Appendix A

Definitions

In this chapter, we explain the basic mathematical definitions and concepts that are used in this thesis. Most of the definitions and propositions are taken from [29, 171, 18, 197] that are ready reference used throughout the thesis.

Vector Space: A vector space *V* is a set that is closed under finite vector-addition and scalar-multiplication. In order for *V* to be a vector space, the following conditions must hold for all elements $X, Y, Z \in V$ and any scalars *r*, *s*:

- 1. Commutativity (X + Y = Y + X)
- 2. Associativity of vector addition ((X+Y)+Z = X+(Y+Z))
- 3. Additive identity (For all X, 0+X = X+0=X)
- 4. Existence of additive inverse (For any X, there exists a -X such that (X + (-X) = 0)
- 5. Associativity of scalar multiplication (r(sX) = (rs)X)
- 6. Distributivity of scalar sums ((r+s)X = rX + sX)
- 7. Distributivity of vector sums (r(X + Y) = rX + rY)
- 8. Scalar multiplication identity (1X = X)

Metric Space: A set *S* with a global distance function *d* that, for every two points $x, y \in S$, gives the distance between them as a nonnegative real number g(x, y). A metric space must also satisfy

- 1. g(x, y) = 0 iff x = y,
- 2. g(x, y) = g(y, x),
- 3. The triangle inequality $g(x, y) + g(y, z) \ge g(x, z)$.

Cauchy Sequence: A sequence x_1, x_2, \cdots such that the metric $d(x_m, x_n)$ satisfies

$$\lim_{(m,n)\to\infty}d(x_m,x_n)=0$$

Complete Metric Space: A metric space in which every Cauchy sequence is convergent.

Norm: A norm $\|\cdot\|$ on \mathbb{R}^n is a function that assigns a scalar $\|x\|$ to every $x \in \mathbb{R}^n$ and that has the following properties:

- (a) $||x|| \ge 0, \forall x \in \mathbb{R}^n$.
- (b) $\|\alpha x\| = \alpha \cdot \|x\|$ for every scalar α and every $x \in \mathbb{R}^n$.
- (c) ||x|| = 0 if and only if x = 0.
- (d) $||x+y|| \le ||x|| + ||y||$, $\forall x, y \in \mathbb{R}^n$ (the triangle inequality).

Banach Spaces: Any convergent sequence in a normed linear space is a Cauchy sequence. However, it may or may not be true in an arbitrary normed linear space that all Cauchy sequences are convergent. A normed linear space X which has the property that all Cauchy sequences are convergent is said to be complete. A complete normed linear space is called a Banach space.

Hilbert Space: A linear space \mathcal{H} with an inner product $\langle \cdot, \cdot \rangle$, which is complete with respect to the norm $||x|| = \sqrt{\langle x, x \rangle}$ induced by this inner product is called a Hilbert space. Hilbert space is considered to be the generalized Euclidean space with infinite dimensions.

Proposition A.1. [29] Every bounded and monotonically non-increasing or non-decreasing scalar sequence converges.

Closed and Open sets: We say that *x* is a closure point of a subset *X* of \mathbb{R}^n if there exists a sequence $\{x_n\} \in X$ that converges to *x*. *X* is called closed if it is equal to its closure. It is called open if its complement, $\{x \mid x \notin X\}$, is closed. It is called bounded if there exists a scalar *c* such that $||x|| \le c$ for all $x \in X$. It is called compact if it is closed and bounded.

For any $\varepsilon > 0$ and $x^* \in \mathbb{R}^n$,

• $\{x \mid ||x - x^*|| < \varepsilon\}$ is open and is called an open sphere centered at x^* .

FIGURE A.1: Illustration of convex functions.

• $\{x \mid ||x - x^*|| \le \varepsilon\}$ is open and is called an open sphere centered at x^* .

Convex Set: A subset *C* of \mathbb{R}^n is called *convex*, if

$$\alpha x + (1 - \alpha)y \in C, \quad \forall x, y \in C, \forall \alpha \in [0, 1].$$

Convex Functions: Let C be a convex subset of \mathbb{R}^n . A function $f : C \to \mathbb{R}$ is called convex if

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y), \qquad \forall x, y \in C, \forall \alpha \in [0, 1]$$

Figure A.1 demonstrate the convex functions.

Operators: Also called relations or multi-valued functions, an operator *T* is on \mathbb{R}^n is a subset of $\mathbb{R}^n \times \mathbb{R}^n$.

Subdifferential: The subdifferential relation ∂f of a function $f : \mathbb{R} \to \mathbb{R} \cup \infty$, defined by

$$\partial f = (x,g) | x \in C, \forall z \in \mathbb{R}^n, f(z) \ge f(x) + g^T(z-x)$$

The set $\partial f(x)$ is the subdifferential of f at x. Any $g \in \partial f(x)$ is called a subgradient of f at x.

FIGURE A.2: Illustration of Subdifferential [197]

Zeros of an Operator: When $T \ni 0$, we say that *x* is a zero of *T*.

Monotone Operators: We say that an operator $T : \mathcal{H} \to \mathcal{H}$ is:

1. monotone if,

$$\langle Tx - Ty, x - y \rangle \ge \eta \|x - y\|^2$$
,

for a constant $\eta \ge 0$ and for all $x, y \in X$. If $\eta > 0$, then we say that *T* is strongly monotone or η -strongly monotone.

