
Chapter 5

A New Operator Splitting Algorithm

and its Accelerated Variant with

Convergence Guarantees and

Application to Microarray Gene

Analysis

5.1 Introduction

In previous chapters, we proposed various accelerated gradient methods to solve the non-

smooth composite convex minimization framework. The common idea in the proposed

algorithms was to design inertial-based forward-backward splitting algorithms in the real

infinite dimensional space, the corresponding proximal gradient algorithms in the real fi-

nite dimensional space and apply them to solve various learning problems. As discussed

in Chapter 2, forward-backward splitting techniques belong to the class of general opera-

tor splitting techniques, which include various other formulations also, such as Peaceman-

Rachford splitting techniques, Douglas-Rachford splitting techniques, etc. In this chapter,

we introduce a new direction in this field and propose an Extragradient-based Operator

Splitting Algorithm EOSA. The accelerated variant of the algorithm named as Acceler-

ated Extragradient-based Operator Splitting Algorithm AEOSA is also proposed. With

the detailed description, the convergence guarantees for both the algorithms are given.

The practical performance of the proposed algorithms is tested for microarray gene anal-

ysis, specifically for the task of cancer prediction. Experiments are performed on four
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publicly available benchmark microarray gene expression datasets. The performance of

the proposed algorithms is compared with different the state-of-the-art operator splitting

methods.

The general framework of the problem we consider, is the following,

min
x∈Rd

f (x)+g(x). (5.1)

Here both f and g functions are non-smooth, closed and convex functions. Operator split-

ting techniques solve the above problem and have been very popular due to their appli-

cations in various fields ranging from compressed sensing [46], statistical estimation [95]

to medical imaging [126]. There are three standard operator splitting techniques, namely,

Forward-backward Splitting, Peaceman-Rachford Splitting and the Douglas-Rachford split-

ting. Out of these, the later two consider the above framework, whereas the forward-

backward splitting methods consider the case when function f is differentiable. The later

two methods relax this condition of smoothness.

It is a known fact that various operator splitting techniques are designed using basic fixed-

point iterative schemes. The field of fixed-point theory has been a popular area of math-

ematics, which is used for solving different problems in variational inequality, inclusion

and convex optimization. As we will discuss in the next section, the standard opera-

tor splitting techniques, Peaceman-Rachford technique (PR) and Douglas-Rachford tech-

nique (DR) are based on very basic Picard and Mann fixed-point iterative schemes, respec-

tively. We go beyond the usage of these standard fixed-point methods and designed a new

operator splitting method corresponding to a new definition of the fixed-point scheme. We

also analyze its performance for the real world problem of microarray gene analysis. In

addition, the accelerated variant of the proposed algorithm is also proposed along with its

convergence guarantee and application to the same problem of cancer prediction.

It should be noted that the Douglas-Rachford algorithm is the root of the popular method

of alternating direction method of multipliers (ADMM) [42, 38], which solves the Fenchel

dual problem of (5.1), whereas the Douglas-Rachford solves the primal problem. A va-

riety of research work exists in the literature where the convergence guarantee and the

convergence rates of the above algorithms have been analyzed such as [87, 140, 19, 97,

73, 155]. We expect that the proposed methods are also possibly extendible to dual spaces

and provide interesting and efficient optimization algorithms. Various formulations and
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modifications of the Peaceman-Rachford algorithm are also available in the literature of

operator splitting methods [69, 70].

5.1.1 Contributions

The main contributions of this chapter are as follows:

• We propose an extragradient-based operator splitting algorithm (EOSA) for the

problem of minimizing the sum of two non-smooth closed convex functions. We

also prove the linear convergence of the algorithm under few specific assumptions.

• We have also proposed the accelerated variant of the algorithm, namely, an accel-

erated extragradient-based operator splitting algorithm (AEOSA) and analyze the

convergence of the proposed algorithm.

• We performed extensive experiments with four high-dimensional microarray gene

expression datasets and compared our algorithms against the different standard and

latest related algorithms.

