
147 | P a g e

APPENDIX A

Question on Milk Characteristics

1. Would you prefer fresh milk?

i) Yes

ii) No

iii) Not sure

2. Which type of milk do you prefer?

i) Liquid normal milk (Packaged)

ii) Concentrated liquid milk (e.g. Milk Maid)

iii) Milk powder

3. What kind of taste do you like most?

i) Normal milky

ii) Little sweetened

iii) Thick creamy

4. How much fat do you prefer in milk?

i) Low fat

ii) Medium fat

iii) High fat

Question on Delivery aspects

5. Would you be willing for spending extra money for delivery of milk at your residence?

i) Yes

ii) No

iii) Not sure

6. If yes, how much of the cost of milk?

i) 1%

ii) 5%

iii) 10%

iv) 20%

v) 30%

7. To protect the environment are you willing to purchase milk, if the milk vending machine

is available within 1 kilometer of your residence but you have to use your own utensil?

(like ATM)

i) Yes

ii) No

iii) Not sure

8. Would you like to purchase milk online in bulk for particular function, with some extra

cost?

i) Yes

ii) No

iii) Not sure

9. If yes, then how much?

i) 1%

148 | P a g e

ii) 5%

iii) 10%

iv) 20%

v) 30%

Question on Packaging Characteristics

10. What packaging type do you prefer?

i) Loose milk (your own utensil)

ii) Plastic (HDPE)

iii) Tetra (example Frooti Pack)

iv) Tin

v) Acrylic (Bottle)

11. Would you prefer the packing to be transparent so that the milk is directly visible?

i) Yes

ii) No

iii) Not sure

12. Would you prefer that the information relating to contents (nutrients and preservatives if

any) is printed on the milk packaging?

i) Yes

ii) No

iii) Not sure

13. What packaging size do you prefer?

i) 250ml

ii) 500 ml

iii) 1000ml or more

14. Are you willing to pay more if the package is made of environment friendly material and

can be recycled?

i) Yes

ii) No

15. If yes, then how much.

i) 1%

ii) 5%

iii) 10%

iv) 20%

v) 30%

16. Are you willing to pay more if the package can be reused as a container or else?

i) Yes

ii) No

iii) Not Sure

17. If yes, then how much.

i) 1%

ii) 5%

iii) 10%

iv) 20%

v) 30%

149 | P a g e

18. Would you prefer a package which is easy to handle / carry (innovative packaging

design)?

i) Yes

ii) No

iii) Not sure

Question on Branding preference

19. Would you agree to pay extra for your favourite brand?

i) Yes

ii) No

iii) Not sure

20. If yes then how much.

i) 1%

ii) 5%

iii) 10%

iv) 20%

v) 30%

Question on Storage Preferences

21. Would you insist on milk which can be stored at room temperature with preservatives?

i) Yes

ii) No

iii) Not sure

22. Would you accept milk which can be stored at cool temperature without preservatives?

i) Yes

ii) No

iii) Not sure

Question on Awareness of Parag Products

23. Are you aware of the following products of Co-operative Dairy?

• Mattha (मट्ठा)

i) Yes

ii) No

• Pede (पेडे)

i) Yes

ii) No

• Kheer (खीर)

i) Yes

ii) No

• Laddu (लड्डू)

i) Yes

ii) No

• Ghee (घी)

150 | P a g e

i) Yes

ii) No

• Butter (मक्खन)

i) Yes

ii) No

• Khoya or Mava (खोया या मावा)
i) Yes

ii) No

• Rasgulla (रसगुल्ला)

i) Yes

ii) No

• Gulab Jamun (गुलाब जामुन)

i) Yes

ii) No

• Kalakand (कलाकन्द)

i) Yes

ii) No

• Rajbhog (राजभोग)

i) Yes

ii) No

24. Are you aware that Co-operative Dairy collects milk form the farmer in the morning

and evening and does processing like pasteurisation? It does not add any preservatives.

i) Yes

ii) No

iii) Partially aware

151 | P a g e

APPENDIX B

Statistical Analysis result

Distribution of Sample according to their Age and Expenditure/ month

 Adult Male (150) Adult Female (150) Men (150) Women (150) F df p

 Mean SD Mean SD Mean SD Mean SD

Age 19.53 1.455 18.62 0.834 36.21 9.1643 33.50 11.415 71.60 3 0.00

Distribution of Sample according to their Preferences

 Adult Male,

(N=150)

Adult Female

(N=150)

Men,

(N=150)

Women

(N=150)

