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Introduction

”Machine learning is the subfield of computer science that gives computers the ability to

learn without being explicitly programmed [177].”

We can think machine learning as a process of creating models, from example data, that

can predict values/classes or discover patterns in data. The real world application areas of

machine learning techniques include computer vision, speech recognition, bioinformatics,

robotics to mention a few. With the extensive development in the field of information and

internet technology and computer hardware, the availability of vast amount of raw data

is not a big challenge. The major issue is how to extract useful knowledge from such

abundant data. In every application domain, large datasets are available, which require a

different class of algorithms. For example, microarray technology provides an enormous

number of gene expressions of thousands of genes, millions of similar images can be

retrieved from a textual or visual query over the internet, and hundreds of music files can

be searched based on a particular rhythm. To analyze such large amount of datasets, it is

required to develop new algorithms that can learn efficiently from these massive amounts

of data.

In the field of large-scale machine learning generally either the number of data is large, the

data is very high dimensional, or there are a large number of classes present in the dataset.

In this thesis, we consider the scenario where the number of dimensions is significantly

greater than the number of instances. Out of various pillars of convex optimization meth-

ods to solve such frameworks, this thesis deals with the fast iterative methods. Popular

iterative optimization methods can be classified into two parts, the first-order methods and
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the second-order methods, based on the order of the derivative of the objective function

which is utilized in each iteration. Earlier class of methods consists of simple iterative

schemes but are slow to converge, whereas the later class of methods is fast to converge.

However, they require second order derivative information which is very sensitive to nu-

merical errors. Two most basic examples of first-order and second-order methods are the

steepest gradient descent and Newton’s method, respectively.

In this thesis, the first order iterative methods are considered. The very basic steepest

descent method solves the following optimization problem using gradient information,

min
x∈Rd

f (x).

Under the context of machine learning the function f (·) is a differentiable loss function,

which we intend to minimize. In the framework of machine learning, solving the above

problem results in an over-fitted solution, which does not perform well with the unseen

data. In order to obtain a model that generalizes well, we add a regularizer function g(·)

to this problem as follows,

min
x∈Rd

{ f (x)+g(x)}.

The function g is used to prevent overfitting of the resulting model so that it can also per-

form well with the unseen data. The additional constraint we add on the two functions is

that we consider two convex functions and we assume that the regularization function may

be non-differentiable, which makes the problem unsolvable for the simple steepest gradi-

ent descent. One solution is to use the subgradient information of the functions, based on

which subgradient descent algorithms were proposed in the early literature. However, the

convergence of such methods is very slow. In this thesis, we propose new accelerated al-

gorithms to solve such frameworks with faster convergence. In this process, we explored

the mathematical areas of operator splitting methods, fixed-point theory and convex opti-

mization and used new concepts of these fields to design new algorithms.

1.1 Literature Review

With the aim to propose new faster first-order methods for solving various regularized

machine learning frameworks, we performed extensive literature survey, in the fields of
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optimization algorithms that are used in machine learning and the fixed-point theory. The

following two subsections give the literature survey in detail.

1.1.1 First-order Methods

As discussed earlier, optimization algorithms used in machine learning can be divided into

two major categories, the first-order methods, and the second-order methods. The first-

order methods use the first-order derivative information of the objective function. Few

basic gradient descent algorithms are discussed in [29]. The second-order methods are

also the gradient-based methods that utilize the second order information of the objective

function (either by computing the Hessian or approximating it). Few examples of second-

order methods include Newton’s method [141], quasi-Newton’s method [214], conjugate

gradient [91, 86, 92] and Interior-point method [82]. Although the rate of convergence is

very fast, the major issue with the second-order methods is the computation of Hessian

matrix, which is both computationally costly, highly space demanding as well as more

sensitive to numerical errors. Thus, the first-order algorithms are considered to be suitable

for the utilization of optimization in machine learning with high-dimensional datasets.

Since our contributions belong to this area, we explored this area in more detail.

A detailed literature review of few first-order algorithms is presented in table 1.1. The

algorithms of this class can again be classified in different ways based on various fac-

tors, such as convex vs. non-convex functions, smooth vs. non-smooth functions, primal

vs. dual optimization problems, constrained vs. non-constrained optimization problems,

batch vs. stochastic algorithms, accelerated vs. non-accelerated algorithms, etc. In this

table, a short description of few of the important contributions is also given.

