List of Figures

Figure 1.1: (left) Ferromagnetically and (right) antiferromagnetically coupled Ising spin arranged on a triangle
Figure 1.2: 6-fold degeneracy in antiferromagnetically coupled Ising spin in triangular lattice
Figure 1.3: Formation of corner-shared tetrahedra by A and B sites in cubic pyrochlore oxides. [17]
Figure 1.4: Temperature dependent; (a) specific heat and (b) entropy of $Dy_2Ti_2O_7$ measured at 0 T and 0.5 T magnetic field, showing the similarity with Pauling predicted water ice entropy $R(ln2 - 1/2ln3/2)$. [22]
Figure 1.5: (a) proton arrangement in the frustrated water ice corroborates with the (b) spin arrangement in the frustrated spin ice compounds. [22]
Figure 1.6: den Hertog and Gingras proposed phase diagram of pyrochlore magnets having Ising spin with nearest neighbor exchange and long rang dipolar interactions. J_{nn} and D_{nn} represent the Ising variables for nearest-neighbor exchange and dipolar energies. [48] 11
Figure 1.7: Complex crystal structural of cubic $R_2Ti_2O_7$ pyrochlore oxide having space group $Fd3m$
Figure 1.8: A part of pyrochlore structure of the $R_2Ti_2O_7$ cubic oxides ($R = Ho/Dy$) highlighting the oxygen environment around Rare Earth ion (blue color) and Ti^{4+} ion (sky blue color) formed by O1 (red color) and O2 (green color) oxygen sites
Figure 1.9: Temperature dependence of the magnetic dc susceptibility of $Dy_2Ti_2O_7$ (left) and $Ho_2Ti_2O_7$ (right). [56]
Figure 1.10: Magnetic field dependence of magnetization of $Dy_2Ti_2O_7$ (left) and $Ho_2Ti_2O_7$ (right). [56]
Figure 1.11: Field dependent magnetization of $Dy_2Ti_2O_7$ at different temperatures along <111> crystallographic direction. [57]
Figure 1.12: Formation of different magnetic state on application of magnetic field along $<111>$ crystallographic direction in single crystal $Dy_2Ti_2O_7$. [58]
Figure 1.13: Temperature dependent ac susceptibility of Dy ₂ Ti ₂ O ₇ at different frequency. [41]
Figure 1.14: Temperature dependent real part (χ') of ac susceptibility of $Dy_2Ti_2O_7$ measured at different DC biased magnetic field. [41]

Figure 1.15: Normalized temperature dependent real (χ') and imaginary (χ'') part of ac susceptibility of $Dy_2Ti_2O_7$. [59]
Figure 1.16: Plot of frequency dependence of inverse of $T\mathbf{mL}$ and $T\mathbf{mH}$ and temperature dependence of mean frequency (f_m). [59]
Figure 1.17: Temperature dependence of spin relaxation time of $Dy_2Ti_2O_7$ at different magnetic field. [61]
Figure 1.18: $ln(f)$ vs. $1/T$ plot of $Dy_2Ti_2O_7$ at different magnetic field showing the non- Arrhenius behavior of spin relaxation. [64]
Figure 1.19: Temperature dependent ac susceptibility (χ' and χ'') of $Dy_{2-x}Y_xTi_2O_7$ measured at 1 kHz applied frequency. [65]
Figure 1.20: Temperature dependence of the real part (χ') of ac susceptibility of $Dy_{2-x}Tb_xTi_2O_7$ at 1 kHz and 10 kHz frequency. [68]
Figure 1.21: Temperature dependent ac susceptibility of Ho ₂ Ti ₂ O ₇ measured at different frequency. [42]
Figure 1.22: Appearance of spin ice and 16 K spin freezing in temperature dependent ac susceptibility of $Ho_2Ti_2O_7$ measured at different magnetic field. [69]
Figure 1.23: Temperature dependent ac susceptibility of single crystal Ho ₂ Ti ₂ O ₇ . Left panel: χ''/χ_{dc} measured at different frequency in presence of 1 T external magnetic field. Right panel: Variation in the inverse of high temperature spin freezing temperature (T_f) with ln(f) at different external magnetic field. Inset shows the variation in the inverse of spin ice freezing temperature with ln(f) at 1 T external magnetic field. [70]
Figure 1.24: Temperature dependence of the FWHM of the quasielastic signal of neutron scattering of $Ho_2Ti_2O_7$. Provide the temperature dependent variation in the spin relaxation time shown in the inset. [71]
Figure 1.25: Temperature dependence of the dielectric permittivity ($\boldsymbol{\varepsilon}$) and dielectric loss (tan $\boldsymbol{\delta}$) of Ho ₂ Ti ₂ O ₇ measured at different frequency. [87]
Figure 1.26: Temperature dependence of; (a) pyroelectric current (I), (b) under a series of warming rates, (c) polarization (P) and (d) polarization under a positive and negative poling electric field of $Ho_2Ti_2O_7$. [87]
Figure 1.27: (a) Temperature dependent dielectric constant of single crystal $Ho_2Ti_2O_7$ measured in the presence of 0 T and 5 T magnetic field along (100) and (111) directions. (b) Magnitude of magnetocapacitance at 5 T along (100) direction (left axis) and square of magnetization (right axis) as a function of temperature. [93]
Figure 1.28: For $Dy_2Ti_2O_{7,}(a)$ Temperature dependent dielectric constant ($\boldsymbol{\varepsilon}$) measured at frequency 157 Hz. (b) Temperature dependent pyroelectric current under a series of

