
Chapter 4

VAGA: Viscosity-based Accelerated

Gradient Algorithm for Regularized

Multitask Learning Framework with

Convergence Guarantee and

Applications

4.1 Introduction

In the field of machine learning, there exist various real world problems that involve mul-

tiple related subtasks of regression or classification. For example, in a spam detection

system, the detection of spam e-mail/message in different languages can be considered

as individual tasks. One approach for handling such a scenario is to consider each task

individually under the framework of Single Task Learning, which does not exploit the

relatedness of the tasks while learning. In a spam detection system, for example, all the

tasks are related in terms of the common problem of spam classification. Patterns in spam

or non-spam emails in the English language can help improve the classification process

in other languages and vice versa. The main purpose of multitask learning (MTL) is to

improve the generalization performance while learning multiple related tasks together.

Various real-world applications of such algorithms include recognition [3, 183], recom-

mender systems [5, 116], natural language processing [68, 60], computational biology

[32, 223], web search ranking [51], online feature selection [210] etc.
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In multitask learning framework, we utilize the internal relatedness between tasks dur-

ing the process of learning so that the performance of individual tasks can be enhanced.

Consider a supervised learning (regression) framework for T number of related tasks,

where the training data set for t th task is denoted by Dt = {(xti,yti),xti ∈ R
d,yti ∈ R, i =

1, · · · ,mt} ∀t = 1, · · · ,T . Here, the pair (xti,yti) represents ith input/output pair of t th task

and mt denotes the number of example pairs in t th task. The set of {xti} is denoted as

Xt , the set of {yti} is denoted as Yt , and the parameter to learn is W . To learn a predic-

tion function corresponding to each task t ∈ T , is the main objective of multitask lasso

problem, such that individual tasks can utilize the shared information between tasks. The

minimization problem estimates parameter W from the training examples by solving the

following,

min
W

1

2
∑
t

‖XtWt−Yt‖
2
F +ρ‖W‖reg, (4.1)

where, ‖W‖reg is a non-smooth regularizer term. We can consider both the ℓ1 and ℓ21

norms for the framework. For ℓ1 norm, ‖W‖1 is defined as the maximum absolute column

sum of the matrix W , i.e., max
1≤i≤t

∑
d
j=1 |wi j|, whereas for ℓ21 norm ‖W‖21 is defined as

∑
d
i=1

√

∑
t
j=1 |wi j|2, i.e., the sum of norm of each row. The ‖ · ‖21 norm makes sure that

W is sparse in rows, and selects features across tasks. In our experiments, we employed

ℓ21 norm. Note that Xt ∈ R
mt×d , Wt ∈ R

d and Yt ∈ R
mt corresponding to the t th task. The

ρ parameter is the sparsity controlling parameter and ‖ · ‖F is the Frobenius norm. The

difference between single-task learning and multitask learning frameworks is illustrated

in figure 4.1. There are t number of related tasks in the figure. In the single-task learning

framework, the models are learned separately for individual tasks, thus not sharing any

information while training. In the multitask learning framework, there is a joint training

process for all the tasks such that all of them share the relatedness among them. Thus, the

individual models we get after training carry the mutual information from other tasks as

well.

A general notion to employ the task relatedness is to use a proper convex non-smooth

regularization function. The overall formulation becomes a regularized risk minimization

problem. Lasso framework is already discussed in Chapter 2. In multitask learning set-

ting, various lasso extensions are available such as Group Lasso formulation [217] via the

l1− l2 block-norm [124] or the l1− l∞ block-norm [134, 196], tree structure [94], graph

structure [4], flexible sparsity structure [107, 52] etc.
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FIGURE 4.1: Single-task vs. Multitask Learning Frameworks

In convex optimization, proximal gradient-based methods are the methods of choice for

solving MTL problems due to their applicability to large scale data. Previously proposed

methods include interior point method [196], projected subgradient method [160], block-

wise coordinate descent algorithm [121], forward-looking subgradients [77] and so on.

Proximal methods, also called generalized gradient-based methods, are preferred over in-

terior point methods (IPM) because of their computationally cheaper iterations. Although

IPMs provide highly accurate results in low iteration counts, the iteration cost grows non-

linearly with the number of decision variables [106]. The computationally cheaper iter-

ations of First Order Methods (FOMs) motivated us to analyze them further under the

framework of MTL. To improve the practical applicability of general proximal gradient

techniques, often an inertial-based acceleration step is introduced that makes the process

converge to the solution with O(1/k2) rate, where k is the number of iterations needed to

reach the optimal point. The convergence proofs of such methods are either unavailable

or exhibit a weak convergence in infinite dimensional space.

It has been stated in [90, 56], that the strong convergence of the sequence {xn} to a min-

imizer of function F , improves the convergence rate. In this direction, in [114] authors

proposed the viscosity approximation method of selecting a particular fixed point of a

given non-expansive mapping and proved the strong convergence in Hilbert spaces, which

was further studied and extended in [208]. Recently, in [175] authors proposed a prox-

Tikhonov like FBA under the framework of Banach spaces, considering the general con-

dition of non-expansivity of operators and proved the strong convergence of the algorithm

using viscosity approximation technique. This concept motivates us to analyze this and
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similar iterative schemes for the problem of regularized convex minimization problem and

to investigate its practical performance on the multitask learning problems.