5.1.2 Outline

The rest of the chapter is organized as follows. In Section 5.2, we will discuss the pre-

liminary concepts and notations that we used in this chapter. In section 5.3, we will

propose the novel Extragradient-based Operator Splitting Algorithm (EOSA) and discuss

its convergence analysis in detail. An accelerated variant of EOSA, called as Accelerated

Extragradient-based Operator Splitting Algorithm (AEOSA) is also proposed in this sec-

tion, along with its convergence analysis. The Experimental setup and result analysis with

four publicly available benchmark real datasets are given in Section 5.4. We conclude by

summarizing the work and the key contributions of this chapter in Section 5.5.
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5.2 Related Concepts and Background

In this section, we will discuss the standard operator splitting methods and their interpre-

tation as fixed-point iterative schemes. We also discuss the research motivation of this

chapter.

5.2.1 Peaceman-Rachford Operator Splitting Algorithm

The main problem under consideration (5.1) can be interpreted as finding zero of two

maximal monotone operators, as follows

0 ∈ (∂ f +∂g), (5.2)

where ∂ f and ∂g are subgradients of functions f and g respectively, and considered as

maximal monotone set-valued operators in R
d . Let T be an operator, the reflected re-

solvent operator (or Cayley operator) with respect to operator T is defined for λ > 0 as

follows [18],

RT
λ = 2JT

λ − Id. (5.3)

Let us define the resolvent and reflected resolvent operators of two maximal monotone

operators A and B, with respect to parameter λ as JA
λ , JB

λ (see appendix for the definition of

resolvent operators) and RA
λ , RB

λ , respectively. Since the A and B are maximal monotone, it

is clear that all the four operators i.e. JA
λ , JB

λ , RA
λ , and RB

λ are non-expansive operators [62].

It is also known that the combination of Cayley operators RB
λ RA

λ is also non-expansive.

For solving the problem (5.1), the corresponding definitions of reflected resolvent opera-

tors R
f

λ
and R

g

λ
will be given as, (2 proxλ f − Id) and (2 proxλg− Id), respectively. From

now on, we will use R
f

λ
R

g

λ
for RB

λ RA
λ . To solve problem (5.1), the Peaceman-Rachford

splitting is an undamped iteration defined as follows, with z1 ∈ R
d ,







xn ← proxλg(zn)

zn+1 ← R
f

λ
R

g

λ
(zn),

(5.4)

where λ > 0, and proxλg is the proximity operator defined as follows,
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proxλg(z) = argmin
v

{λg(v)+
1

2
‖z− v‖2}.

Few authors showed the convergence of this iterative technique with few assumptions.

For example in [61], the author showed the strong convergence of a perturbed extension of

this algorithm under the Slater condition, where as in [69], the author proposed a relaxed

Peaceman-Rachford algorithm.

5.2.2 Douglas Rachford Operator Splitting Algorithm

The Douglas-Rachford splitting algorithm is a damped iteration with respect to τ ∈ (0,1)

defined as follows, with z1 ∈ R
d ,







xn ← proxλg(zn)

zn+1 ← ((1− τ)zn + τ R
f

λ
R

g

λ
) (zn).

(5.5)

With the general choice of τ = 1
2
, another way to write the above scheme is as follows,



















xn ← proxλg zn

yn ← proxλ f (2xn− zn)

zn+1 ← zn + yn− xn

(5.6)

It has been shown in [62] that this damped iteration always converges to a point x ∈

H , and proxλ f (x) ∈ zer(∂ f + ∂g) (here zer(T ) denotes the set of zeros of operator T ).

The convergence proof given in [62] is for the inexact version of the Douglas-Rachford

splitting method.

The iterative process given in (5.4) can be interpreted as the Picard’s iterative scheme

with respect to the nonexpansive operator R
f

λ
R

g

λ
. Similarly, the averaged mapping of the

nonexpansive operator R
f

λ
R

g

λ
given in (5.5) can be interpreted as the fixed-point iterative

scheme from Mann [128]. Both of these schemes are very basic and proposed a long time

back. In the literature of fixed-point theory, there exists a variety of advanced fixed-point
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schemes that work with the nonexpansive operators and converge to a solution point, as-

suming the solution point exists. In this chapter, we go beyond the standard operator split-

ting algorithms and propose a new splitting algorithm which is based upon an advanced

fixed-point iteration scheme. We prove the linear convergence of the algorithm under few

specific assumptions and also derive the accelerated variant of the algorithm. The algo-

rithm is applied to the bioinformatics problem of cancer prediction with real benchmark

microarray gene expression datasets, where we solve the popular lasso framework used

for the sparsity regularized risk minimization problem.

