List of Figures

<i>Figure 1.1:</i> Schematic diagram and charge transportation in TFT channel under the applied electric field with bottom gate top contact geometry
Figure 1.2: Schematic diagram of the configuration of TFT a) staggered bottom gate b) staggered top gate c) coplanar bottom gate and d) coplanar top gate
Figure 1.3: Typical a), c), e) output and b), d), f) transfer characteristics of an n-type, p-type, and ambipolar oxide TFT, respectively
Figure 1.4: Different polarization mechanism of dielectric; a) electronics polarization, b) ionic polarization, c) orientation polarization, d) chain relaxation, e) free counter ion polarization in an electrolyte, f) interfacial polarization, g) electrode or EDL polarization, h) the influence of the different polarization mechanism to the dielectric constant with several frequency regions.
Figure 1.5: Schematic diagram of the basic mechanism of parallel plate metal-insulator- metal capacitor a) without dielectric layer, b) with a dielectric layer, c) dipole polarization mechanism under the absence and presence of an applied electric field
<i>Figure 1.6: Benchmarks to select the high-k dielectric for a thin film transistor</i> 13
<i>Figure 1.7:</i> Schematic of dielectric constant vs. measured bandgap of the several metal oxide dielectric [46]
<i>Figure 1.8: d</i> block metal elements with $(n-l)d^{10}ns^0$ ($n \ge 4$) configuration [68]19
<i>Figure 1.9: a)</i> First Brillouin zone and <i>b</i>) band structure of graphene with the linear dispersion around the K points [76, 77]
Figure 1.10: <i>a)</i> TEM images of graphene films with different thicknesses, b) typical Raman spectra obtained from different thickness regions of graphene film (with an increasing number of layers from bottom to top) [71]
Figure 1.11: Solution-processed ion-conducting metal oxide thin film transistor a) crystal structure of SBA dielectric Na^+ ion is denoted by a blue dot, and red and yellow color represents oxygen and aluminum atoms respectively, b) transfer and c) output characteristics of ZTO transistor with sol-gel coated SBA dielectric based TFT
Figure 2.1: a) Flow chart of the cleaning process and b) flow chart of the device fabrication
<i>Figure 2.2:</i> Arrangement of the MIM device structure for C-f and I-V measurements43
<i>Figure 2.3:</i> Layout of the BG-TC device structure for TFT characterization

Figure 3.1: Schematic diagram of a) charge polarization of the Li₂ZnO₂ ionic dielectric thin film due to Li + ion shift under the external bias and **b**) influence of that dielectric on the flow of electron in an active channel at low voltage......47 *Figure 3.3: a)* XRD analysis of Li₂ZnO₂ powder annealed at 500 °C, b) GIXRD analysis of Figure 3.4: a) XRD analysis of SnO₂ powder annealed at 500 °C, b) GIXRD analysis of SnO₂ thin film annealed at 500°C50 *Figure 3.5: a)* Optical transmittance spectra of the solution-processed Li₂ZnO₂ dielectric thin film annealed at 500 °C for $Li_2ZnO_2/quartz$ (inset), **b**) Tauc's plot corresponding to *Figure 3.6:* XPS spectra of a different metal element present in Li₂ZnO₂ dielectric thin film a) Li 1s b) O 1s and c) Zn 2p from the sample of p^+ -Si/Li₂ZnO₂ annealed at 500 °C53 **Figure 3.7:** 2-D Surface morphology (scan area 5 x 5 μ m) of Li₂ZnO₂/p⁺-Si annealed at the temperature of **a**) 500 °C (2D topography) and **b**) 500 °C (3D topography) and Li_2O/p^+ -Si annealed at the temperature of c) 500 °C (2D topography) and d) 500 °C (3D) *Figure 3.8: a)* Leakage current density vs. applied voltage of Li₂ZnO₂ and c) Li₂O thin film; **b**) capacitance vs. frequency curves of solution-processed ionic dielectric Li₂ZnO₂ and **d**) Figure 3.9: a) Output, b) transfer characteristics of the SnO₂ TFT with Li₂ZnO₂ dielectric; c) Output and d) transfer characteristics of the SnO_2 TFT with Li_2O dielectric annealed at 500 ^oC with device architecture p^+ -Si/Li₂ZnO₂/SnO₂/Al and p^+ -Si/Li₂O/SnO₂/Al......59 Figure 3.10: Operational Stability of the ionic dielectric and evolution of the transfer curves of an ionic dielectric **a**) Li_2ZnO_2/SnO_2 TFT and **b**) Li_2O/SnO_2 TFT at a fixed V_D of 2V during *Figure 4.2:* Thermal gravimetric analysis (TGA) and differential thermo-gravimetric analysis (DTA) curves of precursor powder \boldsymbol{a}) LiInO₂ and \boldsymbol{b}) LiGaO₂.....67 Figure 4.3: GIXRD analysis of a) LiInO₂ and b) LiGaO₂ thin film at 550 °C annealing

Figure 4.4: Surface morphologies (scan surface area 3 x 3 μ m) of the solution-processed LiInO₂ dielectric thin films for LiInO₂/p⁺-Si surface **a**) 2-D topography **b**) 3-D topography,

Figure 4.12: Inverter characteristics for **a**) first and **b**) third quadrants with supply voltages (V_{DD}) of ± 1 V, respectively, and corresponding gain of the complementary inverter **c**) first and **d**) third quadrants under the supply voltages (V_{DD}) of $\pm 1V_{\dots}$.84

*Figure 5.1: Schematic illustration showing the fabricated GFET device......*89

Figure 5.2: *a*) Optical micrograph of graphene sheet transferred on p^+ -Si/SiO₂ substrate, b) SEM micrograph of graphene sheet *c*) TEM image of a graphene sheet on lacey carboncoated TEM grid where lighter region corresponds to the monolayer graphene while darker *Figure 5.7: a)* Variation of total resistance with the different channel length, and b) Variation of contact resistance of device with different channel length......100

Figure 6.1: *a*) Illustrating fabricated parallel electrode GFET Devices and *b*) schematic of the device with p^+ -Si/Li₅AlO₄/Graphene/Ag/MoOx......106

Figure 6.3: *a*) Raman characteristics of the graphene sheet *b*) SEM micrograph of graphene sheet *c*) TEM image of a graphene sheet on lacey carbon-coated TEM grid where lighter region corresponds to the monolayer graphene while darker region corresponds to the folded graphene layer d) GIXRD (inset: UV-Vis absorbance spectrum) *e*) 2D and *f*) 3D surface morphology of p^+ -/Si/Li₅AlO₄ dielectric thin film annealed at 500 °C......111