TABLE 1.1: Survey of the First order Optimization Schemes

Methods Contributions Remarks

Batch

gradient

Descent

Vanilla Gradient De-

scent [29, 88]

The very basic steepest descent ap-

proach for unconstrained minimization of

a smooth function. Updates are made by

multiplication of learning rate with a gra-

dient of parameters.

Continued on next page
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Methods Contributions Remarks

Gradient Descent

with error [31]

The convergence of the gradient descent

algorithm is proved with the notion of an

error added in each iteration.

Gradient Descent

with Momentum

[169, 159]

Few conceptual contributions related to

momentum, that is added to the classical

gradient descent algorithm for fast con-

vergence.

Line search tech-

niques for gradient

descent [7, 88, 29]

Methods discussing the convergence of

gradient descent algorithm based on vari-

ous line-search techniques.

Stochastic

Gradient

Descent

Basic Stochastic

gradient descent and

its variants [112,

205, 41, 98, 221, 72]

The basic stochastic gradient method for

the use of optimization in machine learn-

ing tasks is discussed. Variants include

various regualrized, composite and dual-

averaging methods. Included very basic

works in this direction.

Subgradient

Descent

Basic Subgra-

dient Descent

[180, 43, 157]

Solves the unconstrained minimization of

a non-smooth function, i.e. min
x

f (x), for

non-smooth f .

Projected Subgradi-

ent Descent [157,

21, 78]

The method consists of generating a se-

quence {xn}, by updating new iterate in

the direction opposite to a subgradient of

f at xn and then projecting the resulting

vector orthogonally onto a convex set C.

When the function to be minimized is dif-

ferentiable, it is equivalent to the steepest

descent algorithm.

Few variants and ex-

tensions [137, 133]

Few variants of basic subgradient descent,

such as the Primal-dual approach com-

bined with subgradient descent, incre-

mental subgradient descent approach etc.

Continued on next page
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Methods Contributions Remarks

Primal-dual

first-order

method

Basic algorithm and

its accelerated vari-

ants [48]

First-order primal-dual algorithm for non-

smooth convex optimization problems is

solved, and its linear rate is proved. Fur-

ther, accelerated variants are also pro-

posed.

Survey on primal-

dual methods [109]

A very good coverage of the basic prin-

ciples of the primal-dual approaches and

their comparison with other numerical al-

gorithms.

Few recent contribu-

tions including the-

oretical results [201,

36]

The first paper presents the batch and

randomized approach, for the primal-dual

algorithm and a convex-concave saddle

point problem representation of convex

minimization is solved. The second paper

presents a technique to solve the primal

problem of finding the zeros of the sum

of a maximal monotone operator and the

composition of another maximal mono-

tone operator with a linear continuous op-

erator.

Conditional

Gradient

Basic Frank-Wolfe

Method [84, 79]

It is a projection-free method for convex

optimization problem with linear conver-

gence rate.

Few variants and

extensions of con-

ditional gradient

method [111, 104]

Few variants of basic conditional gra-

dient algorithm are proposed, such as

away-steps Frank-Wolfe, Pairwise Frank-

Wolfe, Fully-Corrective Frank-Wolfe,

etc. and their global linear convergence

analysis is presented. The second paper

presents the primal-dual convergence for

few variants of Frank-Wolfe.

Continued on next page
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Methods Contributions Remarks

Projected

Gradient

Descent

Projected Gradient

Descent [29]

A simple and efficient bound-constrained

optimization technique, that solves

min
x

f (x) subject to x ∈ S, where S is a

feasible set.

Few extensions [17,

108]

The first paper discusses the projection

methods to solve convex feasibility prob-

lem, where the second paper discusses the

surrogate projection methods.

Application to Non-

negative Matrix Fac-

torization [118]

Practical performance of the method is

demonstrated for the task of non-negative

matrix factorization.

Proximal

methods

Monotone theory,

General Operator

Splitting Meth-

ods and Proximal

Splitting methods

[170, 63, 71, 36, 66,

199, 61, 69, 119,

168, 153, 76]

These papers introduce the notion of

proximity operator for solving the convex

optimization problems. They also review

the basic properties of the proximity oper-

ators and other basic and important con-

vergence results.

Douglas-Rachford

and ADMM

[81, 42, 154]

The papers present the application of

Douglas-Rachford splitting and the

ADMM (the Douglas-Rachford splitting

technique on dual space) on various

problems.

Forward-backward

Splitting and Prox-

imal gradient

Methods and its

inexact variant [64,

151, 161, 178, 198]

Explain the forward-backward splitting

techniques and the proximal gradient

methods in detail. The convergence anal-

ysis of proximal gradient algorithm is pre-

sented.