5.3 Proposed Operator Splitting Algorithms

As described earlier, the two standard operator splitting methods Peaceman-Rachford

splitting and the Douglas-Rachford splitting is based on the Picard’s and Mann’s itera-

tion respectively. Although these iterative schemes are simple and effective in solving

the problem (5.1), we are interested in analyzing the effect of latest advanced fixed point

iterations based operator splitting techniques.

5.3.1 EOSA

In this work, we will analyze a very recent fixed point iteration based operator splitting

technique, which we also used in Chapter 3. The fixed point technique we utilize in

this work was introduced in [173], which considers the concept of extra-gradient. This

method is also considered to be a hybrid Picard-Mann fixed point iteration scheme. We

designed a generalized operator-splitting algorithm and applied the method for the task

of classification. Following the same notations used in previous sections, we propose

the Extragradient-based Operator Splitting Algorithm (EOSA) to solve problem (5.1), as

follows, with z1 ∈ R
d , sequence βn ∈ (0,1) and λ > 0,







xn ← proxλg zn,

zn+1 ← R
f

λ
R

g

λ
((1−βn)Id +βn R

f

λ
R

g

λ
) zn,

(5.7)
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Algorithm 6: Extragradient-based Operator Splitting Algorithm

Data: Training/Testing Data, tol

Result: xn

function EOSA

initialize z1 ∈ R
d, λ ∈ (0,+∞), β1 ∈ (0,1), n = 1;

repeat

Compute βn such that βn ∈ (0,1);
xn ← proxλg(zn);

vn ← R
f

λ
R

g

λ
zn;

yn ← (1−βn) zn +βn vn;

zn+1 ← R
f

λ
R

g

λ
(yn);

n← n+1;

until converge;

with (R
f

λ
= 2 proxλ f − Id) and (Rg

λ
= 2 proxλg− Id), respectively. For the general choice

of βn = 1/2, another way to write this iteration is as follows, with z1 ∈ R
d and λ > 0,















































xn ← proxλg (zn)

yn ← proxλ f (2xn− zn)

un ← zn + yn− xn

wn ← 2 proxλg(un)−un

zn+1 ← 2 proxλ f (wn)−wn

For the sake of simplicity, we will use the notation T for the nonexpansive operator R
f

λ
R

g

λ
.

As described in previous chapters also, the scheme is defined for the operator T and

βn ∈ (0,1) as follows, with z1 ∈ R
d ,

zn+1 ← T ((1−βn)zn +βnT (zn)), x ∈H . (5.8)

The pseudo code of the algorithm is given in 6. The condition converge is considered

to be achieved when the difference between the function value at previous step and the

function value at the current step becomes lesser than a previously defined tolerance value

tol. In our experiments, we set the value of tol as 10e-4. In the next subsection, we will

analyse the convergence of EOSA.
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5.3.2 Convergence Analysis of EOSA

In order to prove the linear convergence of the algorithm, we first introduce the notion of

the NE-operator (New Extragradient operator) and analyze the property of the operator.

Let C be a nonempty convex subset of a Hilbert space H and T : C →C is an operator.

For βn ∈ (0,1) the NE-operator is defined as follows,

TNE = T [(1−βn)Id +βnT ]. (5.9)

Following [87], the proposed iterative scheme can be re-written in terms of T and β ∈

(0,1), as follows,

zn+1 ← T [(1−βn)Id +βnT ]zn (5.10)

Although it is discussed in [173], we give a formal lemma for the property of operator

TNE .

Lemma 5.1. Let C be a nonempty convex subset of a Hilbert space H and T : C → C

is an operator. Let TNE be an operator defined as in (5.9). Then TNE will be a non-

expansive operator, if T is non-expansive and it will be k(1−βn(1− k))-contractive if T

is k-contractive.

Let us denote the fixed-point of an operator by f ix(·). The fixed-point of operator TNE is

formalized for a Hilbert space as follows,

Proposition 5.2. [173] Let C be a nonempty closed convex subset of H and T : C→C

a contraction operator. Assume that βn ∈ (0,1). Then f ix(TNE) = f ix(T ).

