Abbreviations

ACC	Accuracy	
ADMM	Alternating Direction Method of Multipliers	
ADR	Accelerated Douglas Rachford	
AEOSA	Accelerated Extragradient-based Operator Splitting Algorithm	
AGA/AGD	Accelerated Gradient Algorithms/Descent	
CCA	Canonical Correlation Analysis	
DR	Douglas Rachford	
EOSA	Extragradient-based Operator Splitting Algorithm	
FBA	Forward Backward Algorithm	
FISTA	Fast Iterative Shrinkage-Thresholding Algorithm	
FOM	First order Method	
IPM	Interior Point Method	
LASSO/Lasso/lasso	Least Absolute Shrinkage and Selection Operator	
MAP	Mean Average Precision	
MFBA	Mann-based Forward Backward Algorithm	
MPGA	Mann Proximal Gradient Algorithms	
MTL	Multi-Task Learning	
MURL	Multi-modal Unified Representation Learning	
NAGA	New Accelerated Gradient Algorithm	
NAGEL	New Accelerated Gradient Algorithm for Extended Lasso	
NIFBA	Normal S-iteration-based Inertial Forward Backward Algorithm	
NSFBA	Normal S-iteration-based Forward Backward Algorithm	

NSPGA/NPGA	Normal S-iteration Proximal Gradient Algorithms	
PCA	Principal Components Analysis	
PGA/PGD	Proximal Gradient Algorithms/Descent	
PLS	Partial Least Squares	
PR	Peaceman Rachford	
PRE	Precision	
rMSE/RMSE	Root Mean Square Error	
REC	Recall	
SFBA	S-iteration-based Forward Backward Algorithm	
SPGA	S-iteration Proximal Gradient Algorithms	
SVD	Singular Value Decomposition	
VAGA	Viscosity-based Accelerated Gradient Algorithm	
VFBA	Viscosity-based Forward Backward Algorithm	
VIFBA	Viscosity-based Inertial Forward Backward Algorithm	
VPGA	Viscosity-based Proximal Gradient Algorithm	

Symbols

\mathbb{R}	set of real numbers
\mathbb{N}	set of natural numbers
\mathbb{R}^{d}	the set of real column-vectors of length d
$\mathbb{R}^{n imes d}$	the set of real matrices with n rows and d
	columns
x^T	Transpose of vector <i>x</i>
$ar{\mathbb{R}}:=\mathbb{R}\cup\{\infty\}$	the extended real line
\mathscr{H}	real Hilbert space
$ \cdot $	Absolute value
$\ x\ _p$	<i>p</i> -norm of a vector <i>x</i> , defined as $(\sum_{i=1}^{n} x_i ^p)^{1/p}$.
$\langle\cdot,\cdot angle$	inner product
Id or I	the identity operator
$\langle x, y \rangle_2 = x^T y$	Euclidean inner-product
$2^{\mathscr{X}}$	power set of a set \mathscr{X}
$A:\mathscr{X}\to 2^{\mathscr{Y}}$	A set-valued operator
$gphA = \{(x, y) \in \mathscr{X} \times \mathscr{Y} y \in Ax\}$	graph of <i>A</i> .
$T:\mathscr{H}\to\mathscr{H}$	An operator
$fix_T = \{x \in \mathscr{H} Tx = x\}$	set of fixed-points to the operator T
$\Gamma_0(\mathscr{H})$	the class of closed, proper and convex func-
	tions.
abla f	Gradient of function f .
∂f	set of subgradients of function f .
	xix

${x_n}$ or ${x_n}_{n=0}^{\infty}$	a sequence
$prox_g$	Proximity operator with respect to function $g(\cdot)$
(a,b)	$\{x \in \mathbb{R} a < x < b\}$
[a,b)	$\{x \in \mathbb{R} a \le x < b\}$
(a,b]	$\{x \in \mathbb{R} a < x \le b\}$
[a,b]	$\{x \in \mathbb{R} a \le x \le b\}$
$L(or L_f)$	Lipschitz Constant (with respect to function f)
ϕ	empty set
J_r^A	Resolvent operator with respect to maximal
	monotone operator A
$J_r^{A,B}$	Forward-backward operator $J_r^A(Id - rB)$
R_r^A	Reflected Resolvent operator with respect to
	maximal monotone operator A
sgn	sign function
$(\cdot)_+$	positive part
$tr(\cdot)$	trace function
Р	Projection operator
$\kappa (or \kappa_f)$	Contraction (contraction w. r. t. operator f)
<u>\</u>	weakly convergence.
$\sup_{n\in\mathbb{N}}\{\cdot\}$	least upper bound.
α, β	integer values.
$\{\alpha_n\}, \ \{\beta_n\}$	sequence of integer numbers for $n = 1, 2, \dots, \mathbb{N}$.
$\{\boldsymbol{\lambda}_n\}, \{c_n\}$	regularization sequences for $n = 1, 2, \dots, \mathbb{N}$.
f, g, h	functions/operators.
x^*, y^*, z^*	optimal vectors.
$\gamma_{\mathscr{H},B}$	integer parameter w.r.t. \mathcal{H} and an operator B .
$\{P_n\}, \{W_n\}, \{Q_n\}$	sequences of matrices.
ρ	sparsity controlling parameter.
heta	a tuning parameter.