (1−δ) βn)
‖pn− pn−1‖

αn

]

Since {αn} and {βn} ∈ (0,1], 0 ≤ δ < 1, from condition (3.19) and our assumption, we

have limn→∞ εn = 0. This ends the proof.

3.5 Applications, Experiments and Result Analysis

We first present the regression and classification performance of the algorithms on nine

benchmark high-dimensional datasets. In the next subsection, we will discuss the task

of joint subspace learning and present the experimental results with two real cross-modal

datasets. The performance of the algorithms to solve the extended lasso problem with

Chapter 3. NAGA 42

the overlapping group and fused lasso penalties will be discussed next. All the tests have

been performed on an Intel Core i7 processor with 10 GB RAM, under the MATLAB

computing environment.

3.5.1 Machine Learning with high-dimensional datasets

In this section, we give the details of the high-dimensional real datasets we used in our ex-

periments, the experimental setup, and the result analysis for the task of high-dimensional

regression and classification. We used the following publicly available high dimensional

datasets:

• Colon-cancer Dataset 1: The dataset contains expression level of 2000 genes with

highest minimal intensity in descending order from 62 patients. Among them, 40

tumor biopsies are from tumors, and 22 normal biopsies are from healthy parts of

the colons of the same patients. We used 37 samples as training and 25 samples as

testing selected at random. The number of dimensions is 2000.

• Duke-cancer Dataset 2: This data set details microarray experiment for 44 breast

cancer patients, out of which we use 26 records as training and 18 records as test-

ing. The number of dimensions is 7,129. The binary variable Status is used to clas-

sify the patients into estrogen receptor-positive (Status = 0) and estrogen receptor-

negative (Status = 1). The other variables contain the expression level of the con-

sidered genes.

• Gisette Dataset1: A handwritten digit recognition dataset. The problem is to sepa-

rate the highly confusable digits ’4’ and ’9’. The high order features are constructed

as a product of randomly sampled pixels from the middle top part of the images of

digits to plunge the problem in a higher dimensional feature space. We used 250

samples as training and 250 samples as testing samples.

• Leukemia Dataset1: Leukemias are primary disorders of bone marrow. The total

number of genes to be tested is 7129, and the number of samples to be tested is 72,

which are all acute leukemia patients, either acute lymphoblastic leukemia (ALL)

1http://featureselection.asu.edu/datasets.php
2https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/

Chapter 3. NAGA 43

(a) Lymph Dataset (b) Nci9 Dataset

(c) Prostate Dataset (d) Lung Dataset

(e) Colon-cancer Dataset

FIGURE 3.1: Performance of algorithms on the basis of F(xn)−F(x∗) on datasets. F(xn)
is the function value achieved after nth iteration and F(x∗) is the function value at the

optimal point x∗. Shown graphs are log-log plots. We consider the convergence is reached

if F(xn)−F(xn−1) becomes 10e-5. Maximum number of iterations is set as 10e3. The

value of parameter θ is set 0.05 in all the experiments.

Chapter 3. NAGA 44

(a) Arcene Dataset (b) Duke-cancer Dataset

(c) Gisette Dataset (d) Leukemia Dataset

FIGURE 3.2: Performance of algorithms on the basis of F(xn)−F(x∗) on datasets. F(xn)
is the function value achieved after nth iteration and F(x∗) is the function value at the

optimal point x∗. Shown graphs are log-log plots. We consider the convergence is reached

if F(xn)−F(xn−1) becomes 10e-5. Maximum number of iterations is set as 10e3. The

value of parameter θ is set 0.05 in all the experiments.

or acute myelogenous leukemia (AML). We used 38 samples as training samples

and 34 samples as testing samples.

• Arcene Dataset1: It is mass-spectrometric data that is useful in distinguishing be-

tween the cancer patients versus normal patients. This is a two-class classification

problem with continuous input variables. Dataset consists of 200 samples (88 can-

cer patients and rest healthy or control patients) with 10,000 number of features.

1200 training samples and 800 testing samples are used.

• Lung Dataset1: A gene expression dataset with 325 genes, 73 samples, and 7

classes. We used 44 training samples and 29 testing samples in our experiments.

Chapter 3. NAGA 45

• Lymphoma Dataset1: A gene expression dataset with 4026 genes, 96 samples, and

9 classes. We used 58 training samples and 38 testing samples in our experiments.

• Nci9 Dataset1: A gene expression dataset with 9712 genes, 60 samples, and 9

classes. We used 36 training samples and 24 testing samples in our experiments.

• Prostate Dataset1: The Prostate dataset contains 102 samples out of which 52

samples are samples of the person suffering from a prostate tumor, and 50 samples

are of healthy persons. The total number of genes is 5966. We used 61 training

samples and 41 testing samples in our experiments.

We compared our proposed New Accelerated Gradient Algorithm (3.9) (NAGA) with the

classic Proximal Gradient Algorithm (3.3) (PGA) (with Picard iterations), the Proximal

Gradient Descent Algorithm with Mann iteration scheme (3.6) (MPGA) as proposed in

[128], the Proximal Gradient Algorithm with the S-iteration scheme (3.7) (SPGA) as

proposed in [1], the Proximal gradient Algorithm with Normal S-iteration scheme (3.8)

(NSPGA) proposed in [173] and the Accelerated Gradient Algorithm (3.4) (AGA) from

[47]. In all the above stated equations, we replace the forward-backward operator Tn as

proxρcn‖·‖1
(I− cn∇ f) in order to give the proximal-gradient-based definitions. It should

be noted that it is the first time that these fixed-point iteration schemes are compared based

on their performances for the task of learning.

The value of sparsity controlling parameter ρ is set as {θ ×ρmax}, where ρmax is set as

‖XTY‖∞. The parameter θ is tuned in the range {1, 0.0001} with an increment of 0.001.

