TABLE OF CONTENTS

Contents	Page No.
Certificate	ii-iv
Acknowledgment	V
Table of contents	vi-x
List of figures	xi-xviii
List of tables	xix
Nomenclature	xx-xxiv
Abstract	xxv-xxix
1. Introduction	1-8
1.1 Overview	1
1.2 Motivation	1
1.3 Contribution	6
1.4 Thesis Structure	7
2. Literature Review	9-21
2.1 Introduction	9
2.2 Thermal Energy Storage	11
2.2.1 Sensible heat storage	11
2.2.2 latent heat storage	12

2.3 Design guidelines of PCM	17
2.4 Effect of climate and operating parameters	20
2.5 Research Gap	20
3. Solar distillation using three different phase change materials stored in a copper cylinder	22-46
3.1 Overview	22
3.2 Materials and Methods	22
3.2.1 Experimental setup and procedure	22
3.2.2 Principle of operation	27
33 Heat transfer and energy balance	28
3.3.1 Heat loss due to convective heat transfer	29
3.3.2 Heat loss due to radiative heat transfer	29
3.3.3 Heat loss due to evaporative heat transfer	30
3.3.4 solar still with PCM (charging mode)	31
3.3.5 solar still with PCM (discharging mode)	32
3.4 Results and discussion	33
3.4.1 Variation of solar intensity, ambient temperature and glass	33
cover temperature with time	
3.4.2 Variation of water basin temperature with depth of water	36
3.4.3 Temperature variation of PCM and basin liner	39

3.4.4 Variation of heat transfer coefficient for different PCMs	
3.4.5 Variation of total distillate with water depth and validation	44
3.5 Summary	46
 4. Performance assessment of a passive solar still integrated with thermal energy storage and nanoparticle stored in copper cylinders 4.1 Overview 	47-70 47
4.2 Materials and methods	47
4.2.1 Experimental Procedure	47
4.2.2 Operating principle	53
4.3. Energy balance and heat transfer	54
4.3.1 Heat transfer between water basin and glass cover	55
4.4 Uncertainty analysis	57
4.5 Results and discussion	58
4.5.1 Hourly variation of ambient, glass cover temperature, and solar intensity	58
4.5.2 Hourly variation of liner temperature, basin water, PCM, and NPCM	61
4.5.3 Variation of heat transfer coefficient for SSS, SSPCM, and SSNPCM	65
4.5.4 Effect of PCM, nanoparticle and copper cylinder on daily productivity	68
4.6 Summary	69
5. Heat transfer coefficient and productivity of the frugal solar still integrated with a novel economic model	71-92

List of Publications	108
References	97-107
6.2 Future scope of work	95
6.1 Conclusions	93
6. Conclusions and scope for future work	93-96
5.7 Summary	91
5.6 Market entry of the proposed novel frugal solar still	90
5.5 Payback period of solar still	88
5.4 Economic analysis of the proposed frugal solar still with PCM and nanoparticle	86
5.3.3 Hourly temperature variation of basin water, PCM, and NPCM	84
5.3.2 Variation of heat transfer coefficient for SSS, SSPCM, and SSNPCM	81
5.3.1 Hourly variation of solar intensity, ambient and glass cover temperature	79
5.3 Results and discussion	79
5.2.4 Thermal analysis	77
5.2.3 Impact of nanoparticle in the productivity of single slope solar still	77
5.2.2 Data collection	76
5.2.1 Experimental part	71
5.2 Materials and Methods	71

71