warming rates. (c) Variation of electri	c polarization	as a function	of temperature	after poling
in positive and negative electric fields.	[88]			

*Figure 2.2: Room temperature high-resolution x-ray diffraction pattern of Ho*₂*Ti*₂*O*₇ *and its doped derivatives.* 56

Figure 3.1: Rietveld fit of the room temperature high resolution x-ray diffraction pattern of polycrystalline (a) $Ho_2Ti_2O_7$; (b) $Dy_2Ti_2O_7$; (c) $Ho_2Ti_{1.85}Fe_{0.15}O_7$ and (d) $Ho_{1.8}Fe_{0.2}Ti_2O_7$... 63

Figure 3.2: Temperature dependence of the real (ε ') and imaginary (ε '') part of the dielectric permittivity of Ho₂Ti₂O₇ (a, b) and Dy₂Ti₂O₇ (c, d) measured at different frequencies. 65

Figure 3.9: Temperature dependent variation of the lattice volume (dot) and modeled Debye - grüneisen fit (solid red line) for (a) Ho₂Ti₂O₇ and (b) Dy₂Ti₂O₇......82

Figure 4.1: Temperature dependence of the real (ε') and imaginary part (ε'') of the dielectric permittivity of Ho₂Ti₂O₇ compound measured in 3-300 kHz frequency range. Inset of the figure 3(a) shows the Arrhenius nature of ln (τ) Vs 1/T_m plot for the observed relaxation....87

Figure 4.2: Temperature dependent real (ε ') and imaginary part (ε '') of the dielectric permittivity of $Dy_2Ti_2O_7$ measured in 1-300 kHz frequency range. Inset of the fig. 7(a) shows the Arrhenius nature of ln (τ) Vs 1/T_{m2} plot for the higher temperature dielectric relaxation.

Figure 4.3: Temperature dependence of the real (ε') and imaginary (ε'') part of the dielectric permittivity of Ho₂Ti₂O₇ compound measured at 200 kHz for 0 T and 0.5 T magnetic field. 90

Figure 7.6: For $Ho_2Ti_{1.9}Mn_{0.1}O_7$; (a) temperature dependent real part (χ') of ac susceptibility measured at different external magnetic field in ZFCW, FCC and FCW measurement mode at a constant frequency 200 Hz. Inset shows the ZFCW, FCC and FCW of temperature dependent magnetization measured at different magnetic field. (b) Temperature dependent χ' for $Ho_2Ti_2O_7$ and $Ho_2Ti_{1.9}Mn_{0.1}O_7$ at 100 Hz frequency and 0.75 T magnetic field for FCC and FCW measurement mode. Inset shows the variation in thermal hysteresis ($\Delta\chi'$) for both compounds.