We performed experiments with 60% - 40% training and testing samples split for most

of the datasets. The parameter θ is tuned by five-fold cross-validation for all methods.

As a pre-processing step, z-score is performed on X to normalize, and a bias column is

added to the data. For the stopping criteria, the tolerance value (the difference between

two consecutive function values) is set to 10e-5, which also notifies the convergence. The

maximum number of iteration is set to 10e3. All the vectors are initialized with a zero-

valued vector. Value of λn is initialized with 1, and γn and βn are set to 1
(n+1) .

Our first experiment is the comparison of first order proximal gradient algorithms based

on their convergence speed. Results are shown in figures 3.1 and 3.2 as log-log plot, in

which the y-axis shows the term F(xn)−F(x∗) and x-axis is the number of iterations. It

Chapter 3. NAGA 46

(a) Lymph Dataset (b) Nci9 Dataset

(c) Prostate Dataset (d) Lung Dataset

(e) Colon-cancer Dataset

FIGURE 3.3: Performance of NAGA on the basis of Reduction in Function Values in

each iteration for the datasets. We consider the convergence is reached if F(xn)−F(xn−1)
becomes 10e-5. Maximum number of iterations is set as 10e3. The value of parameter θ

is set 0.05 in all the experiments.

Chapter 3. NAGA 47

(a) Arcene Dataset (b) Duke-cancer Dataset

(c) Gisette Dataset (d) Leukemia Dataset

FIGURE 3.4: Performance of NAGA on the basis of Reduction in Function Values in

each iteration for the datasets. We consider the convergence is reached if F(xn)−F(xn−1)
becomes 10e-5. Maximum number of iterations is set as 10e3. The value of parameter θ

is set 0.05 in all the experiments.

can be observed that NAGA algorithm converges faster than all the previous state-of-the-

art algorithms on all the datasets. It can be noted that the convergence speed of MPGA is

worst in all cases. It is interesting to note that for Lymph and Nci9 datasets, the NSPGA

algorithm converges faster than AGA for first few iterations. This observation points out

the behavior of an extragradient-based method (NSPGA) in comparison to the inertial

based method (AGA).

Chapter 3. NAGA 48

(a) Lymph Dataset (b) Nci9 Dataset

(c) Prostate Dataset (d) Lung Dataset

(e) Colon-cancer Dataset

FIGURE 3.5: Performance of NAGA on the basis of root Mean Square Error rate on

the datasets. We consider the convergence is reached if F(xn)−F(xn−1) becomes 10e-5.

Maximum number of iterations is set as 10e3. The value of parameter θ is set 0.05 in all

the experiments.

Chapter 3. NAGA 49

(a) Arcene Dataset (b) Duke-cancer Dataset

(c) Gisette Dataset (d) Leukemia Dataset

FIGURE 3.6: Performance of NAGA on the basis of root Mean Square Error rate on

the datasets. We consider the convergence is reached if F(xn)−F(xn−1) becomes 10e-5.

Maximum number of iterations is set as 10e3. The value of parameter θ is set 0.05 in all

the experiments.

In figures 3.3 and 3.4, we show the graphs between the objective function values at each it-

eration for the nine datasets. The rapid reductions in values of objective functions demon-

strate the efficiency of the proposed algorithm. With SPGA and NSPGA, objective func-

tion values reduce very rapidly in first few iterations, however, with increasing iterations

these reductions become lower than that of with PGA. These lowering in the reductions in

objective function values, however, are not much significant with NAGA, and thus over-

all, the final function value is significantly lesser than the one obtained with AGA. The

similar phenomenon has been observed with Duke-cancer, Leukemia and Gisette datasets,

however, here the performances of SPGA and NSPGA are better than PGA algorithm.

Chapter 3. NAGA 50

The regression accuracy at each iteration for all the algorithms on all the datasets are

shown in figures 3.5 and 3.6. We consider the standard root Mean Square Error (rMSE) to

demonstrate the prediction performance of the proposed algorithm. It can be concluded

that NAGA gives better error reduction rate, i.e., the reduction in rMSE per iteration on

all the datasets. The detailed results are given in table 3.1.

Table 3.1 shows the detailed result for all the datasets, where the best values are shown

in bold letters. The shown results are in terms of (i) the number of iterations to reach

the convergence, (ii) the rMSE values, (iii) the minimum objective value obtained and

(iv) the per iteration CPU time. Here, the convergence is considered to be achieved when

the difference between two consecutive objective function values becomes less than the

tolerance value (which is set as 10e-5). It is evident from the table that NAGA takes

significantly less number of iterations on all the datasets. The optimal objective function

value achieved by NAGA is also the least among the majority of datasets. As far as

rMSE values are concerned, with nine out of nine datasets NAGA beats all the other

algorithms. For Duke, Leukemia, Gisette and Lung datasets AGA achieves the least rMSE

values. However, the number of iterations it takes to reach this value is much higher

than that of NAGA. It is evident from the results that the per iteration CPU time of the

proposed NAGA algorithm is slightly greater than the traditional AGA, which is clear

from the basic design of the iterative process. However, the significantly lesser number of

iterations overcomes this problem. It should be noted in general that CPU time increment

is not very significant and can be further reduced by exploiting multi-core programming

techniques, which we will investigate in future.

To further analyze the algorithms, we also conducted the experiments for the classification

task. We selected the Colon, Duke, Leukemia, Gisette, Arcene and Prostate datasets for

the binary classification problem. Again, we split the datasets into 60% - 40% training

and testing samples and the parameter θ is tuned by five-fold cross-validation for all

methods. Results are shown in table 3.2 in terms of the classification accuracy (Acc),

precision (Pre), recall (Rec) and specificity (Spec) values. On four out of six datasets,

the NAGA algorithm outperforms other methods in terms of classification accuracy. For

Gisette dataset, the MPGA algorithm beats other methods in all the four measures of

performance. It should be noted that the shown results are the average of ten experiments.