4.1.1 Contributions

The contribution reported in the chapter is three-fold:

• We apply the recent viscosity approximation based forward-backward algorithm

[175] to solve the problem of multitask regression as viscosity-approximation-based

proximal gradient algorithm (VPGA) and proposed a novel viscosity-approximation-

based accelerated gradient algorithm (VAGA) for the problem of multitask regres-

sion.

• The boundedness of the sequence generated by the proposed algorithm and the

strong convergence of VAGA is proved under specific conditions.

• The algorithm is applied to the problem of regularized multitask regression with

sparsity-inducing regularizers. Experimental results are presented with three bench-

mark real datasets. VAGA is also applied to the popular bio-informatics problem

of joint splice-site recognition and showed the performance with seven different

genomes.

4.1.2 Outline

The rest of the chapter is organized as follows. Section 4.2 discusses the related mathe-

matical concepts that are used in the proofs of theorems. We also give a brief discussion

on the joint splice-site recognition problem in this section. In Section 4.3, we first ap-

ply the viscosity based proximal gradient algorithm (VPGA) to the regularized multitask

learning problem. Next, we propose the novel viscosity-based accelerated gradient algo-

rithm (VAGA) and apply this algorithm to the regularized multitask learning problem. In

Section 4.4 we present the mathematical analysis of VAGA in terms of the boundedness

and strong convergence of the sequence generated by this algorithm. Section 4.5 discusses

the experimental setup and result analysis with several real datasets for both the problems

of regularized multitask learning as well as joint splice-site recognition. We conclude this

chapter in Section 4.6.
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4.2 Preliminaries

In this section we will discuss a recent viscosity-approximation-based fixed point scheme,

the related lemmas and theorems, we used in our proofs and the background of the Joint

Splice-site Recognition task. The general framework we solve is as follows,

min
x

F(x) = g(x)+h(x). (4.2)

As we know from the previous chapters, the proximal gradient methods [63] are a spe-

cific class of forward-backward splitting algorithms. To solve the general problem (4.2),

a number of forward-backward splitting methods have been designed along with their

convergence proofs such as [193, 64, 198, 123, 207], and references therein. Various ad-

vantages of forward-backward algorithms (FBA), such as convenience in applying, less

costly iterations and good accuracy motivate researchers to further explore various mod-

ifications and generalizations of such methods. An attempt in this direction is to cou-

ple the classical FBA with the regularization/penalization methods, which in context of

fixed-point theory can be considered as the viscosity-approximation. More discussion on

the viscosity-approximation fixed-point schemes is given in the next section. The rich

amount of research is already available in this direction, where traditional algorithms are

combined with approximation methods such as [37, 8, 9, 114, 11] and references therein.

4.2.1 Viscosity-based Forward-backward Splitting Method (VFBA)

In [175], authors introduced the property (N ) for nonexpansivity of operators as follows.

Let C be a nonempty closed convex subset of a Banach space X . An operator B : C → X

is said to satisfy the property (N ) on (0,γX ,B) if there exists γX ,B ∈ (0,∞], depends on

X and B, such that I−ΨB : C → C is nonexpansive for each Ψ ∈ (0,γX ,B). We directly

utilize this property under the framework of Hilbert space. Let C be a non-empty closed

convex subset of a Hilbert space H . An operator B : C → H is said to satisfy the

property (N ) on (0,γH ,B) if there exists γH ,B ∈ (0,∞], that depends on H and B, such

that I−ξ B : C → C is non-expansive, for each ξ ∈ (0,γH ,B).

Following Proposition 2.4 of [175], we can directly conclude that the forward-backward

operator J
A,B
cn is non-expansive. Note that the fixed point of the mapping will correspond
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to the zero of A+B. Inspired by the fact that mapping J
A,B
cn is already split and a fixed

point iterative algorithm for J
A,B
cn on C corresponds to a splitting algorithm for finding

zeros of operator (A+B), i.e., 0∈ J
A,B
cn , authors in [175] proposed the prox-Tikhonov type

FBA under the framework of Banach space as follows:

xn+1 ← JA
cn
(I− cnB)((1−βn)xn +βn f xn), ∀n ∈ N, (4.3)

where f : C → C is a contraction, {βn} is a sequence in (0,1] and {cn} is a regularization

sequence in (0,γH ,B). With respect to the current context, we rename this algorithm as

VFBA. In [175], authors proved the strong convergence of this algorithm in Banach space,

under following parametric assumptions:

(A1) lim
n→∞

βn = 0,

(A2) ∑
∞
n=1 βn = ∞,

(A3) either ∑
∞
n=1 |βn−βn+1|< ∞ or lim

n→∞
|1− βn

βn+1
|= 0,

(A4) 0 < ε ≤ cn, where ε is a real number, and

(A5) ∑
∞
n=1 |cn− cn+1|< ∞, ∀n ∈ N.

