
Chapter 2

Background

In this chapter, the mathematical background of the proximal gradient algorithms, inter-

pretation of the proximal gradient methods as the fixed-point iterations and generalization

of the proximal gradient methods as forward-backward splitting is discussed. A brief

discussion on accelerated gradient algorithms that converges faster than the traditional

proximal gradient algorithms is also covered. Along with the general assumptions of our

approaches, the two concepts of extragradient-based and viscosity approximation-based

fixed point methods, which we utilized in our work, are also presented. We start this

chapter with the basic introduction of the operator splitting techniques.

2.1 Operator Splitting Techniques

We consider the following minimization problem,

min
x∈Rd

F(x), (2.1)

where F is a maximal monotone operator (see definition in appendix). Another way to

interpret this problem is to find the zeros of operator F , i.e.,

0 ∈ F(x). (2.2)
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The main idea is to split F as sum of two maximal monotone operators A and B and find

the solution of (2.2), i.e.,

0 ∈ (A + B)(x). (2.3)

The core assumption behind this idea is that the computation of zeros of (A+B) is simpler

than to find zeros of F . In the literature, there exists a variety of operator splitting methods.

However, three techniques are considered to be the standard, namely, Forward-backward

Operator Splitting, Peaceman-Rachford Operator Splitting and the Douglas-Rachford Op-

erator Splitting [63].

Consider two proper closed and convex functions f and g. In the field of learning theory,

the above framework (2.3) is applicable for solving the regularized convex loss minimiza-

tion problem, as follows,

min
x∈Rd

F(x) = f (x)+g(x). (2.4)

With respect to (2.3), the problem we need to solve is the following,

0 ∈ (∂ f +∂g), (2.5)

where ∂ f and ∂g are the subgradients of functions f and g, and are equivalent to A and

B, respectively.

2.2 Forward-backward Splitting Techniques

In this subsection, a class of operator splitting method, the forward-backward splitting

methods, and their properties are discussed. It is known that the Hilbert spaces H , which

generalize the notion of Euclidean spaces and have distance function induced by the inner

product. Let T : H →H be an operator. T is called an L−Lipschtiz operator if there

exists L ∈ [0,∞) such that

‖T x−Ty‖ ≤ L‖x− y‖, x,y ∈H .

An L−Lipschitz operator is called a non-expansive operator if L = 1 and contraction if

L < 1.
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The main assumption for the forward-backward splitting methods is the differentiability

of the function f (·). Under this assumption, (2.5) can be written as,

0 ∈ ∇ f (x∗)+∂g(x∗),

where ∇ f and ∂g refer to the gradient and sub-gradient of functions f and g respectively,

and x∗ is the solution of (2.4). Now, for any λ > 0 and the identity matrix Id, optimality

condition holds if,

0 ∈ λ∇ f (x∗)+λ∂g(x∗)

0 ∈ λ∇ f (x∗)− x∗+ x∗+λ∂g(x∗)

(Id +λ∂g)(x∗) ∋ (Id−λ∇ f )(x∗)

x∗ = (Id +λ∂g)−1 (Id−λ∇ f )(x∗) (2.6)

= proxλg (x
∗−λ∇ f (x∗)) , (2.7)

From last two equations, it is clear that the solution x∗ minimizes the sum of function f

and g, if it is a fixed-point of the forward-backward operator (Id +λ∂g)−1 (Id−λ∇ f ). It

also demonstrates the relation between the proximity operator and the forward-backward

operator. It is well-known that for any λ > 0, the resolvent of a maximal monotone

operator T is a non-expansive operator [167]. This very relation is used in finding the

solution x∗ iteratively, using the proximal gradient algorithms, which we discuss next.

2.3 Proximal Gradient Methods

Let f (·) be a convex smooth loss function with L− Lipschitz gradient, g(·) be a non-

smooth convex function and ρ > 0 be a regularization parameter, we solve the following

regularized convex loss minimization problem,

min
x∈Rd

F(x) = f (x)+ρ ·g(x). (2.8)

The traditional approach to solve this problem is to apply the basic subgradient descent

method as proposed in [30], which uses a black-box type technique to solve (2.8) with the
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subgradients of non-smooth functions. The subdifferential of the non-smooth function g

at x (denoted as ∂g(x)) is defined by,

∂g(x) = {y | g(z)≥ g(x)+ yT (z− x) ∀z ∈ dom g}. (2.9)

Any point y ∈ ∂g(x) is called a subgradient of g at x. The main drawback of this algo-

rithm is that it is not able to learn the sparsity structure and is slow to converge [13, 12].

Proximal gradient methods are used as a popular alternative to the subgradient descent

methods.