Continued on next page
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Methods Contributions Remarks

Inertial Forward-

backward Splitting,

Accelerated Proxi-

mal gradient Meth-

ods, and heavy-ball

method [47, 23, 151,

123, 135, 158, 10]

In these papers, the inertial-based

forward-backward algorithm and the

accelerated proximal gradient algorithms

are discussed.

Proximal-average

[53, 221, 215, 20]

With the discussion on basic proximal av-

eraging ([20]), to solve the empirical risk

minimization problem with the structured

properties using the composite penalties,

a recent concept of proximal averaging is

utilized for different frameworks.

Other

methods

Bundle-type

Methods[113,

115, 181]

The basic Bundle-type methods are dis-

cussed and applied to the machine learn-

ing, more specifically, to Support Vec-

tor estimation, regression, Gaussian Pro-

cesses, and other regularized risk mini-

mization settings which lead to convex

optimization problems.

Mirror-Descent

Method

[21, 26, 184]

This method solves the minimization of a

smooth convex function with a Lipschitz

gradient. The key idea in mirror-descent

is utilizing a norm, conjugate norm and

a distance-generating function in a recur-

sive manner.

Continued on next page
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Methods Contributions Remarks

Barzilai and Bor-

wein Gradient

Method [164]

Solves the large scale unconstrained mini-

mization problem. The main contribution

was to redefine the work by [16], which

uses second-order information for com-

puting the stepsize. The new work only

uses the storage of first-order information

during the process.

Coordinate

Descent[195]

discussed a coordinate descent algorithm

for minimizing the sum of a smooth func-

tion and a separable convex function.

Smoothing

Techniques

[24, 136, 40, 74]

These techniques solve nonsmooth con-

vex minimization problems, constrained

or unconstrained, using various smooth-

ing approaches.

Methods for Com-

pressed Sensing/S-

parse Recovery

[83, 25, 93, 212]

These papers contribute various effi-

cient techniques for sparse recovery/com-

pressed sensing, which directly can be ap-

plied to solve a machine learning prob-

lem.

1.1.2 Fixed point theory

We not only explored the field of the optimization schemes used in machine learning, but

we also surveyed various contributions in the fixed point iterative schemes. The unique-

ness of these methods is based on different types of mappings, such as non-expansive,

contraction, asymptotically nonexpansive, pseudo-contractive, etc., the design of the it-

erative scheme, such as two-step, three-step or multi-step and different approaches to

mathematical analysis, such as weak convergence or strong convergence, etc. In table

1.2, we present a brief survey. The definitions of all the covered mappings are discussed

in appendix. It can be observed in next chapter that the proximal algorithms, where the
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proposed algorithms belong, can be interpreted as fixed-point iterative schemes with non-

expansive operators. Thus, we give more emphasis to the fixed-point schemes that are

specifically designed for this class of mapping.

TABLE 1.2: Survey of the Fixed-point Iterative Schemes

Mappings Approaches Contributions

Nonexpansive

Mann’s Iteration

[128, 96, 165, 18,

44]

The very basic Mann’s iterations and var-

ious weak and strong convergence analy-

sis, at different conditions in Banach and

Hilbert spaces are discussed in these pa-

pers.

Modified Mann’s It-

eration [211]

Paper introduces a modified

Krasnoselski-Mann iterative algo-

rithm for non-expansive mappings, and

strong convergence in Hilbert spaces is

proved.

Ishikawa’s Iteration

[101, 188]

A two step iteration scheme is defined,

and the convergence of the scheme is

proved.

A three-step Noor’s

iteration [142, 143,

144]

A new three step iteration by Noor in

Hilbert spaces, and its different conver-

gence analysis are discussed.

S-iterations and

Normal s-iteration

[174, 173]

A new technique is defined using two

step fixed-point iterative scheme, which

claimed to converge faster than the Pi-

card’s and Mann’s iteration with contrac-

tive mapping setting.

Regularized

Methods

[114, 208, 176, 175]

Generally result in strong convergence,

the regularized methods are inspired from

the viscosity-approximation based fixed-

point iterative schemes.

Continued on next page
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Mappings Approaches Contributions

Inertial based Meth-

ods [127, 45, 33, 34]

A few recent papers based on analysing

the iterative schemes with the inertial ef-

fects.