X2 df p

 N % N % N % N %

Domicile

Rural 35 23.33% 17 11.3% 64 42.5% 28 18.8%
12.52 3 0.006

Urban 115 76.67% 133 88.7% 86 57.6% 122 81.2%

Fresh Milk

Yes 125 83.3% 111 74.2% 136 90.9% 94 62.5%

50.75

6

0.000
No 15 10.0% 32 21.0% 5 3.0% 47 31.2%

Not sure 10 6.7% 7 4.8% 9 6.1% 9 6.3%

Type of Milk

Liquid

Normal
130 86.67% 128 85.5% 132 87.9% 117 78.1%

9.06 6 0.170 Concentrated 5 3.33% 15 9.7% 9 6.1% 23 15.6%

Milk powder 15 10% 7 4.8% 9 6.1% 10 6.3%

Taste of Milk
Normal 39 26.0% 46 30.6% 60 40.0% 67 44.6%

22.46 6 0.001
Little

sweetened

52
34.6%

62

41.6%

48

32.0%

55

36.6%
Thick

creamy 59 39.3% 42 28.0% 42 28.0% 28 18.6%

Fat in Milk

Low Fat 20 13.3% 82 54.6% 57 38.0% 84 56.0%

89.39 6 0.000 Medium fat 86 57.3% 58 38.6% 78 52.0% 47 31.3%

High Fat 40 29.33% 10 6.6% 15 10.0% 19 12.6%

152 | P a g e

Delivery Service

Yes
66 44.0% 45 30.0% 61 40.6% 44 29.3%

16.79 6 0.010

No
42 28.0% 69 46.0% 49 32.6% 67 44.6%

Not

sure
42 28.0% 36 24.0% 40 26.6% 39 26.0%

Delivery Service Cost

1% 50 33.3% 46 30.7% 58 38.7% 53 35.3%

30.60

12

0.001

5% 43 28.7% 37 24.7% 34 22.7% 40 26.7%

10% 30 20.0% 30 20.0% 31 20.6% 37 24.7%

20% 17 11.3% 21 14.0% 26 17.3% 20 13.4%

30% 10 6.7% 16 10.6% 1 0.7% 0 0.0%

Vending Machine

Yes 64 42.7% 80 53.3% 72 48.0% 59 39.3%

11.76

6

0.067 No 58 38.7% 43 28.7% 54 36.0% 50 33.3%

Not

sure

28 18.6% 27 18.0% 24 16.0% 41 27.4%

Online Purchase

Yes 58 38.6% 55 36.7% 65 43.3% 57 38.0%

4.71
6 0.581

No 87 58.0% 92 61.3% 78 52.0% 85 56.7%

Not

sure

5 3.4% 3 2.0% 7 4.7% 8 5.3%

Online cost

1% 17 11.3% 38 25.3% 32 21.3% 21 14.0%

32.45

15

0.001

5% 16 10.7% 9 6.0% 21 14.0% 18 12.0%

10% 12 8.0% 4 2.6% 9 6.0% 13 8.7%

20% 11 7.3% 2 1.3% 3 2.0% 4 2.7%

30% 2 1.3% 2 1.3% 0 0.0% 1 0.7%

153 | P a g e

Packaging Type

Loose milk 48 32.0% 60 40.0% 59 39.3% 48 32.0%

15.01

12

0.024

Plastic 34 22.7% 34 22.7% 48 32.0% 41 27.3%

Tetra 31 20.7% 32 21.3% 20 13.3% 28 18.7%

Tin 26 17.3% 17 11.3% 16 10.7% 20 13.3%

Acrylic
11 7.3% 7 4.7% 7 4.7% 13 8.7%

Transparent Package

Yes 87 58.0% 90 60.0% 79 52.7% 87 58.0%

8.03 6 0.235 No 24 16.0% 17 11.4% 32 21.3% 31 20.7%

Not Sure 39 26.0% 43 28.6% 39 26.0% 32 21.3%

Information Content

Yes 80 58.7% 109 72.7% 95 63.4% 79 52.6%

15.30 6 0.018 No 42 28.0% 26 17.3% 38 25.3% 53 35.4%

Not Sure 20 13.3% 15 10.0% 17 11.3% 18 12.0%

Package size

250ml 50 33.3% 32 21.3% 29 19.3% 38 25.3%

15.71 6 0.015 500ml 86 57.3% 103 68.7% 97 64.7% 85 56.7%

1000ml or

more
14 9.4% 15 10.0% 42 16.0% 27 18.0%

Recycled Package

Yes 58 38.6% 55 36.7% 65 43.3% 57 38.0%

5.86 6 0.439 No 87 58.0% 92 61.3% 78 52.0% 85 56.7%