In proximal algorithms, in place of computing ∂g, we compute the resolvent of ∂g, which

is called the proximal operator (denoted as proxλg) with respect to a λ > 0, defined as

(Id +λ∂g)−1
. For any non-differentiable function g(·), we consider computing the prox-

imity operator proxγg, defined as follows,

proxγg(z) := argmin
x

{γg+
1

2
‖x− z‖2}. (2.10)

Most of the problems we consider in this work come under the nonsmooth lasso frame-

work, which assumes g(·) = ‖ ·‖1, thus providing a sparse solution. To compute the exact

value of the proximity operator corresponding to different definitions of function g(·),
various formulations are available in the literature. For example, in the case of the l1

norm, the proximity operator is defined as a soft-thresholding operator. The exact value

of proximity operator is defined as a soft thresholding operator as follows,

proxλ‖·‖1
(v) = (v−λ )+− (−v−λ )+ =















vi−λ , vi ≥ λ

0, |vi| ≤ λ

vi +λ , vi ≤−λ

(2.11)

For more complex structured penalty functions, the corresponding proximity operators are

not directly solvable, and hence the inexact computation of such proximity operators are

considered. Objective functions with such complexed structured penalties are optimized

in a nested fashion, the outer optimization problem for the loss minimization and the

inner problem being the computation of proximity operator. In this work, we consider

two complex structures, namely overlapping group penalty and fused penalty in Chapter
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3. Evaluating the proximity operator of a function is considered as an essential step of the

Proximal Gradient Algorithm.

The Proximal Gradient Algorithm (PGA) solves problem (2.4) with the following iterative

scheme, with λ > 0 and x1 ∈ R
d ,

xn+1 ← proxλg(Id−λ∇ f )(xn), (2.12)

where xn denotes the nth iteration of the algorithm. We assumed that the parameter λ is

updated at each iteration, i.e. we use parameter λn.

For simplicity, consider the forward-backward operator with respect to λ , i.e., proxλg(Id−
λ∇ f ) as T and with respect to λn, i.e., proxλng(Id− λn∇ f ) as Tn. Thus, the forward-

backward algorithm corresponding to (2.12) becomes the iterative procedure,

xn+1 ← Tn(xn). (2.13)

The above scheme follows the Picard fixed-point iterative scheme. To guarantee the con-

vergence of this algorithm, the value of λ should belong to (0,1/L f ], where L f is the

Lipschitz constant of ∇ f . This range assures that the forward-backward operator is av-

eraged, and thus the iterations will converge to a fixed point. We have considered that

the value of the parameter λ is not known in advance. The Lipschitz constant L f plays

an important role as a step size. So, fixing λ = L f is not a good idea for the practical

implementations [102]. Thus, following [23], we adopt the backtracking line search at

each iteration in our algorithms.

2.3.1 Backtracking Line Search

Let us consider the quadratic approximation of our objective function F(x) = f (x)+g(x)

at any point p is given by:

Qλ (x, p) = f (p)+< x− p,∇ f (p)>+
λ

2
‖x− p‖2 +g(x). (2.14)
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Algorithm 1: Backtracking Line Search

Result: λn := λ ; xn+1 := z.
begin

λ = λn−1;

repeat

z← Tn(xn);
break if f (z)≤ Qλn

(z,xn);
Update λ ← β ·λ ;

until;

With the backtracking line search, the iterative scheme (2.13) will be as follows. At the

nth step, given xn, λn−1 and a parameter β ∈ (0,1). Then the backtracking line search is

defined as shown in algorithm 1.

2.4 Accelerated Gradient Methods

The main drawback of proximal gradient methods is their slow convergence, which can

be removed using an inertial extrapolate. The main concept was given by Nesterov in

[135], which solves the following problem of minimizing a smooth convex function f as

follows,

min
x∈Rd

f (x) (2.15)

In the heavy ball method by Polyak [158], at each iteration gradient is calculated at point

xn, whereas in Nesterov’s method gradient, which is a modification of the heavy-ball

method, is to be calculated at an extrapolated point yn, as follows,







yn ← xn +αn(xn− xn−1)

xn+1 ← yn−λn∇ f (yn).
(2.16)

The sequence {αn} has to be computed in a specific manner such that it allows the opti-

mal convergence rates. In [23], this idea is extended for solving the non-smooth convex

minimization problem, with the same convergence rates as provided by the Nesterov’s
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method in [136], as follows,







yn ← xn +αn(xn− xn−1)

xn+1 ← proxλng(yn−λn∇ f (yn)).
(2.17)

Here αn =
(

tn−1−1
tn

)

with tn+1 ← 1+
√

1+4t2
n

2
and g(·) is a ‖ · ‖1 function. Other defini-

tions for αn are also available, for example [47, 138]. The basic behaviour of the term

αn is shown in figure 2.1. The above algorithm is known as the Fast Iterative Shrinkage-

Thresholding Algorithm (FISTA). With all other definitions of the sequence {αn}, the

general class of such algorithms is call the Accelerated Gradient Descent (AGD) algo-

rithm. In the general settings under the Hilbert space H , AGD is called an inertial

forward-backward splitting algorithm, given as follows,







yn ← xn +αn(xn− xn−1)

xn+1 ← Tn(yn).
(2.18)

With an extrapolated point yn, the iterative scheme (2.18) is again a Picard’s fixed point

iterative scheme. In this thesis, we aim to propose new iterative schemes of accelerated

gradient algorithms. The general assumptions for our schemes are given in the next sec-

tion.