The convergence of the proposed algorithm for the nonexpansive definition of operator T

can be directly implied from theorem 6.7.4 from [174].

Theorem 5.3. Let H be a real Hilbert space. Let C be a nonempty closed convex subset

of and T : C → C a nonexpansive mapping with f ix(T ) 6= φ . Let {zn} be the sequence

defined by (5.10). Then zn converges weakly to a fixed point of T .
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Since xn← J
g

λ
zn, and J

g

λ
is again a nonexpansive operator, following statements from [87]

and [18], we can conclude that the proposed algorithm converges to a fixed point solution

x∗. It is well-known fact that for T = R
f

λ
R

g

λ
, the Douglas-Rachford algorithm follows the

Krasnosel’skii-Mann(KM) algorithm, for which the linear convergence has been already

proved. Next, we prove the linear convergence of iterative sequence (5.10).

Theorem 5.4. Let z0 ∈H and βn ∈ (0,1). Let C be a closed convex subset of a Hilbert

space H and T : C→C be a nonexpansive operator. Then the algorithm given in (5.10)

satisfies the following:

‖T zn− zn‖
2 ≤

‖z0− z∗‖2
2

∑
n
i=0 βn(1−βn)

. (5.11)

Proof: To prove the linear convergence of the algorithm (5.10), we first show that ‖zn−

T zn‖2 is non-increasing.

‖zn+1−T zn+1‖2 = ‖T [(1−βn)zn +βnT zn]−T zn+1‖2

≤ ‖(1−βn)zn +βnT zn− zn+1‖2 (nonexpansivity of T )

= ‖(1−βn)(zn−T zn)+T zn− zn+1‖2 (by adding and subtracting T zn)

≤ (1−βn)‖zn−T zn‖2 +‖T zn− zn+1‖2 (from triangular inequality)

= (1−βn)‖zn−T zn‖2 +‖T zn−T [(1−βn)zn +βnT zn]‖2 (expanding zn+1)

≤ (1−βn)‖zn−T zn‖2 +‖zn− (1−βn)zn−βnT zn‖2 (nonexpansivity of T )

= (1−βn)‖zn−T zn‖2 +βn‖zn−T zn‖2

= ‖zn−T zn‖2

This shows that ‖zn−T zn‖2 is non-increasing.

Let z∗ be the solution of the fixed-point problem (5.10). Then we have,

‖zn+1− z∗‖2
2 = ‖T [(1−βn)zn +βnT zn]− z∗‖2

2

= ‖T [(1−βn)zn +βnT zn]−T z∗‖2
2 (since z∗ = T z∗)

≤ ‖(1−βn)zn +βnT zn− z∗‖2
2 (nonexpansivity of T )

= ‖(1−βn)(zn− z∗)+βn(T zn−T z∗)‖2
2 (by adding and subtracting βnz∗)

(5.12)
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To proceed further, we will use the following relation from [65], for any ε ∈ [0,1] and

u,v ∈H ,

‖(1−βn)u−βnv‖2
2 = (1−βn)‖u‖

2
2 +βn‖v‖

2
2−βn(1−βn)‖u− v‖2

2

Using the above relation in (5.12), we get,

‖zn+1− z∗‖2
2 ≤ ‖zn− z∗‖2

2−βn(1−βn)‖zn−T zn‖
2
2

Taking sum over n leads to,

(

n

∑
i=0

βn(1−βn)

)

‖zn−T zn‖
2
2 ≤

n

∑
i=0

βn(1−βn)‖zi−T zi‖
2
2 ≤ ‖z0− z∗‖2

2.

Thus, we have,

‖T zn− zn‖
2 ≤

‖z0− z∗‖2
2

∑
n
i=0 βn(1−βn)

.

It should be noted that, for βn = β ∈ (0,1), we have

‖T zn− zn‖
2 ≤

‖z0− z∗‖2
2

β (1−β )(n+1)
,

Since xn← J
g

λ
zn, and J

g

λ
is again a nonexpansive operator, following statements from [87]

and [18], we can conclude that the EOSA algorithm achieves an overall O(1/n) rate of

convergence for solving the fixed point problem (5.1). We propose an accelerated variant

of EOSA in the next subsection.