Not Sure 5 3.4% 3 2.0% 7 4.7% 8 5.3%

Recycle cost

1% 25 16.7% 34 22.6% 36 24.0% 23 15.3%

15.75 12 0.202
5% 21` 14.0% 22 14.7% 28 18.7% 22 14.7%

10% 18 12.0% 18 12% 23 15.3% 20 13.3%

20% 16 10.7% 13 8.7% 6 4.0% 11 7.3%

154 | P a g e

30% 11 7.3% 3 2.0% 4 2.7% 7 4.7%

Reuse

Yes 95 62.7% 69 45.5% 81 53.5% 70 46.2%

11.86 6 0.065 No 28 18.5% 43 28.5% 36 23.7% 41 27.0%

Not

Sure
27 17.8% 38 25.0% 33 21.8% 39 25.8%

Reuse cost

1% 19 12.5% 11 7.3% 16 10.6% 9 5.9%

15.20 12 0.230

5% 30 20.0% 15 10.0% 19 12.6% 10 6.6%

10% 17 11.2% 17 11.2% 18 12.0% 16 10.7%

20% 19 12.5% 20 13.3% 24 15.8% 28 18.5%

30% 10 6.8% 6 4.0% 4 2.7% 7 4.6%

Easy to Carry

Yes 89 59.3% 89 59.3% 69 46.0% 69 46.0%

15.73 6 0.015 No 48 32.0% 41 27.3% 65 43.3% 67 44.7%

Not

Sure
13 8.7% 20 13.4% 16 10.7% 14 9.3%

Mattha

Yes
115

76.7%

102 68.0% 118 78.7% 116 77.3%

5.66 3 0.128

No
35

23.3%

48 32.0% 32 21.3% 34 22.7%

Peda

Yes 93 62.3% 78 52.0% 78 52.0% 95 63.7%
7.03 3 0.070

No 57 37.7% 72 48.0% 72 48.0% 55 36.3%

Kheer

Yes 118 78.0% 113 75.0% 123 82.0% 127 84.0%
4.64 3 0.199

No 32 22.0% 37 25.0% 27 18.0% 23 16.0%

Laddu

Yes 87 58.0% 108 72.0% 97 64.7% 92 61.3%
7.00 3 0.071

No 63 42.0% 42 28.0% 53 35.3% 58 38.7%

Ghee

Yes 114 76.0% 123 82.0% 108 72.0% 104 69.3%
7.24 3 0.064

No 36 24.0% 27 18.0% 42 28.0% 46 30.7%

155 | P a g e

Butter

Yes 108 72% 100 66.7% 113 75.3% 100 66.7%
3.90 3 0.271

No 42 28% 50 33.3% 37 24.7% 50 33.3%

Khoya

Yes 101 67.3% 80 53.3% 87 58.0% 80 53.3%
8.04 3 0.045

No 49 32.7% 70 46.3% 63 42.0% 70 46.7%

Rasgulla

Yes 106 70.7% 103 68.7% 95 63.6% 94 62.7%
3.13 3 0.371

No 44 29.3% 47 31.3% 55 36.4% 56 37.3%

Gulab Jamun

Yes 39 26.0% 50 33.3% 36 24.2% 39 26.0%
3.82 3 0.280

No 111 74.0% 100 66.7% 114 75.8% 111 74.0%

Kalakand

Yes 41 27.3% 46 30.7% 30 20.0% 44 29.3%
5.186 3 0.158

No 109 72.7% 104 69.3% 120 80.0% 106 70.7%

Rajbhog

Yes 103 68.7% 116 77.3% 121 80.7% 123 82.0%
9.18 3 0.026

No 47 31.3% 34 22.7% 29 19.3% 27 18.0%

Brand Pay

Yes 85 56.7% 79 52.7% 87 58.0% 76 50.6%

4.86 6 0.561 No 51 34.0% 59 39.3% 53 35.3% 55 36.7%

Not

Sure
14 9.3% 8 8.0% 10 6.7% 19 12.7%

Brand cost

1% 27 18.0% 44 22.6% 30 20.0% 26 17.3%

25.23 9 0.013

5% 23 15.3% 26 38.7% 25 16.7% 22 14.7%

10% 17 11.3% 6 14.5% 18 12.0% 14 9.3%

20% 16 10.7% 3 0.0% 14 9.3% 13 8.7%

30% 2 1.3% 0 0.0% 0 0.0% 1 0.7%

Storage at Room temperature

Yes 84 56.0% 71 47.3% 84 56.0% 96 64.0%

10.50 6 0.104 No 57 38.0% 67 44.7% 59 39.3% 50 33.3%

Not

sure
9 6.0% 12 8.0% 7 4.7% 4 2.7%

Storage at Cool Temperature

Yes 75 50.0% 67 44.7% 89 59.3% 73 48.7% 13.07 6 0.041

156 | P a g e