The following lemma from [208] is used in our results:

Lemma 4.1. [208] Let (sn) be a sequence of non-negative real numbers satisfying

sn+1 ≤ (1−θn)sn +θnµn + γn, n≥ 0, (4.4)

where (θn), (µn) and (γn) satisfy the following conditions,

(i) (θn) ⊂ [0,1], ∑
∞
n=1 θn = ∞,or equivalently Π∞

n=1(1−θn) = 0, (ii) limsupn→∞ µn ≤ 0

and

(iii) γn ≥ 0 (n≥ 0), ∑n γn < ∞.

Then, limn→∞ sn = 0.

4.2.2 Joint Splice-site Recognition

One of the big challenges in the field of bioinformatics domain is to obtain the labeled

dataset, which can be very costly. The concept of multitask learning, which incorporates

information from several related tasks to improve the prediction accuracy, is useful in

getting the information about unlabelled data. It is believed that combining the known

information from several (related) species can help in predicting the information about

the unknown species. The problem of computational biology we consider in this work
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is to predict the splice site in a DNA (Deoxyribonucleic Acid) sequence of eukaryote

organisms. In the process of conversion of a DNA sequence to Protein, there are three

sub-processes. These are (a) transcription (b) splicing and (c) translation. After the tran-

scription process, we get a pre-mRNA (premature messenger Ribonucleic Acid) sequence

generated from a DNA sequence. Such sequences are formed from basic nucleotide let-

ters A (Adenine), C (Cytosine), G (Guanine) and T (Thymine). This pre-mRNA sequence

consists of certain segments called introns and exons. The exon (coding region) segments

provide useful information about the protein, whereas the intron (non-coding region) seg-

ment does not carry any useful information. Thus, it is necessary to locate the boundaries

of exon segments, which together form the information carrier mRNA. The intron-exon

boundary is called the acceptor site which has GT or GC letter sequence, while the exon-

intron boundary is referred as the donor site, which has the AG letter sequence. However,

not all locations where such letter sequences are present, are splice sites. The locations

where these letter sequences are present but do not represent splice-sites are called decoy

sites and are negative examples of the 2-class classification problem. Recognition task

of such junctions helps in identifying whether such junctions are present in a pre-mRNA

sequence. Figure 4.2 depicts the process in detail.

To improve the accuracy of the splice-site recognition task with multiple organisms, it

seems to be a good idea to adapt or share the information among the organisms, which

can be achieved through the multitask learning framework. With multitask learning frame-

work, we can call this task as the joint splice-site recognition task. In the framework of

multitask learning, each organism is a task. Each sequence is an instance in the training

dataset and labels are positive and negative, i.e., each gene sequence is a training exam-

ple, and if it contains a splice site, then it belongs to the positive class, otherwise to the

negative class. The employed ℓ21 norm makes sure that W is sparse in rows, and is used to

select only a few genes across tasks that are helpful in classifying the instances in positive

or negative classes.
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FIGURE 4.2: DNA to Protein Conversion. At 5’ end (Left end), cap represents the added

7-methylguanosine, which we get after capping process. At the other end (3’ end; right

end), a poly(A) tail is formed with about 250 adenine residues.

4.3 VAGA

In this section, we first design the viscosity-based proximal algorithm for solving the mul-

titask learning problem defined in (4.1). We next propose a novel viscosity-approximation-

based inertial forward-backward algorithm in Hilbert space and the corresponding viscosity-

based accelerated gradient algorithm for real finite-dimensional space.

Let f : H →H be a contraction mapping with contraction factor κ ∈ [0,1), {βn} is a

sequence in (0,1] and {cn} is a regularization sequence in (0,γH ,∇g). We solve problem

(4.1) using the fixed point iteration given in (4.3) by defining the viscosity-based proximal

gradient algorithm VPGA as follows.

Pn ← (1−βn)Wn +βn fWn,

Wn+1 ← J
g,h
ρcn

Pn, ∀n ∈ N,
(4.5)

where {αn} and {βn} are sequences in (0,1] and the value of cn is computed using the

back-tracking method as in [23].
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We first introduce the viscosity-based inertial Forward-Backward algorithm (VIFBA) for

solving (4.2) and its strong convergence analysis in infinite-dimensional Hilbert space H .

Next we will apply it to solve problem (4.1). Consider A : H → 2H and B : H →H

as two maximal monotone operators, where B satisfies the property (N ) on (0,γH ,B).

Let f : H → H be a contraction mapping with contraction factor κ ∈ [0,1), {βn} is

a sequence in (0,1] and {cn} is a regularization sequence in (0,γH ,B). We define T =

JA
c (I − cB) and Tn = JA

cn
(I − cnB), where lim

n→∞
cn = c for c ∈ (0,γH ,B). We use PC to

denote the projection from H to C . For any x0 and x1 ∈H , we define a new iterative

scheme for sequence {xn} as follows:

zn ← xn +αn(xn− xn−1),

yn ← (1−βn)zn +βn f zn,

xn+1 ← Tnyn, ∀n ∈ N,

(4.6)

where {αn} and {βn} are sequences in (0,1]. The scheme defined by (4.6) will be called

as viscosity-based inertial Forward-Backward Algorithm (VIFBA). This algorithm con-

verges strongly to the solution point under some conditions discussed below. The term

zn is an inertial extrapolate step that produces acceleration with proper parameter settings

and conditions on αn. It should be noted that the term αn is a generalized term, that was

defined by the expression
(

tn−1−1
tn

)

in [23] and n−1
n+3

in [47].