5.3.3 AEOSA

A recent trend in the field of first-order proximal methods is to accelerate the speed of

convergence. With this aim, in [152], authors proposed an accelerated Douglas-Rachford

algorithm and showed the convergence rate of the proposed algorithm. With the help

of simulated results, they also showed that their proposed accelerated Douglas-Rachford

algorithm (ADR) converges in lesser number of iterations than that of the traditional

Douglas-Rachford algorithm.
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With the same motivation, here we propose a novel accelerated operator splitting algo-

rithm, named as Accelerated Extragradient-based Operator Splitting Algorithm (AEOSA).

For two convex functions f and g, with the initial values z0 = z1 ∈H and β ∈ (0,1), the

AEOSA algorithm is defined as follows,

xn ← proxλg zn

yn ← zn +αn (zn− zn−1)

zn+1 ← R
f

λ
R

g

λ
((1−βn) yn +βn R

f

λ
R

g

λ
(yn)) ∀n = 1,2, · · ·N,

where sequences {αn}n∈N and {βn}n∈N ∈ (0,1) and λ > 0. The pseudo code of the

algorithm is given in 7. Another way to write this algorithm is as follows:



























































xn ← proxλg (vn)

yn ← proxλ f (2xn− vn)

un ← zn + yn− xn

wn ← 2 proxλg(un)−un

zn+1 ← 2 proxλ f (wn)−wn

vn+1 ← zn+1 +α (zn+1− zn)

(5.13)

The condition converge is considered to be achieved when the difference between the

function value at previous step and the function value at the current step becomes lesser

than a previously defined tolerance value tol. In our experiments, we set the value of tol

as 10e-4. The term (xn− xn−1) in algorithm 7 introduces an inertial step that produces

acceleration with proper parameter settings and conditions on αn. It should be noted that

the term αn is a generalized term, that was defined by the expression
(

tn−1−1
tn

)

in [23] and

n−1
n+3

in [47].

5.3.4 Convergence Analysis of AEOSA

To prove the convergence of the algorithm 7, we will give the following theorem based on

theorem 3.5 of Chapter 3.

Theorem 5.5. Let H be a Hilbert space and T : H →H is a non-expansive mapping.

Let x∗ be the solution of problem 5.1. For the initial points z0 and z1 ∈H , let {xn}
∞
n=0



Chapter 5. New Operator Splitting Algorithms 104

Algorithm 7: Accelerated Extragradient-based Operator Splitting Algorithm

Data: Training/Testing Data, tol

Result: xn

function AEOSA

initialize z0, z1 ∈ R
d, λ ∈ (0,+∞), n = 0;

repeat

n← n+1;

compute αn and βn such that both αn, βn ∈ (0,1);
xn ← proxλgzn;

un ← zn +αn (zn− zn−1);

vn ← R
f

λ
R

g

λ
un;

yn ← (1−βn)un +βnvn;

zn+1 ← R
f

λ
R

g

λ
(yn);

until converge;

be a sequence generated by (5.13), where αn and βn ∈ (0,1]. Let λ ∈ (0,2/L) and the

sequence {zn} satisfies the following condition:

∞

∑
n=1

αn‖zn− zn−1‖
2 < ∞.

Then {xn}
∞
n=0 converges to x∗.

Proof: Since xn ← J
g

λ
zn, and J

g

λ
is again a nonexpansive operator, following statements

from [87] and [18], we can conclude that the theorem follows from (3.5).

5.4 Experiments and Result analysis

In this section, we present the lasso framework and the practical performance of the pro-

posed algorithms for the task of binary classification for microarray gene analysis. We

demonstrate the results on four benchmark real gene-expression datasets, which are used

in the domain of bio-informatics.