2. It is δ -cocoercive if δT is firmly non-expansive, i.e.,

$$\langle Tx - Ty, x - y \rangle \ge \delta ||Tx - Ty||^2.$$

3. It is an *L*-Lipschitz operator if there exists $L \in [0, \infty)$ such that

$$||Tx - Ty|| \le L||x - y||, \quad x, y \in \mathcal{H}.$$

It is nonexpansive if it is Lipschitz continuous with constant L = 1, i.e.,

$$||Tx - Ty|| \le ||x - y||$$

It is contraction for L < 1.

4. It is a κ -strict pseudo-contraction if for a constant $\kappa \in [0, 1)$,

$$||Tx - Ty||^2 \le ||x - y||^2 + \kappa ||(I - T)x - (I - T)y||^2.$$

It is said to be pseudo-contractive if $\kappa = 1$.

Let *X* be a subset of a Hilbert space \mathcal{H} . A mapping $T : X \to X$ is said to be asymptotically nonexpansive if there exists a sequence $\{k_i\}$ of real numbers with $k_i \to 1$ as $i \to \infty$, such that,

$$||T^{i}x - T^{i}y|| \le k_{i}||x - y||, \qquad x, y \in X.$$

Note: Mapping a pair of points by a contraction reduces the distance between them; mapping them by a nonexpansive operator does not increase the distance between them.

Norms: A norm is a function that assigns a strictly positive length or size to each vector in a vector space.

$$\|x\|_{p} = \begin{cases} (|x_{1}|^{p} + \dots + |x_{n}|^{p})^{\frac{1}{p}}, & \text{if } 1 \le p \le \infty \\ \max(|x_{1}|, \dots, |x_{n}|), & \text{if } p = \infty \end{cases}$$

Fixed-point Iterations: A fixed point of a function f is a number x^* such that $x^* = f(x^*)$, in other words, it is a solution of the equation x = f(x). The iteration $x_{n+1} \leftarrow f(x_n)$ for $n = 0, 1, \cdots$ is called fixed point iteration.

Note: Assume that f(x) is a continuous function and that $\{x_n\}_{n=0}^{\infty}$ is a sequence generated by fixed point iteration. If $\lim_{n\to\infty} x_n = x^*$, then x^* is a fixed point of f(x).

Weak Convergence: A sequence of points $\{x_n\}$ in a Hilbert space \mathcal{H} is said to converge weakly to a point $x \in \mathcal{H}$ if,

$$\langle x_n, y \rangle \to \langle x, y \rangle, \quad \forall y \in \mathscr{H}.$$

Strong Convergence: A sequence of points $\{x_n\}$ in a Hilbert space \mathcal{H} is said to converge strongly to a point $x \in \mathcal{H}$ if,

$$||x_n-x|| \to 0 \text{ as } n \to \infty.$$

Maximal Monotone Operator: Operator *T* is maximal monotone operator, if the graph G(T) is not properly contained in the graph of any other monotone operator. An example of maximal monotone operator is the sub-differential of a convex function.

For any c > 0, the resolvent J_c^T defined as $J_c^T = (I + cT)^{-1}$ of a maximal monotone operator *T* is a non-expansive operator. It is well-known that for any $\lambda > 0$, the resolvent of a maximal monotone operator *T* is a non-expansive operator [167].

Appendix B

List of Publications

Journals

- Mridula Verma and K K Shukla (2017) A New Accelerated Proximal Technique for Regression with High-dimensional Datasets. Knowledge and Information Systems (KAIS), doi: 10.1007/s10115-017-1047-z, (Acceptance Rate < 19.1%), Impact Factor: 2.004.
- Mridula Verma, K.K. Shukla (2017) A new accelerated proximal gradient technique for regularized multitask learning framework, Pattern Recognition Letters, Volume 95, 2017, Pages 98-103, ISSN 0167-8655, http://dx.doi.org/10.1016/j.patrec.2017.06.013.
 Impact Factor: 1.995.
- Mridula Verma, D R Sahu and K K Shukla (2017) VAGA: A Novel Viscositybased Accelerated Gradient Algorithm: Convergence Analysis and Application to Multitask Regression. Applied Intelligence, under minor revision, Impact Factor: 1.904.
- 4. Mridula Verma and K K Shukla (2017) An Extragradient-based Accelerated Algorithm for Microarray Gene Analysis. **Data Mining and Knowledge Discovery**, under review.
- Mridula Verma and K K Shukla (2017) A New Operator Splitting Algorithm and its Accelerated Variant with Application to Microarray Gene Analysis, IEEE Transactions on Computational Biology and Bioinformatics. Communicated.

Conferences

- Mridula Verma and K K Shukla (2017) Fast Multi-Modal Unified Sparse Representation Learning. Proceedings of 17th ACM International Conference on Multimedia Retrieval, June 2017. (Conference Ranked #1 in the field of Multimedia Retrieval), Bucharest, Romania (acceptance rate: 37%).
- Mridula Verma, Prayas Jain, K K Shukla (2016), A New Faster First Order Iterative Scheme for Sparsity-based Multitask Learning, Proceedings of 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Budapest, Hungary, pp. 1603-1608.
- Mridula Verma, K K Shukla (2016), Performance Comparison of Proximal Methods for Regression with Nonsmooth Regularizers on Real Datasets, Proceedings of Fifth International Conference on Computing, Communications and Informatics (ICACCI-2016), Jaipur. (Acceptance Rate: 23%)
- Mridula Verma, K K Shukla (2016), Efficient Kernel Fuzzy c-means Clustering on Very Large Scale Data using Random Fourier Features, Proceedings of International Conference on Emerging Research in Computing, Information, Communication and Applications (ERCICA-14), Elsevier, Bangalore. (Acceptance Rate: 33%)