In order to solve the problem of multitask regression defined in (4.1), the problem set-up

is same as defined in the previous section. The proposed algorithm is as follows,

Pn ←Wn +αn(Wn−Wn−1),

Qn ← (1−βn)Pn +βn f Pn,

Wn+1 ← proxρcn‖·‖21
(Qn− cn(X

T XQn−XTY )).

(4.7)

The pseudo-code of our iterative scheme VAGA (4.7) is shown in Algorithm 5. The

behavior of the term αn is shown in Chapter 2, which is useful in the proof of convergence

for the proposed algorithm (4.7). In order to establish the convergence, we ensure that

value of cn belongs to set (0,2/L), where L is the Lipschitz constant of the gradient of the

function g(·). In the large scale problems, since to compute the value of L is not easy, we

are obtaining it from a line search technique opted from [23] in each iteration (as given in

algorithm (5)). The initial value of cn is set to 1.



Chapter 4. VAGA 78

Algorithm 5: VAGA

Data: Training/Testing Data, ρ, tol

Result: Wn+1

begin

W0,W1 ∈ R
d , c1 = 1, α1 = 0,n = 0;

repeat

n← n+1;

Find cn using backtracking step-size rule, and compute αn and βn;

Pn ←Wn +αn(Wn−Wn−1);
Qn ← (1−βn)Pn +βn f Pn;

vn ← (1−βn)Tn +βnun;

Wn+1 ← proxρcn‖·‖21
(Qn− cn(X

T XQn−XTY ));

until converge;

The condition converge is considered to be achieved when the difference between the

function value at the previous step and the function value at the current step becomes

lesser than a previously defined tolerance value tol. In our experiments, we set the value

of tol as 10e-5.

4.4 Analysis of VAGA

As described in previous section, the algorithm VAGA is based on more generalized

VIFBA, in this section we discuss the boundedness and the strong convergence of the

sequence generated by VIFBA (and hence for VAGA). In order to prove the convergence

of the sequence {xn} defined by (4.6), in addition to the assumptions (A1) - (A5), we con-

sider the following two conditions:

(C1) ∑
∞
n=1 ‖xn+1− xn‖

2 < ∞

(C2) ‖xn− xn−1‖/βn → 0 as n→ ∞.

We start our analysis with the boundedness proof of the sequence generated by the pro-

posed algorithm.

4.4.1 Boundedness of {xn} from VAGA

Our next proposition proves that the sequence {xn} generated by (4.6) is bounded.
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Proposition 4.2. Let {xn} be a sequence in H generated by (4.6), where {αn} and

{βn} are sequences in (0,1] and {cn} is a regularization sequence in (0,γH , B) satis-

fying assumptions (A1)− (A2), (A4)− (A5) and condition (C2). Then, the sequence {xn}

is bounded.

Proof. From the definition of yn, we get,

‖yn− x∗‖ ≤ (1−βn)‖zn− x∗‖+βn‖ f zn− x∗‖

≤ (1−βn)‖zn− x∗‖+βn(‖ f zn− f x∗‖+‖ f x∗− x∗‖)

≤ (1−βn)‖zn− x∗‖+βn(κ‖zn− x∗‖+‖ f x∗− x∗‖)

= (1− (1−κ)βn)‖zn− x∗‖+βn‖ f x∗− x∗‖.

Invoking (4.6), we have,

‖xn+1− x∗‖= ‖Tnyn− x∗‖ ≤ ‖yn− x∗‖

= (1− (1−κ)βn)‖zn− x∗‖+βn‖ f x∗− x∗‖.

By condition
‖xn−xn−1‖

βn
→ 0, there exists a constant M≥ 0 such that

‖xn−xn−1‖
βn

≤M, ∀n∈N.

From the definition of zn, we get

‖zn− x∗‖ ≤ ‖xn− x∗‖+αn‖xn− xn−1‖ = ‖xn− x∗‖+αn
‖xn− xn−1‖

βn
βn

≤ ‖xn− x∗‖+βnM, ∀n ∈ N.

Substituting back, we get,

‖xn+1− x∗‖ ≤ (1− (1−κ)βn)(‖xn− x∗‖+βnM)+βn‖ f x∗− x∗‖

≤ (1− (1−κ)βn)‖xn− x∗‖+βn(M+‖ f x∗− x∗‖)

≤max {‖xn− x∗‖,
M+‖ f x∗− x∗‖

(1−κ)
}

...