Contraction

Method of succes-

sive approximations

and Banach fixed-

point theorem [156,

120, 15]

In [120], the author introduced the

method of successive approximations. Pi-

card in [156] developed it systematically

and gave a well known proof of existence

and uniqueness of the solution of initial

value problems for ordinary differential

equations. [15] discusses the popular con-

traction mapping theorem.

Few generalizations

of contraction map-

ping theorem [59,

187, 80]

These paper discuss few generalizations

of the contraction mapping theorem under

different settings.

New definitions and

theorems of contrac-

tion mapping [130,

150, 166]

These paper discuss new definitions of the

contraction mapping. New theorems un-

der such mappings are also given.

Multi-valued con-

traction mappings

[131, 67, 75]

These works introduce the notion of

multi-valued contraction mappings, and

various contributions on such mappings.

asymptotically-

nonexpansive

The s-iteration

scheme [1]

A new iterative scheme is proposed. Au-

thors claimed that the rate of convergence

of the new scheme is similar to the Pi-

card’s iteration and faster than the other

fixed-point iteration process.

A three step itera-

tive scheme[206, 57,

185]

The first paper defines and analyses a

three-step iterative scheme for asymptot-

ically nonexpansive mappings in Banach

spaces. This work is further extended and

analyzed in the second and third paper.

Continued on next page
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Mappings Approaches Contributions

Other effective

schemes [179, 28]

This paper [179] and the book [28] ex-

plain other effective iterative schemes.

pseudo-

contractive

Ishikawa’s Iterations

[100]

Ishikawa initially proposed his new

two-step iterative scheme for pseudo-

contractive setting and then generalized

for nonexpansive in [101].

Weak and Strong

convergence anal-

ysis by Mann’s

Iterations [129, 54]

These methods describe new weak and

strong convergence analysis of Mann’s it-

erative schemes. New examples of these

schemes are also discussed.

Modified Mann’s

scheme for not nec-

essarily Lipschitzian

[172]

It is proved that the modified Mann iter-

ation process converges weakly to a fixed

point of an asymptotically pseudocontrac-

tive mapping in the intermediate sense

which is not necessarily Lipschitzian.

Other effective

schemes [55, 28]

This paper [55] and the book [28] explain

other effective iterative schemes.

1.2 Motivation

After extensive initial literature survey, it was found that most of the proximal algo-

rithms that were applied to the machine learning problems were based on the Picard’s and

Mann’s fixed-point iterations [194, 23, 138, 22, 145, 62]. These algorithms are applied to

solve various real-world problems, and the practical performance of both the Picard’s and

Mann’s fixed-point iterations are analyzed in depth. In literature, different extensions are

also available such as extensions in dual spaces and the stochastic definitions. However,

beyond these two iterative schemes, many unexplored fixed-point iterative schemes also

exist, which have never been analyzed for solving the machine learning problems using

convex optimization.

In addition to the area of proximal algorithms for the task of machine learning, we also

explored the current developments and research directions in the area of fixed-point theory
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with nonexpansive and contraction mappings. The field of Operator theory is considered

to be a part of pure mathematics, which is extremely rich in the novel mathematical con-

cepts and theoretical breakthroughs. The techniques of operator theory applied to solve

numerous problems that belong to the field of variational inequality and convex optimiza-

tion. Although rich in analytical theories, the lack of empirical performance analysis of

these techniques is a big issue. There exist lots of unexplored schemes in this area, which

are claimed to be faster than the Picard’s iterative scheme, however, due to lack of imple-

mentation details could not explore practically for the real world problems.

A traditional approach to analyze an algorithm is to prove the convergence of the algo-

rithm. It is observed that for the accelerated gradient algorithms we found in the litera-

ture, only weak convergence analysis is given in the general infinite-dimensional Hilbert

space. However, the empirical analysis of the practical behaviour of an algorithm which

converges strongly in the general infinite dimensional Hilbert space is missing.

In this thesis, we tried to fill these research gaps. We go beyond the limitation of using

the traditional fixed-point iterative schemes to define proximal algorithms for machine

learning and proposed new definitions of proximal algorithms based on new fixed-point

iterative schemes. Few recently proposed fixed-point iterative schemes are exploited by

applying them to solve multiple machine learning problems using the lasso framework

and its various extensions. Our proposed models analyse few basic but strong concepts of

pure mathematics (fixed-point theory) such as viscosity-approximation based fixed-point

schemes and extragradient-based fixed-point schemes and their inertial-based variants.