We finally conclude this section with the statistical comparison of the above-mentioned

algorithms PGA, MPGA, SPGA, NSPGA, AGA and NAGA based on their rMSE values.

Chapter 3. NAGA 51

TABLE 3.1: Detailed Results for all the datasets for the task of Regression. Shown CPU

time (in seconds) is for one iteration.

PGA MPGA SPGA NSPGA AGA NAGA

Colon

Iter 1000 1000 1000 886 291 147

optFV 2.4286 2.2897 2.4267 2.1679 2.1254 2.1105

rMSE 0.0312 0.0285 0.0311 0.0259 0.0243 0.0241

CPU time 0.00271 0.00266 0.00497 0.00485 0.00278 0.00520

Duke

Iter 1000 1000 1000 1000 391 185

optFV 7.6053 7.6056 7.4364 7.3786 7.2746 7.2639

rMSE 0.0199 0.0199 0.0195 0.0192 0.0186 0.0183

CPU time 0.0311 0.0309 0.0610 0.0609 0.0317 0.0646

Leukemia

Iter 1000 1000 883 807 265 129

optFV 2.5215 2.6466 2.4501 2.4234 2.3630 2.3686

rMSE 0.0113 0.0120 0.0109 0.0108 0.0108 0.0106

CPU time 0.0312 0.0310 0.0617 0.0618 0.0326 0.0674

Gisette

Iter 1000 1000 1000 1000 683 400

optFV 2.4169 2.6083 2.4159 2.1318 1.8416 1.813

rMSE 0.0035 0.0036 0.0035 0.0031 0.0029 0.0028

CPU time 0.0213 0.0211 0.0364 0.0360 0.0213 0.0368

Arcene

Iter 1000 1000 1000 1000 788 164

optFV 54.7590 56.9161 54.7389 51.6142 50.7922 50.9181

rMSE 0.0636 0.0692 0.0635 0.0568 0.0552 0.0550

CPU time 0.0645 0.0645 0.1267 0.1244 0.0653 0.1349

Lung

Iter 764 1000 761 301 111 64

optFV 58.7491 58.8276 58.7491 58.7420 58.7351 58.7344

rMSE 0.3407 0.3412 0.3407 0.3406 0.3408 0.3402

CPU time 0.000195 0.000169 0.000232 0.000223 0.000187 0.000297

Lymphoma

Iter 1000 1000 1000 1000 410 206

optFV 68.2763 71.6653 68.2616 63.3859 62.9609 62.9456

rMSE 0.0794 0.0840 0.0794 0.0755 0.0750 0.0742

CPU time 0.01006 0.01007 0.01940 0.01990 0.01073 0.02062

Nci9

Iter 1000 1000 1000 1000 495 243

optFV 35.7367 38.2826 38.2332 32.9622 31.2347 31.09237

rMSE 0.02532 0.02767 0.02763 0.02283 0.02088 0.02052

CPU time 0.0601 0.0618 0.1216 0.1209 0.0716 0.1331

Prostate

Iter 1000 1000 1000 1000 260 127

optFV 6.2932 6.6072 6.2885 5.7212 5.6583 5.6275

rMSE 0.0296 0.0312 0.0296 0.0276 0.0273 0.0270

CPU time 0.02198 0.02192 0.04346 0.04306 0.02328 0.04661

Chapter 3. NAGA 52

TABLE 3.2: Comparison of Algorithms based on their Classification Performances.

Shown CPU time (in seconds) is for one iteration.

PGA MPGA SPGA NSPGA AGA NAGA

Colon

Acc 0.92 0.92 0.88 0.88 0.833 0.833

Pre 1.000 1.000 1.000 1.000 0.9333 0.9333

Rec 0.8889 0.8889 0.8333 0.8333 0.7778 0.7778

Spec 1.000 1.000 1.000 1.000 0.8571 0.8571

Duke

Acc 0.8333 0.8333 0.8333 0.8333 0.8889 0.8889

Pre 0.8182 0.8182 0.8182 0.8182 0.9000 0.9000

Rec 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000

Spec 0.7500 0.7500 0.7500 0.7500 0.8750 0.8750

Leukemia

Acc 0.9655 0.9655 0.9310 0.9655 0.9655 1.000

Pre 1.000 1.000 1.000 1.000 1.000 1.000

Rec 0.95 0.95 0.9 0.95 0.95 1.000

Spec 1.000 1.000 1.000 1.000 1.000 1.000

Gisette

Acc 0.9683 0.9717 0.9683 0.9642 0.9608 0.9692

Pre 0.9666 0.9699 0.9666 0.9586 0.9629 0.9667

Rec 0.9698 0.9732 0.9698 0.9698 0.9581 0.9715

Spec 0.9669 0.9702 0.9669 0.9586 0.9635 0.9669

Arcene

Acc 0.7284 0.7284 0.7284 0.7161 0.7531 0.7531

Pre 0.6545 0.6545 0.6545 0.6379 0.6727 0.6727

Rec 0.9231 0.9231 0.9231 0.9487 0.9487 0.9487

Spec 0.5476 0.5476 0.5476 0.500 0.5714 0.5714

Prostate

Acc 0.9268 0.9268 0.9512 0.9756 0.9512 0.9756

Pre 0.9583 0.9583 0.96 0.9615 0.96 0.9615

Rec 0.92 0.92 0.96 1.000 0.96 1.000

Spec 0.9375 0.9375 0.9375 0.9375 0.9375 0.9375

We conducted the Wilcoxon signed-ranks test [203], which shows the pair-wise compar-

ison of the six algorithms based on the rMSE values. The null hypothesis is set to check

whether there is a significant reduction in the rMSE values returned by the NAGA algo-

rithm with respect to other algorithms. The test results are listed in the table (3.3) in terms

of the p-values and the corresponding z-values. It can be concluded from the table that

the reduction in rMSE values with the NAGA algorithm is significant in comparison to

the other algorithms. Also, it can be seen that there are no significant differences in rMSE

values between PGA, MPGA and SPGA algorithms.