≤max {‖x0− x∗‖,
M+‖ f x∗− x∗‖

(1−κ)
}. (4.8)

Hence the sequence {xn} is bounded. Also from (4.6), sequences {yn} and {zn} are also

bounded.
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4.4.2 Convergence Analysis

In order to prove that the sequence {xn} generated by (4.6) is an approximating fixed point

sequence of the operator T and thus, {yn} is an approximating fixed point sequence of T ,

we give the following proposition.

Proposition 4.3. Let {xn} be a sequence in H generated by (4.6), where {αn} and {βn}

are sequences in (0,1] and {cn} is a regularization sequence in (0,γH ,B) satisfying as-

sumptions (A1)-(A2), (A4)-(A5) and condition (C2). Then, ‖yn−Tyn‖→ 0 as n→ ∞.

Proof. Since {xn} is bounded and αn ≤ 1 ∀n ∈ N, from the definition of zn we have,

‖zn− xn‖= αn‖xn− xn−1‖ ≤
‖xn− xn−1‖

βn
βn.

Hence, from (C2) we get ‖zn− xn‖→ 0. Also, from (4.6), we can write

‖yn− zn‖= βn‖zn− f zn‖→ 0 as n→ ∞.

Again from (4.6), we have

‖xn+1−Tnzn‖= ‖Tnyn−Tnzn‖ ≤ ‖yn− zn‖.

From (4.6) and Proposition 2.2 from [175], for K = sup
n∈N

{‖Bxn‖+
1
ε ‖(I−cnB)xn−JA

c (I−

cnB)xn‖}, we have

‖Tnzn−T xn‖ ≤ ‖Tnzn−Tnxn‖+‖Tnxn−T xn‖

≤ ‖zn− xn‖+ |cn− c|K.

Finally, we have,

‖xn+1−T xn+1‖ ≤ ‖xn+1−Tnzn‖+‖Tnzn−T xn‖+‖T xn−T xn+1‖

≤ ‖yn− zn‖+‖zn− xn‖+ |cn− c|K +‖xn− xn+1‖

= ‖yn− zn‖+‖zn− xn‖+ |cn− c|K +
‖xn− xn+1‖

βn+1
βn+1
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Thus, from condition (C2), we can conclude that sequence {xn} is an approximating fixed

point sequence of T , i.e., ‖xn−T xn‖→ 0. Note that

‖yn− xn‖ ≤ (1−βn)‖xn− zn‖+βn‖xn− f xn‖.

Thus, ‖yn−xn‖→ 0 as n→ ∞. It follows from Proposition 2.5 from [175] that {yn} is an

approximating fixed point sequence of T .

Now we are in the position to prove the strong convergence of the sequence {xn}
∞
n=1

generated by (4.6) with conditions (C1)-(C2).

Theorem 4.4. Let A : H → 2H and B : H →H are two maximal monotone operators

such that zero set of (A+B) is nonempty, and B satisfy the nonexpansivity property (N )

on (0,γH ,B). Let f : H →H be a contraction operator with contraction parameter κ .

For given x0,x1 ∈H , let {xn} be a sequence in H generated by (4.6), where {αn} and

{βn} are sequences in (0,1] and {cn} is a regularization sequence in(0,γH ,B) satisfying

assumptions (A1)-(A2), (A4)-(A5) and conditions (C1)-(C2). Then {xn} converges strongly

to x∗ ∈ Zer(A+B), where x∗ = PZer(A+B) f x∗.

Proof. Since PZer(A+B) f is a contraction, then there exists unique x∗ ∈ Zer(A+B) such

that PZer(A+B) f x∗ = x∗. Proposition 4.2 shows that sequence {xn} is bounded. Taking a

suitable subsequence {xni
} of {xn}, we see that

limsup
n→∞

〈 f x∗− x∗,yn− x∗〉= lim
i→∞
〈 f x∗− x∗,yni

− x∗〉. (4.9)

We may assume that xni
⇀ x̂ as i → ∞. Note ||yn− Tyn|| → 0. From the demiclosed

principle, we obtain that x̂ ∈ Zer(A+ B). From (4.9), the following statement can be

justified following the variational inequality problem and Proposition 5.6.1 from [174]:

limsup
n→∞

〈 f x∗− x∗,yn− x∗〉= lim
i→∞
〈 f x∗− x∗,yni

− x∗〉

= 〈 f x∗− x∗, x̂− x∗〉 ≤ 0.
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Observe that

‖xn+1− x∗‖2 = ‖Tnyn− x∗‖2 ≤ ‖(1−βn)zn +βn f zn− x∗‖2

= ‖(1−βn)(zn− x∗)+(1−βn)x
∗+βn( f zn− f x∗)+βn f x∗− x∗‖2

≤ ‖(1−βn)(zn− x∗)+βn( f zn− f x∗)‖2 +2βn 〈 f x∗− x∗,yn− x∗〉

≤ (1− (1−κ)βn)‖zn− x∗‖2 +2βn 〈 f x∗− x∗,yn− x∗〉

= (1− (1−κ)βn)‖xn +αn(xn− xn−1)− x∗‖2 +2βn 〈 f x∗− x∗,yn− x∗〉

≤ (1− (1−κ)βn)[‖xn− x∗‖2 +α2
n‖xn− xn−1‖

2

+2αn 〈xn− x∗,xn− xn−1〉]+2βn 〈 f x∗− x∗,yn− x∗〉 .