1.3 Research Contributions

The research contributions of this thesis are as follows:

• In this work, we first studied the relationship between the proximal methods and

the concept of fixed-point iterative schemes and investigated the gap between the

lack of applications in ongoing research in the field of fixed-point theory and the

requirement of new faster algorithms in the field of first order methods in machine

learning. We found that most of the proximal algorithms that are applied to the ma-

chine learning employ the very basic Picard and Mann fixed-point iterative schemes.
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However, many advanced fixed-point schemes are proposed that are not analyzed

for such tasks.

• We designed three advanced fixed-point iterations based proximal algorithms for

solving real-world problems of machine learning. A new accelerated gradient algo-

rithm is proposed named as NAGA, which is based on the proposed extragradient

based forward-backward splitting techniques along with the inertial step, named as

(NIFBA).

• The convergence of NAGA is analyzed with both the contraction and non-expansive

mappings (definitions given in Appendix). We also analyzed the stability of the

proposed fixed-point iterative scheme for NAGA, with respect to the contraction

mappings. It is shown that NAGA weakly converges to a fixed solution point and is

T -stable with respect to the contraction operator T .

• The newly designed algorithms and the proposed algorithm NAGA are applied to

solve various real world problems using the lasso and extended lasso frameworks.

The algorithms are applied to (i) the high-dimensional regression problem, (ii) the

unified sparse representation learning problem for cross-modal datasets and (iii) the

cancer prediction problem with the help of two complex non-smooth penalties for

lasso. After performing extensive experimentation with real benchmark datasets,

we found that NAGA outperforms in solving all the problems in terms of the number

of iterations required to converge, empirical convergence rate and accuracy.

• To analyze the performance of an algorithm that converges strongly to a fixed-

point in infinite-dimensional real Hilbert spaces, we designed the latest viscosity-

approximation based fixed-point scheme as a viscosity-approximation-based prox-

imal gradient algorithm (VPGA). Also, a novel viscosity-approximation based ac-

celerated gradient algorithm (VAGA) is also proposed, which is based on proposed

viscosity-based inertial forward-backward algorithm (VIFBA).

• It is shown that the sequence generated by VAGA is bounded and converges strongly

to a fixed-point under specific conditions in infinite-dimensional Hilbert spaces.

• We applied both the VPGA and VAGA algorithms to solve the regularized multitask

learning problem that employs multitask lasso framework. The lasso framework

consists of the squared loss function along with the ℓ2,1 norm. Experimental results
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on three benchmark multitask regression datasets are presented. With the help of

experiments, it is shown that algorithms with the strong convergence also perform

well.

• To show the applicability of the proposed algorithms, we also applied the VPGA

and VAGA algorithms to the problem of joint splice-site recognition problem of

bioinformatics, which utilises the multitask learning framework. Here, seven pub-

licly available gnome datasets are used to recognize the splice-sites in the gnome se-

quences. We found that solving the multitask framework with the help of viscosity-

approximation based proximal algorithms is not only faster, but also these algo-

rithms give a stable solution in comparison to the traditional proximal algorithms.

• In more general settings of operator splitting algorithms, we proposed an extragradient-

based operator splitting algorithm (EOSA) and its accelerated variant (AEOSA)

for the problem of finding zeros of the sum of two convex nonsmooth functions.

The proposed approach is a natural generalization of the splitting methods of the

Peaceman-Rachford operator splitting [153] and the Douglas-Rachford operator

splitting [76]. The convergence of both of the algorithms is analyzed.

• Both the EOSA and AEOSA algorithms are applied to solve the lasso problem for

the task of microarray gene analysis. Four publicly available real gene-expression

datasets are utilized for this task using the lasso framework. From the experimental

results, it is found that the newly proposed techniques solve the lasso problem faster

than the traditional frameworks.

1.4 Layout of Thesis

The rest of thesis is organized as follows. New definitions of traditional proximal gradient

algorithms based on different fixed-point iterative schemes and the proposed new accel-

erated gradient algorithm (NAGA) are discussed in Chapter 3. In Chapter 4, we discuss

our work on viscosity-approximation based proximal gradient (VPGA) and accelerated

gradient algorithms (VAGA). Chapter 5 discusses our work on the extragradient-based

operator splitting algorithm (EOSA) and its accelerated variant (AEOSA) for the prob-

lem of finding zeros of the sum of two convex nonsmooth functions. We present the
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concluding remarks and scope of the future research in the last Chapter 6. We begin with

presenting few background works and related mathematical concepts in the next Chapter

2.

FIGURE 1.1: Graphical Abstract