No 56 37.3% 58 38.7% 33 22.0% 52 34.7%

Not

sure
19 12.7% 25 16.6% 28 18.7% 25 16.6%

Co-operative Dairy

Yes 96 64.0% 65 43.4% 90 60.0% 83 55.3%

15.98 6 0.013
No 37 24.7% 56 37.3% 41 27.3% 40 26.7%

Partially

aware

17 11.3% 29 19.3% 19 12.7% 27 18.0%

157 | P a g e

APPENDIX C

Questionnaire for Multi-Dimensional Scaling

This study uses indirect input method for calculation of the dissimilarity matrix. The

respondents were asked to give a score on the difference of quality of two brands being

compared on quality, cost and availability.

Question: How different is the quality of brand A and brand B on a scale of 1 to 5.

S.N. Brand A Brand B Quality Cost Availability

1 AMU SUD

2 AMU SHU

3 AMU PRA

4 AMU SHA

5 SUD SHU

6 SUD PRA

7 SUD SHA

8 SHU PRA

9 SHU SHA

10 SHA PRA

159 | P a g e

APPENDIX D

Questionnaire for Delphi Method

1. What can be at least eight possible low-cost marketing channels for the co-operative

dairy?

2. What attributes should be selected for marketing channels?

3. Any suggestions for the marketing aspects?

161 | P a g e

APPENDIX E

Lingo programme for Vehicle Routing Problem (VRP)

MODEL:

SETS:

 NODE/1 2 3 4 5 6 7 8/:DEM, EARLIEST, LATEST;

 ETC(NODE, NODE):DIST;

 SERVICETIME(NODE): ST;

 CCM(NODE, NODE): X;

 SERVSTTIME(NODE):TI;

 LOAD(NODE):YI;

ENDSETS

DATA:

VCAP=2700;

VEH_COST=300;

DIST_COST=25;

DEM=0 2629 931 1250 563 1438 1896 1584 ;

EARLIEST=0 0 0 0 0 0 0 0;

LATEST=120 120 120 120 120 120 120 120;

DIST= 0 18.6 14.1 13.2 14.8 15.1 9.9 15

 18.6 0 1.7 3.1 4.6 7.5 6 3.8

 14.1 1.7 0 1.7 2.7 5.8 4.6 5.5

 13.2 3.1 1.7 0 2 6.1 3.7 6

 14.8 4.6 2.7 2 0 5.6 1.8 7.4

 15.1 7.5 5.8 6.1 5.6 0 5.1 11.1

 9.9 6 4.6 3.7 1.8 5.1 0 8.7

 15 3.8 5.5 6 7.4 11.1 8.7 0;

ST=0 10 10 10 10 10 10 10;

ENDDATA

MIN = VEH_COST*VC+DIST_COST*TR;!MINIMIZE THE FIXED AND VARIABLE

COST WITH MINIMIZED FLEET;

VC = @SUM(CCM(I,J)|I#LE#1 #AND# I#NE#J:X(I,J));!THIS GIVES COST OF TOTAL

VEHICLE USED;

TR = @SUM(CCM(I,J)|I#NE#J:DIST(I,J)*X(I,J));!THIS GIVE TOTAL TRAVELLING

COST;

@FOR(NODE(I):@FOR(NODE(J):@BIN(X(I,J)))); !GIVES BINARY VALUE IF X AS 0

OR 1;

@FOR(NODE(I):X(I,I)=0);

162 | P a g e

@FOR(NODE(J)|J#GE#2:@SUM(CCM(I,J)|I#NE#J :X(I,J))=1); !ENSURES THAT ONLY

ONE VEHICLE IN ONE MODE ENTERS THE NODE;

@FOR(NODE(J)|J#GE#2:(@SUM(NODE(I)|I#NE#J:X(I,J)))-

(@SUM(NODE(K)|K#NE#J:X(J,K)))=0); !ENSURES FLOW CONSERVATION;

@FOR(NODE(I)|I#GE#2:@FOR(NODE(J)|J#NE#I:TI(J)>=(TI(I)+ST(I)+3*DIST(I,J))*X(I,

J))); !ENSURES INCREASING SERVICE TIME AT EACH NODE;

@FOR(NODE(J)|J#GE#2:@FOR(NODE(I)|I#LE#1#AND#I#NE#J:TI(J)>=DIST(I,J)*X(I,J)