From Cauchy-Schwarz inequality, we obtain

‖xn+1− x∗‖2 ≤ (1− (1−κ)βn)[ ‖xn− x∗‖2 +α2
n‖xn− xn−1‖

2

+2αn‖xn− x∗‖‖xn− xn−1‖ ]+2βn 〈 f x∗− x∗,yn− x∗〉

≤ (1− (1−κ)βn)‖xn− x∗‖2 + ‖xn− xn−1‖
2

+2‖xn− x∗‖‖xn− xn−1‖ +2βn 〈 f x∗− x∗,yn− x∗〉 .

Set r = max {‖x0− x∗‖, M+‖ f x∗−x∗‖
(1−κ) }. Hence from (4.8), {‖xn− x∗‖} ≤ r ∀n = 0,1, · · · .

Then we have,

‖xn+1− x∗‖2 ≤ (1− (1−κ)βn)‖xn− x∗‖2 + ‖xn− xn−1‖
2 +

2r(1−κ)βn‖xn− xn−1‖

(1−κ)βn

+2(1−κ)βn
〈 f x∗− x∗,yn− x∗〉

(1−κ)
.

Set θn =(1−κ)βn, sn = ‖xn−x∗‖2, µn = 2r‖xn−xn−1‖/[(1−κ)βn]+2〈 f x∗− x∗,yn− x∗〉/(1−

κ) and γn = ‖xn− xn−1‖
2. Then from condition (C1) and lemma 4.1, we conclude that

{xn} converges strongly to x∗.

We give the following theorem for finding solution of (4.2). The operator J
A,B
cn is defined

as the forward-backward operator (I + cn∂h)−1(I− cn∇g). Hence, for any cn ∈ (0,2/L),

solutions of problem (4.2) are characterized by the fixed point equation,

x = proxcnh(I− cn∇g)x. (4.10)
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We now apply Theorem 4.4 for finding solutions of non-smooth convex optimization

problem (4.2).

Theorem 4.5. Let H be a Hilbert space, g : H →R be a convex and differentiable func-

tion with an L−Lipschitz continuous gradient ∇g and h : H → (−∞,∞] be a lower semi-

continuous convex non-differentiable function with subgradient ∂h. For given x0,x1 ∈H ,

let {xn} be a sequence in H generated by

zn ← xn +αn(xn− xn−1),

yn ← (1−βn)zn +βn f zn,

xn+1 ← proxcnh(I− cn∇g)yn, ∀n ∈ N,

where {αn} and {βn} are sequences in (0,1] and {cn} is a regularization sequence in

(0,2/L) satisfying assumptions (A1)-(A2), (A4)-(A5) and conditions (C1)-(C2). Then {xn}

converges strongly to x∗, where x∗ = PZer(∇g+∂h) f x∗.

Proof. Since ∇g satisfies property (N ) on (0,2/L), the result follows from theorem 4.4.

In the next section, we will describe the experimental set-up and the result analysis.

4.5 Experimental Results and Analysis

In this section, we present numerical experiments to demonstrate the performance of the

proposed algorithm on multiple publicly available real datasets. All the experiments are

performed on Intel core i7 processor with 10 GB RAM, under MATLAB computing en-

vironment. We have used MALSAR package [222] to design our experimental setup.

4.5.1 Multitask Regression

We compared our proposed algorithm with Proximal Gradient Algorithm (PGA) method,

VPGA (4.5) and Accelerated Gradient Algorithm (AGA). For experiments, we employed

three real multitask regression datasets as follows:
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(a) Sarcos Dataset (b) School Dataset

(c) Parkinsons Dataset

FIGURE 4.3: Performance of VAGA on the basis of F(Wn)− F(W ∗) on the Sarcos,

School and Parkinsons Datasets, respectively. F(Wn) is the function value achieved after

nth iteration and F(W ∗) is the optimal function value. Shown graphs are log-log plots.

• School: Prediction of performance of students given their descriptions/record. The

number of tasks is 139. In each task, there are 15362 examples with 28 dimensions.

• Sarcos: Prediction of inverse dynamics corresponding to the seven degrees-of-

freedom of SARCOS anthropomorphic robot arm. The number of tasks is 51. In

each task, there are 48933 examples with 21 dimensions.

• Parkinsons: Prediction of two Parkinson’s disease symptom scores for patients

based on bio-medical features. The number of tasks is 84. In each task, there are

5875 examples with 19 dimensions.

The value of sparsity controlling parameter ρ is set as θ × ρmax, where ρmax is set as

‖XTY‖∞ and the value of θ is chosen from the set {10, 5, 1, 0.5, 0.1, 0.05, 0.01, 0.005,

0.001, 0.0005, 0.0001}. For the stopping criteria, the tolerance value tol (difference be-

tween two consecutive function values) is set to 10e-5, which also notifies the conver-

gence. The maximum number of iteration is set to 10e4. All the vectors are initialized

with a zero-valued vector. Values of cn are initialized with 1.
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(a) Sarcos Dataset (b) School Dataset

(c) Parkinsons Dataset

FIGURE 4.4: Performance of VAGA on the basis of Reduction in Function Value in each

Iteration for the Sarcos, School and Parkinsons Datasets.