Chapter 3. NAGA 53

TABLE 3.3: The result of Wilcoxon signed-ranks test for Comparison of the rMSE values

obtained by the algorithms. Shown are the z-scores (above diagonal) and p-values (below

diagonal).

Methods PGA MPGA SPGA NSPGA AGA NAGA

PGA – 1.43676 -1.64317 -2.45049 -2.31046 -2.45049

MPGA 0.94531 – -1.61032 -2.45049 -2.45049 -2.45049

SPGA 0.0625 0.05469 – -2.45049 -2.31046 -2.45049

NSPGA 0.00781 0.00781 0.00391 – -2.11289 -2.45049

AGA 0.00781 0.00391 0.00781 0.01563 – -2.4535

NAGA 0.00391 0.00391 0.00391 0.00391 0.00391 –

3.5.2 Unified Sparse Representation Learning

Given representations of an object in different modalities (e.g., image, text, audio, etc.), to

learn a unified representation of the object, has been a popular problem in the literature of

multimedia retrieval. In this subsection, we present the performance of the proposed algo-

rithm NAGA for the task of unified sparse representation learning task. Our work concerns

the iterative methods for the multi-view learning, for which few popular contributions in-

clude [213, 204]. Following the similar trend, recently in [202] authors proposed a joint

dictionary learning method for cross-modal retrieval task, namely Multi-modal Unified

Representation Learning (MURL). They have used the ℓ1-norm to impose the sparsity in

the learned model, as well as utilized the discriminant information of objects using can-

not-link (i.e., the pair of objects belonging to different classes) and must-link (i.e., pair

of objects belonging to the same class) pairs among data objects representations in dif-

ferent domains. They have utilized accelerated gradient method [23] to find out optimal

multimodal unified sparse representations.

3.5.2.1 Problem Formulation and Proposed Approach

For the problem of cross-modal retrieval, we adapt the formulation given in [202]. Let

there are N objects with K representations. An object belonging to kth modality is denoted

as Xk = [xk
1, · · · ,xk

N]∈R
dk×N , where k= 1, · · · ,K and dk is the dimensionality of kth modal.

Thus, an individual object xi = {x1
i , · · · ,xK

i } has K representations. The problem of cross-

domain retrieval is to retrieve p top-matched objects belonging to any modality. The

objective is to learn a unified representation using information from all the modalities i.e.

Chapter 3. NAGA 54

joint dictionary learning. Let Z = [z1, · · · ,zN] ∈ R
P×N be the unified representation and

Dk = [dk
1, · · · ,dk

P] ∈ R
dk×P is the dictionary corresponding to k-th modality.

Following [202], the main objective function is to solve,

min
Dk,Z

K

∑
k=1

‖Xk−DkZ‖2
F +λ1‖Z‖1 +λ2tr(ZLZT)

‖dk
p‖2

2 ≤ 1,∀k = 1, · · ·K, p = 1, · · · ,P, (3.24)

where, L = D−W , D is a diagonal matrix with Dii = ∑ j wi j, and

wi j =







1, (xi,x j) ∈S

−α, (xi,x j) ∈D

0, otherwise.

(3.25)

Here S is the set of pairs of similar objects (objects belonging to same class), tr(·) is the

trace operator and D is the set of pairs where the classes of objects are dissimilar. Since

the problem in equation (3.24) is non-convex with both the variables, but convex with one

of the variable keeping the other fixed, we solve the problem first for Z, keeping Dk fixed

and vice-versa. First, we keep the dictionary fixed and optimized the following problem:

min
Z

K

∑
k=1

‖Xk−DkZ‖2
F +λ1 ‖Z‖1 +λ2 tr(ZLZT). (3.26)

Due to the ℓ1-norm term, the above equation is non-smooth. To effectively learn the

unified representation Z, we applied NAGA as described in algorithm 3. We rewrite (3.26)

in terms of a loss function and regularization function as follows:

min
Z

K

∑
k=1

‖Xk−DkZ‖2
F +λ1 tr(ZLZT)

︸ ︷︷ ︸

f (Z)

+λ2 ‖Z‖1
︸︷︷︸

g(Z)

.

The condition converge is considered to be achieved when the difference between the

function value at the previous step and the function value at the current step becomes

lesser than a previously defined tolerance value tol. In our experiments, we set the value

of tol as 10e-5. After getting the optimal value of Z, we will solve for corresponding

dictionary Dk keeping Z fixed. For this, we used the approach of Lagrange dual as used

Chapter 3. NAGA 55

Algorithm 3: NAGA for multimodal unified representation learning

Data: Training dataset, c0, β0, tol

Result: Zn+1

begin

Z0,Z1 ∈H ,α0 = 1;

repeat

n← n+1;

Find cn using backtracking stepsize rule and compute αn and βn such that

αn, βn ∈ (0,1) ;

Wn ← Zn +αn(Zn−Zn−1);

Vn ← (1−βn)Wn +βnJ
f ,g
cn (Wn);

Zn+1 ← J
f ,g
cn (Vn) ;

until converge;

in [202]. We adapted the conjugate gradient method to solve for the dictionaries Dk. The

initial dictionaries are obtained using k-SVD [2]. These two steps of learning the unified

representation and dictionaries are repeated until we get the convergence. After learning

the dictionaries, to get the new representation of a test object xk
t belonging to the kth

modality, we solve the following problem:

min
zt

‖xk
t −Dkzt‖2

F +λ1‖zt‖1 (3.27)

3.5.2.2 Experiments and Result Analysis

We consider two modalities (i.e., text and image) in our cross-modal retrieval experiments.