FIGURE 2.1: Illustration of the behavior of sequence {αn} vs. iterations.
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2.5 General Assumptions

Our proposed algorithms are based on the following assumptions:

1. In the first two contributions (Chapter 3 and Chapter 4), the loss function f (·) is

convex and continuously differentiable with Lipschitz continuous gradient L f , and

there exists a constant L > 0, with L≥ L f such that:

‖∇ f (x)−∇ f (y)‖ ≤ L‖x− y‖ ∀ x,y ∈ R
d,

2. The regularization function g(·) is a continuous convex function which may be non-

smooth.

3. The problem (2.1) is solvable, i.e., x∗ = argmin F(x) 6= φ .

4. The sequence {αn} ∈ (0,1), for n = 1,2, · · ·N is non-decreasing.

The assumption of differentiability is relaxed in the third contribution (Chapter 5). We

have utilized two new concepts of fixed-point theory in this thesis which are, the concept

of extragradient of fixed-point theory and the viscosity-approximation based fixed-point

iterations. A brief discussion on each one of these concepts is presented next.

2.6 Viscosity-Approximation Fixed-point Scheme

In the field of mathematical analysis, viscosity methods are very popular for providing ef-

ficient solution to various problems of different branches such as mathematical program-

ming (for example, Tikhonov regularization and exponential penalty methods for linear

programming), variational problems (for example, minimal hyper-surfaces, plasticity the-

ory, and phase transition), partial differential equations (for example, entropy solutions

of first-order non-linear hyperbolic systems, viscosity solutions of Hamilton-Jacobi equa-

tions), and ill-posed problems. A major feature of these methods is to provide, as a limit

of the solutions of the approximate problems, a particular (possibly relaxed or general-

ized) solution of the original problem, called a viscosity solution, which has remarkable

properties. Let C be a close convex subset of a real Hilbert space H . As we know
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that a strongly nonexpansive mapping (or contraction mapping) T satisfies the following

property for x,y ∈C (see appendix):

‖T x−T y‖ ≤ θ‖x− y‖, with 0≤ θ < 1. (2.19)

In the field of fixed point theory, it is well known that a fixed point x∗ exists for T , and

it is unique. Moreover, the convergence is stable with respect to perturbation in T . As

θ reaches to 1, the problem becomes unstable, and the convergence can be only weak.

Thus, it is necessary to apply some regularizing procedures.

In [114], authors combined the proximal point method to the Tikhonov regularization to

introduce the prox-Tikhonov method, which generates the sequence {xn} as follows,

xn+1 ← J
Tn

λn
xn, n≥ 0,

where Tn = µnI+T, µn ≥ 0 is viewed as a Tikhonov regularization of T and is a strongly

monotone operator. In [208], author proposed another prox-Tikhonov proximal point

method as follows,

xn+1 ← JA
cn
(αnu+(1−αn)xn + en),

where αn ∈ [0,1], A is a monotone operator, JA
λn

is the resolvent of A and en is com-

putational error. These two methods are very basic viscosity-approximation fixed-point

schemes. We have applied a recent viscosity-approximation-based forward-backward

scheme to solve the machine learning problems, and proposed an inertial viscosity-approximation-

based forward-backward scheme in this thesis.

2.7 Extra-gradient Methods

Initially proposed by Korpelevich [110], extragradient method is a classical method for

solving variational inequality problems, which is defined as the problem of finding x∗ ∈S

such that,

〈H(x),x− x∗〉 ≥ 0, ∀x ∈ S,

where S is a nonempty, closed and convex subset of R
d , H : Rd → R

d is a monotone

mapping, and 〈·, ·〉 denotes the Euclidean inner product in R
d . The extragradient method
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in [110] is defined as the following iterative scheme,

yn ← PS(xn−αH(xn)),

xn+1 ← PS(xn−αH(yn)).

Many modified versions of the extragradient method are proposed thereafter [48, 161,

49]. For instance, in [190], authors introduced the approach for solving the problem of

structural prediction, which is formulated as a convex-concave saddle point problem. In

this work, we will exploit the practical performance of this method for solving machine

learning problems.

All the traditional fixed-point schemes that are utilized in the field of machine learning are

very old. Various new fixed-point schemes and concepts are proposed thereafter. In this

thesis, we applied few of these new concepts for solving the problem of machine learning

as well as analyzed the practical performance of these concepts on real-world problems.

We first applied the concept of extragradient fixed-point iterative schemes to the machine

learning in next chapter (Chapter 3) and shown its performances with some real-world

applications.