Consider a learning framework with the training dataset with m instances denoted as

D = {(ai,yi), ai ∈ R
d, and yi ∈ R for i = 1, · · · ,m}. Here, each pair (ai,yi) represents ith

input-output pair. We consider function f (·) of (5.1) as the squared loss function and func-

tion g(·) as non-smooth l1 norm, which reduces problem (5.1) into the popular LASSO
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framework [191] as follows,

min
x∈Rd

1

2
‖Ax−b‖2

2 +ρ‖x‖1. (5.14)

Note that A = {a1, a2, · · · , ai} where i = 1,2, · · · ,m, and each ai ∈R
d for d−dimensions

and Y is a set of m real values (outcomes) for regression or the distinct class labels for

classification (2 in this chapter, for binary classification), i.e. Y = {y1, y2, · · · , yi} for

i = 1, 2, · · · , m. The parameter x ∈ R
d is the weight parameter, which sets weights to

each dimension subject to the minimum loss. The ℓ1 norm on parameter x shows that the

resulting weights are required to be sparse. The parameter ρ is the sparsity controlling

parameter and ‖ · ‖2 is the Euclidean norm. The proximity operators with respect to the

above equation (5.14) are computed using the procedure described in[151].

All the experiments including extensive parameter tuning are performed under the MAT-

LAB computing environment. The configuration of the servers where the experiments are

performed is as follows: Dell Power Edge R-930: Populated with a 4x18 core of Intel

Xeon E7-8870 v3 @2.10 GHz processor with 45MB L3 Cache, 4U Form Factor, 256 GB

DDR4 RAM, 8 x 1.2 TB 15K hot-plug SAS. We used the following publicly available

high-dimensional gene expression datasets:

• Colon-cancer Dataset 1: The dataset contains expression level of 2000 genes with

highest minimal intensity in descending order from 62 patients. Among them, 40

tumor biopsies are from tumors, and 22 normal biopsies are from healthy parts of

the colons of the same patients. We used 37 samples as training and 25 samples as

testing selected at random. The number of dimensions is 2000.

• Duke-cancer Dataset 2: This data set details microarray experiment for 44 breast

cancer patients, out of which we use 26 records as training and 18 records as test-

ing. The number of dimensions is 7,129. The binary variable Status is used to clas-

sify the patients into estrogen receptor-positive (Status = 0) and estrogen receptor-

negative (Status = 1). The other variables contain the expression level of the con-

sidered genes.

• Leukemia Dataset1: Leukemias are primary disorders of bone marrow. The total

number of genes to be tested is 7129, and the number of samples to be tested is 72,

1http://featureselection.asu.edu/datasets.php
2https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/
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which are all acute leukemia patients, either acute lymphoblastic leukemia (ALL)

or acute myelogenous leukemia (AML). We used 38 samples as training samples

and 34 samples as testing samples.

• Prostate Dataset1: The Prostate dataset contains 102 samples out of which 52

samples are samples of the person suffering from a prostate tumor, and 50 samples

are of healthy persons. The total number of genes is 5966. We used 61 training

samples and 41 testing samples in our experiments.

We compared our proposed algorithms, i.e. New Extragradient-based Operator splitting

Algorithm (5.7) (EOSA) and its accelerated variant, Accelerated New Extragradient-

based Operator splitting Algorithm (5.13) (AEOSA) with the classic Peaceman-Rachford

Splitting Algorithm (5.4) (PR), the classic Douglas-Rachford splitting algorithm (5.5)

(DR), a recent accelerated Douglas-Rachford splitting algorithm [152] (ADR). The value

of sparsity controlling parameter ρ is set as {θ × ρmax}, where ρmax is set as ‖XTY‖∞.

The parameter θ is tuned in the range {0-100} with an increment of 1. The parameter θ

is tuned by five-fold cross-validation for all methods. As a pre-processing step, z-score is

performed on X to normalize, and a bias column is added to the data. For the stopping

criteria, the tolerance value (the difference between two consecutive function values) is

set to 10e-4, which also notifies the convergence. The maximum number of iteration is set

to 10e4. All the vectors are initialized with a zero-valued vector. Value of λ is initialized

with 1, and βn is set to 1
(n+1) .

Our first experiment is the comparison of the first order operator splitting algorithms based

on their convergence speeds. Results are shown in figure 5.1 as log-log plots, in which

the y-axis show the term F(xn)−F(x∗) and x-axis are the number of iterations. It can

be observed that among the non-accelerated algorithms EOSA algorithm converges faster

on all the datasets. In the accelerated version, AEOSA is faster than the ADR algorithm.

