List of Figures

Fig. No.	Title	Page No.
Fig. 1.1	An immediate action need to be taken to find a solution for water	2
	shortage globally	
Fig. 1.2	Active solar still	4
Fig. 1.3	Passive solar still	4
Fig. 2.1	Classification of phase change materials	11
Fig. 2.2	A schematic diagram of the single basin solar still with heat	13
	storage material	
Fig. 3.1	Schematic diagram of passive solar still with PCM	25
Fig. 3.2	Pictorial view of experimental setup for solar still coupled with	26
	PCM stored in copper cylinder	
Fig. 3.3	Pictorial view of PCM loaded copper cylinders	26
Fig. 3.4	PCMs used in the experiment	27
Fig. 3.5	Solar intensity and ambient temperature variation for different	34
	PCMs with respect to time	
Fig. 3.6	Variation of glass cover temperature for three different PCMs	35
	with respect to time	
Fig. 3.7	Temperature of water basin coupled with lauric acid	35
Fig. 3.8	Temperature of water basin coupled with stearic acid	36
Fig. 3.9	Temperature of water basin coupled with paraffin wax	37
Fig. 3.10	Temperature variation of liner for three different PCMs	37
Fig. 3.11	Hourly temperature variation of PCMs	38

Fig. 3.12	Convective heat transfer coefficient from water to glass cover	39
	with respect to time	
Fig. 3.13	Evaporative heat transfer coefficient from water to glass cover	40
	with respect to time	
Fig. 3.14	Radiative heat transfer coefficient from water to glass cover with	40
	respect to time	
Fig. 3.15	Total heat transfer coefficient from liner to water with respect to	42
	time	
Fig. 3.16	Heat transfer coefficient from water to glass cover with respect	42
	to time	
Fig. 3.17	Variation of total distillate with depth of water	43
Fig. 3.18	Variation of (daily yield) vs (water mass/PCM mass)	44
Fig. 3.19	Comparison of increased distillate with PCM	45
Fig. 4.1	Schematic of experimental setup	48
Fig. 4.2	A photographic view of experimental setup	49
Fig. 4.3	A photographic view of (a) copper cylinders, (b) copper	49
	cylinders with PCM, (c) paraffin wax, (d) nanoparticle and (e)	
	copper cylinder with nanoparticle doped in PCM	
Fig. 4.4 (a)	Solar intensity variation with respect to time	58
Fig. 4.4 (b)	Ambient temperature variation with respect to time	59
Fig. 4.5	Hourly variation of glass cover temperature	60
Fig. 4.6	Hourly variation of liner temperature	60
Fig. 4.7	Hourly variation of water basin temperature	61
Fig. 4.8	Hourly variation of PCM and NPCM temperature	62
Fig. 4.9	Hourly variation of evaporative heat transfer coefficient	63

Fig. 4.10	Hourly variation of convective heat transfer coefficient	64
Fig. 4.11	Hourly variation of radiative heat transfer coefficient	65
Fig. 4.12	Hourly variation of total heat transfer coefficient	66
Fig. 4.13	Hourly variation of heat transfer coefficient between water and	67
	liner	
Fig. 4.14	Comparison of increased daily productivity as compared to SSS	68
Fig. 5.1	Schematic diagram of single slope solar still integrated with	72
	absorbing materials	
Fig. 5.2	Experimental setup of single slope solar still	73
Fig. 5.3	Locations of thermometer sensor in the experimental setup	74
Fig. 5.4	Hourly variation of solar intensity and ambient temperature	80
Fig. 5.5	Hourly variation of glass cover temperature	81
Fig. 5.6	Hourly variation of evaporative heat transfer coefficient	82
Fig. 5.7	Hourly variation of radiative heat transfer coefficient	82
Fig. 5.8	Hourly variation of convective heat transfer coefficient	83
Fig. 5.9	Hourly variation of total heat transfer coefficient	83
Fig. 5.10	Hourly variation of PCM and NPCM temperature	84
Fig. 5.11	Hourly variation of basin water temperature	85