
Appendix A

Definitions

In this chapter, we explain the basic mathematical definitions and concepts that are used

in this thesis. Most of the definitions and propositions are taken from [29, 171, 18, 197]

that are ready reference used throughout the thesis.

Vector Space: A vector space V is a set that is closed under finite vector-addition and

scalar-multiplication. In order for V to be a vector space, the following conditions must

hold for all elements X ,Y,Z ∈V and any scalars r, s:

1. Commutativity (X +Y = Y +X)

2. Associativity of vector addition ((X +Y )+Z = X +(Y +Z))

3. Additive identity ( For all X , 0+X = X +0 = X)

4. Existence of additive inverse (For any X , there exists a −X such that (X +(−X) = 0)

5. Associativity of scalar multiplication (r(sX) = (rs)X)

6. Distributivity of scalar sums ((r+ s)X = rX + sX)

7. Distributivity of vector sums (r(X +Y ) = rX + rY )

8. Scalar multiplication identity (1X = X)

Metric Space: A set S with a global distance function d that, for every two points x,y∈ S,

gives the distance between them as a nonnegative real number g(x,y). A metric space must

also satisfy

1. g(x,y) = 0 iff x = y,

2. g(x,y) = g(y,x),

3. The triangle inequality g(x,y)+g(y,z)>= g(x,z).
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Cauchy Sequence: A sequence x1,x2, · · · such that the metric d(xm,xn) satisfies

lim
(m,n)→∞

d(xm,xn) = 0.

Complete Metric Space: A metric space in which every Cauchy sequence is convergent.

Norm: A norm ‖ · ‖ on R
n is a function that assigns a scalar ‖x‖ to every x ∈ R

n and that

has the following properties:

(a) ‖x‖ ≥ 0, ∀x ∈ R
n.

(b) ‖αx‖= α · ‖x‖ for every scalar α and every x ∈ R
n.

(c) ‖x‖= 0 if and only if x = 0.

(d) ‖x+ y‖ ≤ ‖x‖+‖y‖, ∀x,y ∈ R
n (the triangle inequality).

Banach Spaces: Any convergent sequence in a normed linear space is a Cauchy se-

quence. However, it may or may not be true in an arbitrary normed linear space that all

Cauchy sequences are convergent. A normed linear space X which has the property that

all Cauchy sequences are convergent is said to be complete. A complete normed linear

space is called a Banach space.

Hilbert Space: A linear space H with an inner product 〈·, ·〉, which is complete with re-

spect to the norm ‖x‖ =
√

〈x,x〉 induced by this inner product is called a Hilbert space.

Hilbert space is considered to be the generalized Euclidean space with infinite dimensions.

Proposition A.1. [29] Every bounded and monotonically non-increasing or non-decreasing

scalar sequence converges.

Closed and Open sets: We say that x is a closure point of a subset X of Rn if there exists

a sequence {xn} ∈ X that converges to x. X is called closed if it is equal to its closure. It

is called open if its complement, {x | x /∈ X}, is closed. It is called bounded if there exists

a scalar c such that ‖x‖ ≤ c for all x ∈ X . It is called compact if it is closed and bounded.

For any ε > 0 and x∗ ∈ R
n,

• {x | ‖x− x∗‖< ε} is open and is called an open sphere centered at x∗.
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FIGURE A.1: Illustration of convex functions.

• {x | ‖x− x∗‖ ≤ ε} is open and is called an open sphere centered at x∗.

Convex Set: A subset C of Rn is called convex, if

αx+(1−α)y ∈C, ∀x,y ∈C,∀α ∈ [0,1].

Convex Functions: Let C be a convex subset of R
n. A function f : C → R is called

convex if

f (αx+(1−α)y)≤ α f (x)+(1−α) f (y), ∀x,y ∈C,∀α ∈ [0,1].

Figure A.1 demonstrate the convex functions.

Operators: Also called relations or multi-valued functions, an operator T is on R
n is a

subset of Rn×R
n.

Subdifferential: The subdifferential relation ∂ f of a function f : R→ R∪∞, defined by

∂ f = (x,g)|x ∈C,∀z ∈ R
n, f (z)≥ f (x)+gT (z− x)

The set ∂ f (x) is the subdifferential of f at x. Any g ∈ ∂ f (x) is called a subgradient of f

at x.
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FIGURE A.2: Illustration of Subdifferential [197]

Zeros of an Operator: When T ∋ 0, we say that x is a zero of T .

Monotone Operators: We say that an operator T : H →H is:

1. monotone if,

〈T x−Ty,x− y〉 ≥ η‖x− y‖2,

for a constant η ≥ 0 and for all x,y∈ X . If η > 0, then we say that T is strongly monotone

or η-strongly monotone.

2. It is δ−cocoercive if δT is firmly non-expansive, i.e.,

〈T x−Ty,x− y〉 ≥ δ‖T x−Ty‖2.

3. It is an L−Lipschitz operator if there exists L ∈ [0,∞) such that

‖T x−Ty‖ ≤ L‖x− y‖, x,y ∈H .

It is nonexpansive if it is Lipschitz continuous with constant L = 1, i.e.,

‖T x−Ty‖ ≤ ‖x− y‖.

It is contraction for L < 1.

4. It is a κ-strict pseudo-contraction if for a constant κ ∈ [0,1),

‖T x−Ty‖2 ≤ ‖x− y‖2 +κ‖(I−T )x− (I−T )y‖2.

It is said to be pseudo-contractive if κ = 1.
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Let X be a subset of a Hilbert space H . A mapping T : X → X is said to be asymptotically

nonexpansive if there exists a sequence {ki} of real numbers with ki → 1 as i→ ∞, such

that,

‖T ix−T iy‖ ≤ ki‖x− y‖, x,y ∈ X .

Note: Mapping a pair of points by a contraction reduces the distance between them;

mapping them by a nonexpansive operator does not increase the distance between them.

Norms: A norm is a function that assigns a strictly positive length or size to each vector

in a vector space.

‖x‖p =







(|x1|
p + · · ·+ |xn|

p)
1
p , if 1≤ p≤ ∞

max (|x1|, · · · , |xn|), if p = ∞

Fixed-point Iterations: A fixed point of a function f is a number x∗ such that x∗ = f (x∗),

in other words, it is a solution of the equation x = f (x). The iteration xn+1 ← f (xn) for

n = 0,1, · · · is called fixed point iteration.

Note: Assume that f (x) is a continuous function and that {xn}
∞

n=0 is a sequence generated

by fixed point iteration. If limn→∞ xn = x∗, then x∗ is a fixed point of f (x).

Weak Convergence: A sequence of points {xn} in a Hilbert space H is said to converge

weakly to a point x ∈H if,

〈xn,y〉 → 〈x,y〉, ∀y ∈H .

Strong Convergence: A sequence of points {xn} in a Hilbert space H is said to converge

strongly to a point x ∈H if,

‖xn− x‖→ 0 as n→ ∞.

Maximal Monotone Operator: Operator T is maximal monotone operator, if the graph

G(T ) is not properly contained in the graph of any other monotone operator. An example

of maximal monotone operator is the sub-differential of a convex function.
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For any c > 0, the resolvent JT
c defined as JT

c = (I + cT )−1 of a maximal monotone oper-

ator T is a non-expansive operator. It is well-known that for any λ > 0, the resolvent of a

maximal monotone operator T is a non-expansive operator [167].
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