We performed our experiments on two benchmark datasets, namely Wiki [163] and NUS-

WIDE [58]. Wiki dataset consists of 2866 image-text pairs with 128-dimensional visual

features and 10-dimensional textual features. Here, the image-text pairs belong to ten

categories. We have taken 2173 training sample pairs and 693 testing sample pairs in our

experiments. The second dataset is NUS-WIDE, that consists of the tagged images from

Flickr. We choose 15 categories with 600 images in each category. There are 500 visual

features and 1000 textual features. For this dataset, we choose 60%-40% training-testing

sample partition.

The value of sparsity controlling parameter λ1 is set as {θ × λmax}, where λmax is set

as ‖XkT
Dk‖∞ and the value of θ is chosen in the range of {1-0.0001}. We performed

Chapter 3. NAGA 56

5-fold cross-validation for tuning the parameter θ . For the stopping criteria, the tolerance

value (the difference between two consecutive function values) is set to 10e-5, which

also notifies the convergence. The maximum number of iterations is set to 10e4. All the

vectors are initialized with a zero-valued component. Values of cn is initialized with 1,

and βn is set to 1
(n+1) . All the tests are performed on Intel Core i7 processor with 10GB

RAM, under MATLAB computing environment. We have used MALSAR package [222]

in our experiments.

It should be noted that it is the first time that a new proximal gradient method with extra-

gradient and inertial step is applied to the task of multi-modal unified sparse representation

learning. Our first result shows the main contribution of this work, which is the faster

convergence of the algorithm for finding the multi-modal unified sparse representation

learning. Figure 3.7 shows the results for both the datasets. In figure 3.7(a) and 3.7(c),

we have shown the log-log plot between the value F(Zn)−F(Z∗) for both MURL and

NAGA-MURL algorithms. Here Zn is the value of Z at nth iteration of algorithm 3 and Z∗

is the optimal value. It can be easily observed that the convergence rate of NAGA-MURL

is faster than that of the MURL approach. In addition, we have shown the function values

F(Zn) at each iteration for both the algorithms, which directly implies that the function

values decrease significantly faster with NAGA-MURL than the MURL approach.

We compared the accuracy results of our algorithm with PCA, PLS, CCA, and MURL.

The standard metric to measure the performance of a cross-modal retrieval model is mean

average precision (MAP), which is compared in tables 3.4 and 3.5. It can be concluded

that for both the datasets the values of MAP is consistently better for the NAGA-MURL

algorithm.

The comparison between the two algorithms is shown in table 3.6. It is clear from the

table that the MAP values achieved by NAGA-MURL in a lesser number of iterations

than that of MURL. For both the datasets, NAGA-MURL takes less than half number of

iterations of MURL. The computational time is also shown in the table which shows that

the NAGA-MURL approach gives better results in lesser number of iterations and less

time. In the end, we demonstrate the precision-recall curves for the algorithms on both

the datasets in figure 3.8. We can imply from the figure that the precision-recall curve for

both the MURL and NAGA-MURL algorithms are comparable and better than that of the

PCA, PLS and CCA approaches.

Chapter 3. NAGA 57

(a) Conv Rate on NUS (b) Func Values on NUS

(c) Conv Rate on WIKI (d) Func Values on WIKI

FIGURE 3.7: Performance of NAGA-MURL in comparison to MURL on both the

datasets.

TABLE 3.4: Mean Avg. Precision on the Wiki Dataset

Methods Image Sample Text Sample Average

PCA 0.1423 0.1103 0.1263

PLS 0.1481 0.1349 0.1415

CCA 0.1590 0.1362 0.1476

MURL 0.1894 0.1565 0.1729

NAGA-MURL 0.1902 0.1596 0.1816

3.5.3 Logistic Regression with Extended Lasso Frameworks

In this subsection, we will discuss the overlapped group lasso and fused lasso frameworks,

the performance of the NAGA algorithm to solve such extended lasso frameworks on few

real datasets, and a detailed result analysis.

Chapter 3. NAGA 58

(a) Wiki Image query (b) Wiki Text query

(c) NUS Image query (d) NUS Text query

FIGURE 3.8: Precision-recall curves on both the datasets for the two cross-modal re-

trieval tasks.

TABLE 3.5: Mean Avg. Precision on the NUS-WIDE Dataset

Methods Image Sample Text Sample Average

PCA 0.0912 0.0794 0.853

PLS 0.1352 0.1181 0.1267

CCA 0.1126 0.1065 0.1096

MURL 0.1653 0.1394 0.1524

NAGA-MURL 0.1697 0.1402 0.1549

3.5.3.1 Overlapping group Lasso

The regularized convex loss minimization framework is given as follows,

min
x∈Rd

flog(x)+φ
ρ1
ρ2

(x), (3.28)

Chapter 3. NAGA 59

TABLE 3.6: Number of Iterations and computational time to converge for both Datasets

WIKI

Methods # of Iterations computational time (in seconds)

MURL 99 2.7522

NAGA-MURL 31 1.612

NUS-WIDE

Methods # of Iterations computational time (in seconds)

MURL 1957 127.7921

NAGA-MURL 465 62.7285

where, the second term is the regularizer for the overlapping group structure defined as,

φ
ρ1
ρ2

(x) = ρ1 ‖x‖1 +ρ2

g

∑
i=1

wi‖xGi
‖2. (3.29)

Here, ρ1≥ 0 and ρ2≥ 0 are regularization parameters, wi > 0, i= 1,2, · · ·g, Gi ∈ 1,2, · · · , p.

The proximal operator corresponding to the overlapping group regularizer is computed by

solving the following,

prox
φ

ρ1
ρ2

(v) = argmin
x∈Rd

{1

2
‖x− v‖2 +φ

ρ1
ρ2
(x)} (3.30)

To solve the above equation, there are several contributions available in the literature, few

of them are [216, 103, 162]. We followed the work of [216] for computing the proximal

operator of the overlapping group regularizer.