We also tried to implement the accelerated variant of PR algorithm, however, for the

parameter set, we considered, the algorithm is not converging. Observing the figures,

we can also say that among the non-accelerated traditional operator splitting algorithms,

EOSA converges comparably faster than the PR and DR algorithms. With the Prostate

dataset, few fluctuations can be observed with graph of ADR, which is a normal tendency

with such inertial algorithms. Various restarting-based algorithms [148] can be adapted

to handle such cases.
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(a) Colon (b) Duke

(c) Leukemia (d) Prostate

FIGURE 5.1: Performance of VAGA on the basis of F(xn)−F(x∗) on the four Datasets,

Colon, Duke, Leukemia and Prostate, respectively. F(xn) is the function value achieved

after nth iteration and F(x∗) is the optimal function value. Shown graphs are log-log plots.

We consider the convergence is reached if F(xn)−F(xn−1) becomes 10e-4. Maximum

iterations is considered as 10e4.

In figure 5.2, the box-plot representations of the required number of iterations to reach

the convergence point for all the algorithms are shown. As we discussed earlier also, the

convergence is said to be achieved if the difference between the function values at con-

secutive points becomes lesser than a value tol, which we set as 10e-4. It can be observed

that for most of the datasets, the DR algorithm consumes a larger number of iterations.

The least number of iterations is consumed by AEOSA. For the Leukemia dataset, in all

the experiments, PR and DR are reaching upto maximum number of iterations to con-

verge. For this dataset, in most of the experiments, EOSA is also taking similar number

of iterations to converge.
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(a) Colon (b) Duke

(c) Leukemia (d) Prostate

FIGURE 5.2: Performance of the newly proposed operator splitting algorithm along with

the accelerated variant on the basis of number of iterations required by each algorithm

for the four Datasets, Colon, Duke, Leukemia and Prostate, respectively.

We show the graphs between the objective function values in each iteration for the four

datasets in figure 5.3. The rapid reductions in values of objective functions demonstrate

the efficiency of the proposed algorithms. Here again, the AEOSA algorithm outperforms

all the other algorithms. These values of objective functions are for θ = 10 with initial

100 iterations.

The classification accuracies for all the algorithms on all the datasets are shown in figure

5.4. The performance of both the accelerated algorithms ADR and AEOSA are almost the

same, and better than the rest of the algorithms in most of the cases. For the Duke dataset,

DR performs the best with respect to classification accuracy.
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(a) Colon (b) Duke

(c) Leukemia (d) Prostate

FIGURE 5.3: Performance of the newly proposed operator splitting algorithm along with

the accelerated variant on the basis of Reduction in Function Value in each Iteration for

the four Datasets, Colon, Duke, Leukemia and Prostate, respectively.

The one of the most important metric to check the performance of an optimization al-

gorithm is the time consumption by that algorithm. In our experiments, we show the

comparison between the CPU time consumed by all the algorithms in figure 5.5. The fig-

ures show that the CPU time consumed by the ADR and AEOSA algorithms is least and

more and less equal. The time consumed by the EOSA algorithm is the largest, which can

be directly implied by the designing of the iterative process.

Table 5.1 shows the detailed result of all the four datasets, where the best values are shown

in bold letters. The shown results are in terms of (i) the number of iterations to reach the

convergence (#Iter), (ii) the minimum objective function value achieved (optFV), (iii) the

classification accuracy (Acc) and (iv) the CPU time in seconds. Here, the convergence is
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(a) Colon (b) Duke

(c) Leukemia (d) Prostate

FIGURE 5.4: Performance of the newly proposed operator splitting algorithm along with

the accelerated variant on the basis of classification accuracy by each algorithm for the

four Datasets, Colon, Duke, Leukemia and Prostate, respectively.

considered to be achieved when the difference between two consecutive objective function

values becomes less than the tolerance value (which is set as 10e-5). It is evident from

the table that AEOSA takes significantly less number of iterations on all the datasets. The

optimal objective function value achieved by AEOSA is also the least in all of datasets.