There are few hyper-parameters based on which the convergence shown in the experi-

ments depend. The first parameter is the parameter αn at nth iteration. The values of

αn ∈ (0,1] is set to satisfy the conditions given in previous section (4.7). It has been

already known from [23, 47] that the definitions of αn used in these works satisfy the

condition of convergence. We set the parameter αn as used in [47]. The second parameter

is βn, which is considered to belong to set (0,1]. We found in our experiments that for

βn → 1 for VAGA, we achieve better convergence than the tradition AGA. We set βn as

1
(n+1) . The third parameter is the contraction parameter κ , which should belong to the

range (0,1). As the initial investigation, we set the mapping f (x) as a linear mapping

(κ · x) with κ = 0.8.

To demonstrate the convergence of our algorithm, we performed experiments with 30%

- 70% training and testing samples split for all the three datasets. The parameter ρ is

tuned by five fold cross-validation for all methods. As a pre-processing step, z-score is
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(a) Sarcos Dataset (b) School Dataset

(c) Parkinsons Dataset

FIGURE 4.5: Performance of VAGA on the basis of rMSE Error rate for the Sarcos,

School and Parkinsons Datasets.

performed on Xt , and a bias column is added to the data. As a performance measure,

the standard root mean square error (rMSE) is used. Our first experiment demonstrates

the convergence results of our algorithm on the three datasets. It can be observed from

the figure (4.3) that the VAGA algorithm converges faster than AGA algorithm for all the

three datasets. Graphs in figure (4.3) are the log-log plots, which holds the advantage to

demonstrate the rate of convergence. As shown in figure (4.3), the slope of the curve of

convergence of our algorithm gives the idea of its better convergence rate. However, the

mathematical proof is the scope of future work.

In figure (4.4), we show the graph between the objective function value in each itera-

tion. In each case, the function value achieved with VAGA is lesser than that of other

algorithms. To compare the achieved accuracy, graphs are plotted between the rMSE and

number of iterations, as shown in figure (4.5), which demonstrates that the rMSE values

are decreasing with each iteration. For all the three datasets the rMSE value achieved is
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FIGURE 4.6: Sparsity of Predictive Model when Changing Regularization Parameter for

the School dataset.

lesser than achieved by other algorithms. We also show the sparsity pattern in the learned

parameter in (4.6) for School dataset with changing sparsity controlling parameter ρ . Sim-

ilar trends were observed with the other two datasets. It is claimed in the field of fixed

point theory that the viscosity-based approximation method, also called the regularized

forward-backward algorithm, provides a stable solution. However, it has not been exper-

imentally proved till date. Our next experiment shows the stability of the algorithm with

respect to the previous traditional algorithms. One of the main and interesting observation

is that with repeated experiments the variance obtained in the rMSE values is very less for

the regularized algorithms, i.e., VPGA and VAGA, which represents the stability of the

two algorithms. The stability results are shown in figure (4.7) for all the three datasets.

For the PGA and AGA algorithms, the rMSE values highly vary for repeated experiments.

For VPGA and VAGA, the quantity of variance is in range of (0.0001-0.0033). We re-

peated our experiments 30 times to get these variances in rMSE values. The number of

iterations also vary, however, the quantity of this variance is not significant. In table 4.1,

the number of iterations required to converge and root mean square error results, with

training dataset size as 10%, 30% and 50% of the full datasets respectively are presented.

Values in bold show the best result achieved on a dataset for each training set size. It can

be observed from the table that for the Sarcos dataset, VAGA achieves the convergence in

the least number of iterations for all the training set sizes. Also, it achieves the best accu-

racy (lowest error) for training set sizes 10% and 30%. The non-accelerated regularized

prox-Tikhonov obtains the lowest error. However the number of iterations it consumes is

much high. For Parkinson’s datasets, VAGA again outperforms the rest of the algorithms

and gives best results in the majority of cases. AGA achieves the lowest rMSE value for

training set size 50%, whereas VAGA achieves the convergence fastest for all training set
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(a) Sarcos Dataset (b) Parkinsons Dataset

(c) School Dataset

FIGURE 4.7: Stability Results in terms of rMSE Values for all the three datasets.

sizes. With the School dataset, again VAGA beats all the algorithms in the majority of

cases with the lesser number of iterations. However, here the best rMSE are obtained with

PGA for 30% and 50% training set sizes.