3.5.3.2 Fused Lasso

The regularized convex loss minimization framework is given as follows,

min
x∈Rd

flog(x)+φ λ1

λ2
(x), (3.31)

where, the second term is the regularizer for the ordering structure defined as,

φ λ1

λ2
(x) = λ1 ‖x‖1 +λ2

d−1

∑
i=1

|xi− xi+1|. (3.32)

Chapter 3. NAGA 60

Algorithm 4: NAGEL: NAGA for Extended Lasso

Data: ρ1, ρ2 or λ1, λ2, tol

Result: xn+1

begin

x0 = x1 ∈ R
d,L1 = 1,β1 = 1,n = 0;

repeat
Find Ln using backtracking line search [23] and compute αn and βn such that

αn, βn ∈ (0,1);
n← n+1;

yn ← xn +αn(xn− xn−1);

un ← proxφLn
(yn−1/Ln(A

T Ayn−AT b));

zn ← (1−βn)yn +βnun;

xn+1 ← proxφLn
(zn−1/Ln(A

T Azn−AT b));

until converge;

The proximal operator corresponding to the fused penalty is computed by solving the

following,

prox
φ

λ1
λ2

(v) = argmin
x∈Rd

{1

2
‖x− v‖2 +φ λ1

λ2
(x)} (3.33)

To compute the proximal operator corresponding to the fused lasso penalty, we adapted

the sparse learning with efficient projection [122].

To solve these problems, we used the proposed NAGA algorithm. The pseudo-code of

the algorithm is given in 4. Let us consider the Lipschitz constant of the gradient of the

smooth loss function is L. To guarantee the convergence of the algorithm, the value of

Łn should belong to (0,2/L]. For the computation of the term αn, we follow the work of

[47]. However, other definitions such as [138, 23] are also applicable. It should be noted

that the term φLn
corresponds to the general notation for the extended lasso penalties. For

the overlapping group penalty, φLn
will be φ

ρ1/Ln

ρ2/Ln
, whereas for fused lasso penalty, it will

be equal to φ
λ1/Ln

λ2/Ln
.

The condition converge is considered to be achieved when the difference between the

function value at the previous step and the function value at the current step becomes

lesser than a previously defined tolerance value tol. In our experiments, we set the value

of tol as 10e-5.

Chapter 3. NAGA 61

3.5.3.3 Experimental Results

The dataset we used for analyzing the performance of our algorithm for the logistic re-

gression with overlapped group penalty is the benchmark breast cancer gene-expression

dataset, which consists of 8,141 genes in 295 breast cancer tumors (78 metastatic and 217

non-metastatic). For groups, canonical pathways from Molecular Signatures Database

(MSigDB) [186] are used, that contains 639 groups of genes. We have used 635 groups of

genes in our experiments. We randomly selected 70% of data samples as the training set,

and the rest of samples are considered as the test set. We compared the Proximal Gradient

Algorithm PGA, Normal S-iteration based Proximal Gradient Algorithm NPGA, Accel-

erated Gradient Algorithm AGA, Subgradient descent SGD and the proposed NAGEL.

The configuration of the servers where the experiments are performed is as follows: Dell

Power Edge R-930: Populated with a 4x18 core of Intel Xeon E7-8870 v3 @2.10 GHz

processor with 45MB L3 Cache, 4U Form Factor, 256 GB DDR4 RAM, 8 x 1.2TB 15K

hot plug SAS.

The values of sparsity controlling parameters ρ1, ρ2, λ1 and λ2 are set as {θ × θmax},
where θmax is set as ‖XTY‖∞. The parameter θ is tuned in the range {0.0001, 1} with an

increment of 0.001. With X as the m× d data matrix with m number of instances with

d-dimensional vectors, Y as the m×1 label vector and w as the d×1 learning parameter

vector, the logistic loss is given as,

f (x) = wT x,

flog(w) =
1

m

m

∑
i=1

log(1+ e−yi· f (xi)).

In the first experiment, we show the plot for the number of iterations with respect to

changing values of θ for different training sets involved in figure 3.9(a). For a specific

value of θ , we performed ten experiments with randomly selected training samples, and

the plot shows the box-plots corresponding to resulting statistics. We only compare the

proximal methods in this experiment. It is clear from the results that the proposed NAGEL

algorithm outperforms other proximal methods in terms of the number of iterations. The

variations in the number of iterations to reach the convergence for higher values of θ is

larger than the lower values of θ . Also, the number of iterations in case of the NAGEL

algorithm is stable in comparison to the other algorithms.

Chapter 3. NAGA 62

We check the convergence rate of the algorithms by plotting the log-log graphs between

F(xn)−F(x∗) and the number of iterations in figure 3.9(b). From here onwards the value

of θ is set to 0.005 for all the experiments of logistic regression with overlapping group

lasso problem. It is evident that the convergence rate of NAGEL again outperforms other

algorithms. The convergence of the subgradient descent algorithm is found to be very

slow in comparison to the proximal gradient algorithms. In figure 3.9(c) we give the

reduction in function values in each iteration, where it is shown that at each iteration the

function value by the NAGEL algorithm is least in comparison to other algorithms.

There are few hyper-parameters on which the convergence shown in the experiments de-

pends. The first parameter is αn at nth iteration. It is already known from [23, 47] that

the definitions of αn used in these works satisfy the condition of convergence. We set the

parameter αn as in [47]. The second parameter is βn, belongs to set (0,1]. In our final

experimental result figure (3.9(d)), we have shown the plot for NAGEL with both constant

and variable values of βn as (a) 1/4, (b) 1/2, (c) 3/4 and (d) 1/(n+ 1), where n is the

iteration number. It is clear from the figures that for all values of β ∈ (0,1], we get better

convergence rates than AGA.