As far as the classification accuracy values are concerned, with all the datasets, the per-

formances of algorithms ADR and AEOSA obtain same value. We have also checked for

other metrics for measuring the performance of classification, such as precision and recall,

but these values are also same for both the algorithms. We have found in our experiments

that the per iteration CPU time of the proposed AEOSA algorithm is slightly greater than

the ADR algorithm, which is clear from the basic design of the iterative process. However,
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(a) Colon (b) Duke

(c) Leukemia (d) Prostate

FIGURE 5.5: Performance of the newly proposed operator splitting algorithm along with

the accelerated variant on the basis of CPU Time required by each algorithm to reach

the convergence for the four Datasets, Colon, Duke, Leukemia and Prostate, respectively.

We consider the convergence is reached if F(xn)−F(xn−1) becomes 10e-4.

the significantly lesser number of iterations overcomes this problem. This observation re-

flects with Colon, Duke and Prostate datasets. With Leukemia dataset, AEOSA consumed

more time than ADR.

5.5 Conclusion

In this chapter, we proposed an extragradient-based operator splitting method and an ac-

celerated variant of the algorithm. We analyzed the convergence of both the algorithms.

We applied both the algorithms to solve the classification problem with the logistic lasso
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TABLE 5.1: Detailed Results for all the four datasets. Shown CPU time are in seconds.

The values of objective functions are for θ = 10 at 100th iteration. We consider the

convergence is reached if F(xn)−F(xn−1) becomes 10e-4.

PR DR EOSA ADR AEOSA

Colon

# Iter
3213

(±573.36)

4146.4

(±714.90)

2620.4

(±489.82)

321.8

(±156.38)

186

(±90.76)

optFV 10.5395 12.6213 9.7823 9.1802 9.0817

Acc
0.44

(±0.0632)

0.488

(±0.0715)

0.472

(±0.0593)

0.664

(±0.0921)

0.664

(±0.0921)

CPU time
0.4844

(±0.1126)

0.6436

(±0.2249)

0.6492

(±0.2519)

0.0635

(±0.0273)

0.0628

(±0.0452)

Duke

# Iter
6951.2

(±843.2767)

9400

(±788.0548)

5576.2

(±742.8907)

2332.8

(±4286.9963)

514.8

(±538.6475)

optFV 52.4176 54.2797 50.6825 36.7575 22.8254

Acc
0.8444

(±0.0724)

0.9222

(±0.0496)

0.8556

(±0.0497)

0.7444

(±0.1783)

0.7333

(±0.1730)

CPU time
4.7981

(±1.1046)

6.1054

(±0.7289)

6.6694

(±0.9376)

1.4833

(±2.7681)

0.8772

(±1.1620)

Leukemia

# Iter
10000

(±0.00)

10000

(±0.00)

9861.2

(±310.3662)

586.6

(±178.7394)

339.4

(±103.3697)

optFV 87.8187 86.8357 85.9028 76.9507 60.7894

Acc
0.0758

(±0.0288)

0.0344

(±0.00)

0.0896

(±0.0308)

0.6137

(±0.0823)

0.6137

(±0.0823)

CPU time
12.8078

(±0.3208)

13.0372

(±0.9196)

24.4879

(±1.5629)

0.7368

(±0.2121)

0.8700

(±0.5486)

Prostate

# Iter
9891.4

(±242.8369)

10000

(±0.00)

8558.2

(±789.1449)

2052.4

(±1761.8692)

670

(±580.8067)

optFV 212.8267 230.0933 199.3723 139.6753 100.6291

Acc
0.1902

(±0.0469)

0.0975

(±0.0621)

0.2634

(±0.0361)

0.5317

(±0.0528)

0.5317

(±0.0528)

CPU time
14.6327

(±1.0264)

14.6291

(±1.8244)

22.8536

(±3.7409)

3.1870

(±2.9297)

2.0190

(±1.6148)

framework along with an ℓ1 regularizer. This framework is applied to the task of microar-

ray gene-expression analysis. We used four benchmark publicly available microarray

gene-expression datasets in our experiments. The two proposed algorithms are applied

to solve this problem, and the performances are compared to the state-of-the-art operator

splitting algorithms and their accelerated variants. The only limitation we found in our

methods is the higher CPU-time due to the design of the iterative scheme, which in future

we will try to handle by implementing the algorithms on GPUs.