)); !ENSURES VEHICLE ARRIVING TIME OF A NODE AFTER LEAVING THE

DEPOT;

@FOR(NODE(I):EARLIEST(I)<=TI(I); !SERVICE START TIME SHOULD BE

GREATER THAN EGUAL TO EARLIEST TIME;

@FOR(NODE(I):TI(I)<=LATEST(I)); !SERVICE START TIME SHOULD BE LESS

THAN LATEST ARRIVAL TIME;

@SUM(NODE(J)| J #GT# 1: X(1, J)) >=@FLOOR((@SUM(NODE(I)| I #GT# 1: DEM(

I))/ VCAP) + .999););!ENSURE SUFFICIENT NUMBER OF VEHICLES ARE LEAVING

DEPOT;

@FOR(NODE(I)| I #GE# 2 : @FOR(NODE(K)|K#NE#1:YI(K) >=YI(I) + DEM(K) -

VCAP + VCAP*(X(K, I) + X(I, K))- (DEM(K) + DEM(I)) * X(K,

I)));!CONSTRAINED FOR AMMOUNT DELIVERED UUPTO CITY K;

END

Same programme is used for routes and sub-routes.

163 | P a g e

APPENDIX F

Python programmeming code for k-means clustering and Cheapest Link Algorithm

-*- coding: utf-8 -*-

"""

Uses distance matrix provided by GoogleDistMatrix.py script

"""

import numpy as np

from sklearn.cluster import KMeans

import matplotlib.pyplot as plt

import seaborn as sns

from ortools.constraint_solver import pywrapcp, routing_enums_pb2

This determines how many clusters to create

depot = 6

folder = "C:\\Users\\anubha\\Milk Production\\delivery Points\\"

dist_matrix_filename = "Dist_Matrix in meters.csv"

time_matrix_filename = "Time_Matrix in seconds.csv"

demand_filename = "demand_array.csv"

xcord = "Latitude.csv"

ycord = "Longitude.csv"

factory_index = 0

number_of_vehicles_for_main = {"BIG": depot - 1}

number_of_vehicles_for_clusters = {"SMALL": 7}

label_for_main_cluster = depot

vehicle_max_distance = 100000

existing_cost = 13378.3

EMI = 170

SERVICE_TIME_PER_VEHICLE = 600 #seconds

class Vehicle():

 def __init__(self, capacity, rate, labour, max_distance):

 self.capacity = capacity

 self.rate = rate

 self.labour = labour

 self.max_distance = max_distance

 def __repr__(self):

 return "(capacity = %s, rate = %s, labour = %s, max_distance = %s)" % (self.capacity,

self.rate, self.labour, self.max_distance)

 def cost_provider(self, distance_matrix):

 return lambda x, y: int(distance_matrix[x][y]*self.rate)

164 | P a g e

Modify these to control labour charge, capacity, rate and max travel distance for each vehicle

type

vehicle_params = {

 "BIG" : Vehicle(2700, 0.025, 300, 60000),

 "BIG_LOCAL": Vehicle(2700, 0.025, 300, 40000),

 "SMALL" : Vehicle(500, 0.020, 100, 100000)

}

class Solution():

 def __init__(self):

 self.xs = []

 self.ys = []

 self.sps = []

 self.dist_matrix = []

 self.demand = []

 self.depots = []

 self.sps_for_depot = {}

 self.pair_dist = None

 self.cluster = None

 self.routes_for_cluster = {}

 self.read_data_from_files()

 self.init_vehicles()

 return

 def read_data_from_files(self):

 """ Reads demands, distance, time, geo coordinates """

 self.xs = list(map(float, open(folder + xcord).read().strip().split('\n')))

 self.ys = list(map(float, open(folder + ycord).read().strip().split('\n')))

 # X(latitude) and Y(longitude) reversed intentionally

 self.sps = np.array(list(map(list, zip(self.ys, self.xs))))

 self.dist_matrix = np.loadtxt(open(folder + dist_matrix_filename), delimiter = ',')

 self.time_matrix = np.loadtxt(open(folder + time_matrix_filename), delimiter = ',')

 self.demand = np.loadtxt(open(folder + demand_filename))

 def init_vehicles(self):

 """ Sets up vehicle types to be used for each cluster.