We measured the classification performance using standard metrics that are precision, re-

call and the classification accuracy. The 70%-30% random training-test set partition is

used in the experiments with 10 fold cross validation. The detailed results are shown in

table 3.7 in terms of number of iterations (# ITER), accuracy (ACC), precision (PRE),

recall (REC) and CPU time (TIME). It can be observed from the table that the classifi-

cation performances of all the proximal algorithms are same in terms of precision, recall

and accuracy, which are altogether better than that of the subgradient descent algorithm.

As far as the number of iterations and the CPU time concerned, NAGEL takes the least

number of iterations. It has been observed that due to its design, the per iteration time

for NAGEL is a bit higher than that of state-of-the-art algorithms, however, the reduced

number of iterations overcomes this problem, which can be directly concluded from the

shown CPU time results from the table 3.7. Since CPU time related issues can be handled

with tricky implementation specifics, an interesting open problem is to design operators

that can be computed in lesser CPU time.

For logistic loss with the fused lasso penalty, we consider two cancer genome datasets,

namely, Leukemia and Prostate cancer datasets. The details are as follows:

Chapter 3. NAGA 63

(a) # Iterations vs. θ (b) Convergence Rates

(c) Function Values vs. Iterations (d) Effects of Parameter βn

FIGURE 3.9: Performance of algorithms for the overlapping group lasso problem with

the Breast cancer dataset. 3.9(a) shows the variation in iterations at different values of

θ for ten randomly selected training samples. For all the other experiments we set θ =
0.005. 3.9(b) is the log-log plot showing the convergence rate of the algorithms, which is

considered to achieve when the F(xn)−F(xn−1)< ε with ε = 10E−6. 3.9(d) shows the

convergence rates of NAGEL for different values of parameter βn.

• Prostate Dataset 1: The Prostate dataset contains 102 samples out of which 52

samples are samples of the person suffering from a prostate tumor, and 50 samples

are of healthy persons. The total number of genes is 5966.

• Leukemia Dataset1: Leukemias are primary disorders of bone marrow. The total

number of genes to be tested is 7129, and the number of samples to be tested is 72,

which are all acute leukemia patients, either acute lymphoblastic leukemia (ALL)

or acute myelogenous leukemia (AML).

Chapter 3. NAGA 64

TABLE 3.7: Detailed Results for Overlapping group Lasso with Breast Cancer Dataset.

All the shown Results are the average of multiple experiments with randomly partitioned

training-testing datasets for θ = 0.01. For the NAGEL algorithm, the subscripted values

are the values set for βn = β at each iteration. Shown CPU time are in seconds.

SGD PGA NPGA AGA NAGELβ=1/2 NAGELβ=1/4 NAGELβ=3/4 NAGELβ=1/(n+1)

ITER
628.2

(±49.9719)

445.2

(±31.5706)

229.6

(±30.7376)

231.8

(±17.4843)

140.6

(±12.2801)

141.8

(±09.8590)

170.2

(±20.8494)

143.0

(±12.1037)

PRE
0.4254

(±0.0293)

0.5151

(±0.0936)

0.5151

(±0.0936)

0.5151

(±0.0936)

0.5151

(±0.0936)

0.5151

(±0.0936)

0.5151

(±0.0936)

0.5151

(±0.0936)

REC
0.4301

(±0.2440)

0.6405

(±0.3409)

0.6405

(±0.3409)

0.6405

(±0.3409)

0.6405

(±0.3409)

0.6405

(±0.3409)

0.6405

(±0.3409)

0.6405

(±0.3409)

ACC
0.6706

(±0.0343)

0.7129

(±0.0257)

0.7129

(±0.0257)

0.7129

(±0.0257)

0.7129

(±0.0257)

0.7129

(±0.0257)

0.7129

(±0.0257)

0.7129

(±0.0257)

TIME
0.9507

(±0.0250)

0.8449

(±0.0835)

1.8302

(±0.1719)

1.4796

(±0.1789)

2.8296

(±0.2764)

0.8817

(±0.0635)

1.0531

(±0.1365)

0.8809

(±0.0377)

Here again we randomly sampled 70% of data samples as the training set and the rest of

samples are considered as the test set. We repeat each experiment ten times and present

the results in figures (3.10) and (3.11) and tables 3.8 and 3.9 for the Prostate and Leukemia

datasets respectively. In our first experiment, we plot the box-plots for the number of iter-

ations attained by each algorithm to reach the convergence for the ten randomly sampled

training-test samples at different values of θs. It is found that in most of the experiments,

the PGA and NPGA algorithms converge near to the maximum number of iterations. For

the two accelerated algorithms, the number of iterations is much lesser than the non-

accelerated counterparts. Moreover, the number of iterations for NAGEL is lesser than

AGA. We are not showing the performance of the subgradient descent, since the time

consumption of this algorithm is very high for the fused lasso problem.

From here onwards the value of θ is set to 5E-5 for all the experiments on the Prostate

dataset and 10E-6 for Leukemia dataset for the problem of logistic regression with fused

lasso penalty. The results in figure 3.10 with the Prostate dataset demonstrate the efficacy

in using the NAGEL algorithm over the other proximal algorithms. With the Prostate

dataset, the convergence rates of AGA and NAGELβ=1/4 is almost similar. It has been

seen that with NAGELβ=1/4 the functional values computed at initial iterations are very

large. Similar behaviour can be noticed in results with Leukemia dataset in figure 3.11.

The classification performances of the algorithms with the Prostate dataset is shown in

table 3.8. The best values of the precision and accuracy measures are achieved by the PGA

method, however the number of iterations by this algorithm is very high. NAGELβ=1/4

results in the best recall value achieved. The number of iterations needed to reached the

convergence is least for the NAGEL, however, the CPU time is a bit higher than the AGA

Chapter 3. NAGA 65

(a) # Iterations vs. θ (b) Convergence Rates

(c) Function Values vs. Iterations (d) Effects of Parameter βn

FIGURE 3.10: Performance of algorithms for the Prostate Dataset. 3.10(a) shows the

variation in iterations at different values of θ for ten randomly selected training samples.