4.5.2 Joint Splice-site Recognition

In this section, we present the experimental setup and result analysis for the task of joint

splice site recognition with VAGA. We assumed each organism as a task. Since in this

work, we are learning a model which recognizes whether the splice-sites are present or

not in a pre-mRNA sequence, our model forms a binary classifier, which we designed as

a logistic regression. The sparsity-inducing regularizer under consideration weights out

those nucleotide letters, which are important in the joint splice-site recognition task. In

order to learn splice sites using information among various species, we used genome data

of six organisms as described below. We have used the SHOGUN 4.1.0 toolbox [182] in
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TABLE 4.1: Results with no. of iterations required to reach the convergence and the final

rMSE values with the Sarcos, School and Parkinsons Datasets on 10%, 30% and 50%

Training Datasets respectively with repeated experiments.

training data =10% training data =30% training data =50%

# Iter rMSE # Iter rMSE # Iter rMSE

Sarcos

PGA 764 3.2745 1379 3.2659 1621 3.2764

VPGA 652 3.2737 1217 3.2654 1457 3.2756

AGA 314 3.2559 582 3.2696 720 3.6398

VAGA 263 3.2553 473 3.2561 329 3.5612

Parkinsons

PGA 1759 1.2155 610 1.2031 513 1.2159

VPGA 1463 1.2220 461 1.2118 386 1.2314

AGA 263 1.1930 420 1.1745 355 1.1615

VAGA 206 1.1673 384 1.1445 257 1.2915

School

PGA 395 9.2764 203 9.0838 113 8.9541

VPGA 371 9.2769 188 9.0840 99 8.9553

AGA 118 9.2923 95 9.0861 87 8.9597

VAGA 119 9.2743 88 9.0896 76 8.9640

our experiments, which provides a wide range of libraries and algorithms applicable to

computational biology domain. We also adapted few modules from the popular multitask

learning toolbox MALSAR [222]. The genome datasets are obtained in the popular fasta

format from ENSEMBL [99]. A short description of each considered organism is given

in table 4.2. In addition to the previously compared algorithms (PGA, VPGA, AGA,

VAGA), we also compare the performance of the proposed algorithm with the Nesterov’s

acceleration [139].

Our first result is the comparison of first-order algorithms by their convergence. Results

are shown in figure 4.8(a) in terms of the log-log plot. It can be observed that the presented

algorithm gives better convergence result than the previous state-of-the-art algorithms. In

figure 4.8(b) we show the graph between the objective function value at each iteration.

Also, with the VAGA algorithm, the function values reduce rapidly in comparison to that

of other algorithms.

Finally, we check the performance of our algorithm in terms of area under the precision-

recall curve (auPRC) for the joint splice site recognition task in figure 4.9. It can be

observed from the figure that with VAGA the auPRC value is higher than the other al-

gorithms for all the organisms. It should be noted that the presented results are only the

initial investigation for the task of joint splice-site recognition. We aim to explore this

field with more complex data structures and high-dimensional kernels.
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TABLE 4.2: Summarization of the Datasets

Name Description

A. thaliana: Arabidopsis thaliana is a popular type of organism that is

used in plant biology and genetics. It is known to have a small genome

of approximately 135 Mb pairs, in the class of multicellular eukaryote.

O. sativa: Oryza sativa is a scientific name of an Asian rice. The

genome of this plant consists of a median total length of 359.938 Mb

across 12 chromosomes.

H. sapiens: Homo sapiens is the scientific name for the human species,

which is the only surviving species of the genus Homo. The total length

of the genome is 2996.42 Mb.

M. musculus: Mus musculus or the house mouse is a small mammal,

which is popular for modeling human disease and comparative genome

analysis. The total length of the genome is 2671.82 Mb.

O. latipes: Oryzias latipes, also known as medaka (rice fish) is an ex-

cellent model for genetic and environmental research. The genome is

approximately 700Mb long across 24 pairs of chromosomes.

D. rerio: Danio rerio, also known as Zebrafish is a small (4-5 cm) fresh-

water fish, which is widely used as a scientific model organism for the

study of development biology and various human genetics diseases. The

median total length of the genome is 1391.74 Mb.

(a) Performance of VAGA on the basis of F(xn)−F(x∗) for

joint splice-site recognition task. Shown graphs are log-log

plots.

(b) Performance of VAGA on the basis of Reduction in Func-

tion Value in each Iteration for the joint splice site recogni-

tion.

FIGURE 4.8: Results for the joint Splice-site Recognition task
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FIGURE 4.9: Results for the splice-site data sets from 6 eukaryotic genomes: Shown are

auPRC performances of the few methods for each organism. We can observe that VAGA

achieves the best results among all methods.

4.6 Conclusions

Two new viscosity-based proximal algorithms for the multitask learning problem, with

sparsity-inducing regularizers are presented in this chapter. In addition to the introduc-

tion of a viscosity-approximation based proximal gradient algorithm, a novel viscosity-

approximation based accelerated gradient algorithm is proposed, and the boundedness

of the sequence generated by the algorithm is proved, We also proved that the sequence

generated by the proposed algorithm converges strongly to a fixed-point solution. It is

shown that the proposed algorithm converges faster to the traditional proximal-gradient

algorithms for the regularized multitask regression problem. Also, we also applied the

algorithm to the popular problem of joint splice-site recognition problem, where the mul-

titask framework is applied to predict the splice-sites using genomes of six different or-

ganisms. The empirical results show that the proposed methodologies are faster as well

as achieves good generalization on benchmark multitask learning datasets.