 Main cluster (Factory to Stockists) usually uses BIG trucks,

 while all other clusters use SMALL vehicles """

 self.vehicles_for_main = []

 for vtype, count in number_of_vehicles_for_main.items():

 for i in range(count):

 self.vehicles_for_main.append(vehicle_params[vtype])

 self.vehicles_for_clusters = []

 for vtype, count in number_of_vehicles_for_clusters.items():

 for i in range(count):

 self.vehicles_for_clusters.append(vehicle_params[vtype])

165 | P a g e

 def print_data(self):

 """ This isn't called by default, intented for debugging """

 print(self.dist_matrix)

 print(self.demand)

 def find_cluster(self):

 """ Uses K-Means clustering to produce cluster.

 K-Means will assign a label to each service point.

 Points with same label belong to the same cluster"""

 self.cluster = KMeans(n_clusters = depot).fit(self.sps)

 self.prepare_for_vrp()

 # If any of the clusters has too large combined demand, we will re-create clusters

 while max(self.get_demand_for_main_cluster()) > 2700:

 self.cluster = KMeans(n_clusters = depot).fit(self.sps)

 self.prepare_for_vrp()

 def prepare_for_vrp(self):

 """ Creates some data structure for easier processing and

 assigns a Stockist/Depot to each cluster.

 Service point with the highest demand in a cluster

 is picked as the depot for that cluster."""

 self.sps_for_cluster = {}

 for index, label in enumerate(self.cluster.labels_):

 if label not in self.sps_for_cluster:

 self.sps_for_cluster[label] = []

 self.sps_for_cluster[label].append(index)

 self.depot_for_cluster = {}

 for label in set(self.cluster.labels_):

 if factory_index in self.sps_for_cluster[label]:

 self.depot_for_cluster[label] = factory_index

 else:

 # Uncomment the line below to use the point closets to Factory as depot

 # self.depot_for_cluster[label] = min(self.sps_for_cluster[label], key = lambda x:

self.dist_matrix[0][x])

 self.depot_for_cluster[label] = max(self.sps_for_cluster[label], key = lambda x:

self.demand[x])

 print("Depots are : %s" % self.depot_for_cluster)

 self.main_cluster = list(self.depot_for_cluster.values())

 # Dairy factory should be first

 self.main_cluster.sort()

 print("Main cluster = %s" % self.main_cluster)

 def get_distance_matrix_for_cluster(self, cluster_label):

166 | P a g e

 """Create a distance matrix for all points which belong to the cluster with label =

cluster_label"""

 cluster = self.sps_for_cluster[cluster_label]

 cluster_size = len(cluster)

 distance_matrix_for_cluster = np.arange(cluster_size*cluster_size,

dtype=np.float64).reshape((cluster_size, cluster_size))

 for i in range(cluster_size):

 for j in range(cluster_size):

 distance_matrix_for_cluster[i][j] = self.dist_matrix[cluster[i]][cluster[j]]

 return distance_matrix_for_cluster

 def get_time_matrix_for_cluster(self, cluster):

 """Create a travel time matrix for all points which belong to the cluster with label =

cluster_label"""

 cluster_size = len(cluster)

 time_matrix_for_cluster = np.arange(cluster_size*cluster_size,

dtype=np.float64).reshape((cluster_size, cluster_size))

 for i in range(cluster_size):

 for j in range(cluster_size):

 time_matrix_for_cluster[i][j] = self.time_matrix[cluster[i]][cluster[j]]

 return time_matrix_for_cluster

 def get_demands_for_cluster(self, cluster_label):

 """Create a demand array for all points which belong to the cluster with label =

cluster_label"""

 cluster = self.sps_for_cluster[cluster_label]

 cluster_size = len(cluster)

 demands_for_cluster = np.zeros(cluster_size, dtype=np.float64)

 depots = self.depot_for_cluster.values()

 for i in range(cluster_size):

 if cluster[i] in depots:

 demands_for_cluster[i] = 0

 else:

 demands_for_cluster[i] = self.demand[cluster[i]]

 print("Demand for cluster %s is %s" % (cluster_label, demands_for_cluster))

 return demands_for_cluster

 def get_demand_for_main_cluster(self):

 """ Create a deamnd array for points in the main cluster (Factory to Depots)"""

 main_cluster = self.main_cluster

 demands = []

 # depot(stockist) -> demand of the cluster depot is in.

 demand_for_depot = {}

167 | P a g e

 for cluster_label in set(self.cluster.labels_):

 demand_for_depot[self.depot_for_cluster[cluster_label]] =

sum(self.get_demands_for_cluster(cluster_label))

 print("Demand for depots = %s" % demand_for_depot)

 for depot in main_cluster:

 if depot == 0:

 # No need to deliver to factory

 demands.append(0)

 else:

 demands.append(demand_for_depot[depot])

 print("Main cluster demand = %s" % demands)

 return demands

 def run_vrp_all(self):