For all the other experiments we set θ = 5E − 5. 3.10(b) is the log-log plot showing

the convergence rate of the algorithms, which is considered to achieve when the F(xn)−
F(xn−1) < ε with ε = 10E − 6. 3.10(d) shows the convergence rates of NAGEL for

different values of parameter βn.

algorithm. With the Leukemia dataset, the performance of the NAGEL is superior than

the other algorithms as shown in table 3.9, again except the CPU time. This issue can be

handled by designing new faster operators, which is the future research direction of our

work.

Chapter 3. NAGA 66

(a) # Iterations vs. θ (b) Convergence Rates

(c) Function Values vs. Iterations (d) Effects of Parameter βn

FIGURE 3.11: Performance of algorithms for the Leukemia Dataset. 3.11(a) shows the

variation in iterations at different values of θ for ten randomly selected training samples.

For all the other experiments we set θ = 7.5E − 5. 3.11(b) is the log-log plot showing

the convergence rate of the algorithms, which is considered to achieve when the F(xn)−
F(xn−1) < ε with ε = 10E − 6. 3.11(d) shows the convergence rates of NAGEL for

different values of parameter βn.

3.6 Conclusions

A new extra-gradient based accelerated gradient algorithm is proposed and analyzed in

this chapter. The problem under consideration is a nonsmooth-convex minimization prob-

lem. The convergence of the proposed method is proved for two cases. Firstly, the conver-

gence is proved for the contraction mappings, and then for the more general non-expansive

mappings. In the process of proving the convergence of the algorithm, we also presented

the boundedness property of the proposed algorithm under specific conditions. In the end,

Chapter 3. NAGA 67

TABLE 3.8: Detailed Results for Fused Lasso with Prostate Cancer Dataset. All

the shown Results are the average of multiple experiments with randomly partitioned

training-testing datasets for θ = 1E−5. For the NAGEL algorithm, the subscripted val-

ues are the values set for βn at each iteration. Shown CPU time are in seconds.

AGA NAGELβ=1/2 PGA NPGA NAGELβ=1/4 NAGELβ=3/4 NAGELβ=1/(n+1)

ITER
1746.2

(±423.6829)

919.2

(±153.0349)

5000.0

(±00.0000)

5000.0

(±00.0000)

1446.4

(±323.4691)

1140.2

(±86.5141)

1168.4

(±154.7152)

PRE
0.9300

(±0.0647)

0.9350

(±0.0602)

0.9500

(±0.0685)

0.9500

(±0.0685)

0.9300

(±0.0647)

0.8850

(±0.0137)

0.9346

(±0.0609)

REC
0.8964

(±0.1059)

0.9050

(±0.1037)

0.9242

(±0.0701)

0.9242

(±0.0701)

0.9250

(±0.1118)

0.9300

(±0.0647)

0.8742

(±0.0891)

ACC
0.7727

(±0.1245)

0.7878

(±0.1016)

0.8485

(±0.0634)

0.8182

(±0.0634)

0.7727

(±0.1245)

0.7727

(±0.0829)

0.7576

(±0.1071)

TIME
1.9969

(±0.3266)

2.2066

(±0.1278)

4.5937

(±0.0382)

7.6840

(±0.3742)

2.9514

(±0.4413)

2.8170

(±0.4848)

2.8789

(±0.4821)

TABLE 3.9: Detailed Results for Fused Lasso with Leukemia Cancer Dataset. All

the shown Results are the average of multiple experiments with randomly partitioned

training-testing datasets for θ = 5E−5. For the NAGEL algorithm, the subscripted val-

ues are the values set for βn at each iteration. Shown CPU time are in seconds.

AGA NAGELβ=1/2 PGA NPGA NAGELβ=1/4 NAGELβ=3/4 NAGELβ=1/(n+1)

ITER
1108.6

(±109.1274)

906.0

(±84.3059)

5000.0

(±00.0000)

5000.0

(±00.0000)

1079.6

(±199.9032)

1078.6

(±130.7719)

1352.2

(±595.9381)

PRE
0.9597

(±0.0382)

0.9764

(±0.0324)

0.9706

(±0.0656)

0.9597

(±0.0381)

0.9597

(±0.0381)

0.9763

(±0.0324)

0.9763

(±0.0324)

REC
0.9857

(±0.0319)

0.9875

(±0.0449)

0.9473

(±0.0557)

0.9857

(±0.0319)

0.9857

(±0.0319)

0.9675

(±0.0449)

0.9675

(±0.0449)

ACC
0.8703

(±0.0687)

0.9073

(±0.0529)

0.8518

(±0.0841)

0.8518

(±0.0841)

0.8981

(±0.0529)

0.8888

(±0.0388)

0.8888

(±0.0388)

TIME
1.4511

(±0.2322)

2.0079

(±0.1299)

4.6714

(±0.1015)

7.9592

(±0.4328)

2.5143

(±0.5326)

2.5062

(±0.3530)

3.2674

(±1.7012)

we analyzed the stability property of the algorithm. It has been shown that under few

particular conditions, the algorithm is stable, with respect to the contraction mappings. In

order to show the practical performance of the algorithm, we compared it with traditional

proximal and accelerated gradient algorithms. Experiments are performed with several

high dimensional publicly available real datasets that belong to different domains such as

image processing and bio-informatics. In our first application, we used lasso framework

for single-task regression or classification problems and applied the proposed solution

strategy to nine high-dimensional datasets. Secondly, we applied the algorithm to the task

of joint subspace learning for cross-modal datasets. In the third application, the proposed

algorithm is applied to solve extended lasso problems with overlapping group and fused

penalties. From the achieved results, it can be concluded that the proposed algorithm gives

better accuracy in significantly lesser number of iterations than the traditional methods.