 """ This is the function that creates VRP models and solves them"""

 #Distance for Dairy to cluster center and then from each center to service points in that

cluster.

 total_distance = 0.0

 main_cluster = self.main_cluster

 main_cluster_size = len(main_cluster)

 # create a distance matrix for just the Dairy Factory + selected depots for each cluster

 self.distance_matrix_depots = np.arange(main_cluster_size*main_cluster_size,

dtype=np.float64).reshape((main_cluster_size, main_cluster_size))

 for i in range(main_cluster_size):

 for j in range(main_cluster_size):

 self.distance_matrix_depots[i][j] =

self.dist_matrix[main_cluster[i]][main_cluster[j]]

 main_cluster_demand = self.get_demand_for_main_cluster()

 #Find route from Dairy Factory to depots in each cluster.

 self.run_vrp(self.distance_matrix_depots, main_cluster_demand, self.vehicles_for_main,

main_cluster_size, factory_index)

 total_distance, main_time, total_cost =

self.calculate_total_and_print(self.distance_matrix_depots, main_cluster,

self.vehicles_for_main, label_for_main_cluster)

 #total_distance, total_time = self.calulate_and_print_all(self.distance_matrix_depots,

main_cluster, number_of_vehicles_for_main)

 max_cluster_time = 0

 #Now find route for each cluster

 for cluster_label in set(self.cluster.labels_):

 cluster = self.sps_for_cluster[cluster_label]

 start_point = cluster.index(self.depot_for_cluster[cluster_label])

 print("Calculating route for cluster %s : %s" % (cluster_label, cluster))

 print("Starting point is %s" % self.depot_for_cluster[cluster_label])

168 | P a g e

 distance_matrix_for_cluster = self.get_distance_matrix_for_cluster(cluster_label)

 demands_for_cluster = self.get_demands_for_cluster(cluster_label)

 self.run_vrp(distance_matrix_for_cluster, demands_for_cluster,

self.vehicles_for_clusters, len(cluster), start_point)

 distance, time, cost = self.calculate_total_and_print(distance_matrix_for_cluster,

cluster, self.vehicles_for_clusters, cluster_label)

 #distance, time = self.calulate_and_print_all(distance_matrix_for_cluster, cluster,

number_of_vehicles_for_clusters)

 total_distance += distance

 total_cost += cost

 max_cluster_time = max(max_cluster_time, time)

 self.cost = total_cost + EMI

 # meters to kilometers

 total_distance = total_distance/1000

 self.total_solution_distance = total_distance

 self.total_solution_time = (main_time + max_cluster_time + 2*600)/3600

 print("Total time = (%s + %s + 2*600)/3600 = %s" % (main_time, max_cluster_time,

self.total_solution_time))

 print("Total Distance of All clusters is %s KMs" % total_distance)

 #self.cost = total_distance*vehicle.rate + (len(self.vehicles_for_main) - 1)*vehicle.labour

+ depot*len(self.vehicles_for_clusters)*vehicle.labour + EMI + cost_for_cant

 print("Total cost = %s Rupees" % self.cost)

 self.savings = (existing_cost - self.cost)*100/existing_cost

 print("Savings = (%s - %s)*100/%s = %s" % (existing_cost, self.cost, existing_cost,

self.savings) + ' %')

 print("Routes = %s" % self.routes_for_cluster)

 #print("Objective value = %s" % self.assignment.ComputeObjectiveValue())

 def replace_big_with_small(self, demands_for_cluster, vehicles):

 big_demands = [d for d in demands_for_cluster if d >

vehicle_params['SMALL'].capacity]

 if big_demands:

 return [vehicle_params['BIG']]*len(vehicles)

 else:

 return vehicles

 def run_vrp(self, distance_matrix_for_cluster, demands_for_cluster, vehicles, cluster_size,

start_point):

 #vehicles = self.replace_big_with_small(demands_for_cluster, vehicles)

 print("Vehicles are %s" % vehicles)

 number_of_vehicles = len(vehicles)

 demand_provider = lambda x, y: demands_for_cluster[y]

 routing = pywrapcp.RoutingModel(cluster_size, number_of_vehicles, start_point)

169 | P a g e

 self.routing = routing

 # Add vehicle constraits (This is to make sure that a vehicle isn't trying to deliver more

than it's capacity)

 routing.AddDimensionWithVehicleCapacity(demand_provider, 0, [v.capacity for v in

vehicles], True, "Capacity")

 # Add vehicle cost calculation (Not sure if this is used in route optimization)

 # We don't use this cost. We ill calculate cost based on routes later.

 cost_providers = [v.cost_provider(distance_matrix_for_cluster) for v in vehicles]

 for i, vehicle in enumerate(vehicles):

 routing.SetFixedCostOfVehicle(vehicle.labour, i)

 routing.SetArcCostEvaluatorOfVehicle(cost_providers[i], i)

 search_parameters = pywrapcp.RoutingModel.DefaultSearchParameters()

 search_parameters.first_solution_strategy =

(routing_enums_pb2.FirstSolutionStrategy.PATH_CHEAPEST_ARC)

 self.assignment = routing.SolveWithParameters(search_parameters)

 def calculate_total_and_print(self, distance_matrix_for_cluster, cluster, vehicles,

cluster_label):

 """Once a VRP model is solved this function will go through each vehicles and print out

the route for it.

 We also calculate the total distance, time and cost and return them"""

 routes = []

 number_of_vehicles = len(vehicles)

 time_matrix_for_cluster = self.get_time_matrix_for_cluster(cluster)

 total_dist = 0

 total_cost = 0

 max_time = 0

 for vehicle_id in range(number_of_vehicles):

 index = self.routing.Start(vehicle_id)

 route = []

 plan_output = 'Route for vehicle {0}:\n'.format(vehicle_id)

 route_dist = 0

 route_time = 0

 while not self.routing.IsEnd(index):

 node_index = self.routing.IndexToNode(index)

 route.append(cluster[node_index])

 next_node_index = self.routing.IndexToNode(

 self.assignment.Value(self.routing.NextVar(index)))

 route_dist += distance_matrix_for_cluster[node_index][next_node_index]

 route_time += time_matrix_for_cluster[node_index][next_node_index]

 plan_output += ' {node_index} -> '.format(

170 | P a g e

 node_index=cluster[node_index])

 index = self.assignment.Value(self.routing.NextVar(index))

 node_index = self.routing.IndexToNode(index)

 route.append(cluster[node_index])

 routes.append(route)

 total_dist += route_dist

 cost = 0 if route_dist == 0 else (route_dist*vehicles[vehicle_id].rate +

vehicles[vehicle_id].labour)

 total_cost += cost

 max_time = max(max_time, route_time)

 plan_output += ' {node_index}\n'.format(

 node_index=cluster[node_index])

 plan_output += 'Distance of the route {0}: {dist}\n'.format(

 vehicle_id,

 dist=route_dist)

 plan_output += 'Time of the route {0}: {time}\n'.format(

 vehicle_id,

 time=route_time)

 plan_output += 'Cost of the route {0}: {cost}\n'.format(

 vehicle_id,

 cost=cost)

 print(plan_output)

 self.routes_for_cluster[cluster_label] = routes

 print('Total Distance of all routes in cluster: {dist}'.format(dist=total_dist))

 print('Max Time of all routes in cluster: {time}'.format(time=max_time))

 print('Total Cost of all routes in cluster: {cost}'.format(cost=total_cost))

 return total_dist, max_time, total_cost

 def plot_clusters(self):

 """ Plots dots for each service point with a color based on which cluster it belongs to.

 All points in same cluster have same color."""

 palette = sns.color_palette()

 cluster_colors = [palette[col] for col in self.cluster.labels_]

 plot_kwds = {'alpha' : 0.8, 's' : 80, 'linewidths':0}

 plt.scatter(self.ys, self.xs, c=cluster_colors, **plot_kwds)

 def plot_route(self, route, color):

 """ Plots lines which conenct service points with a color based on which cluster it belongs

to.

 All points in same cluster have same color."""

 for i in range(len(route)-1):

 sp1, sp2 = self.sps[route[i]], self.sps[route[i+1]]

 plt.plot([sp1[0], sp2[0]], [sp1[1], sp2[1]], c = color)

171 | P a g e

 def plot_routes(self):

 """ Uses plot_route() """

 palette = sns.color_palette()

 labels = set(self.cluster.labels_)

 # -1 is for the main cluster - Factory to depot

 labels.add(label_for_main_cluster)

 for cluster_label in labels:

 for route in self.routes_for_cluster[cluster_label]:

 self.plot_route(route, palette[cluster_label])

 def plot_final(self):

 """ Plots everything and shows it """

 self.plot_clusters()

 self.plot_routes()

 plt.show()

Keep trying until you get a solution with a desired savings %

savings = 0

solution = None

while True:

 solution = Solution()

 solution.find_cluster()

 solution.prepare_for_vrp()

 solution.run_vrp_all()

 if solution.savings > savings:

 savings = solution.savings

 if solution.savings > 31:

 break

 print ("Max Savings = %s" % savings)

solution.plot_final()

