NOMENCLATURE

PCM Phase change material

WHO World health organization

UNICEF United nations international children's emergency fund

 A_1 Area of water basin (m²)

 A_2 Area of contact between water and copper cylinder (m²)

 A_3 Cross section area of cylinder (m²)

A₄ Total surface area of cylinder (m²)

SSS Simple solar still

SSPCM Solar still with phase change material

SSNPCM Solar still with phase change material doped with nanoparticle

h Heat transfer coefficient $(W/m^2 K)$

I_L Solar intensity for lauric acid

Is Solar intensity for stearic acid

I_P Solar intensity for paraffin wax

T_{aL} Ambient temperature for lauric acid (°C)

Tas Ambient temperature for stearic acid (°C)

T_{aP} Ambient temperature for paraffin wax (°C)

T_{gi} Temperature of glass inner surface (°C)

 T_{go} Temperature of glass outer surface (°C)

 \mathbf{Q}_{cwg} Convective heat transfer rate from water to glass cover (W/m^2)

hcwg Convective heat transfer coefficient from water to glass cover

 $(W/m^2 K)$

Qewg Evaporative heat transfer rate from water to glass cover (W/m²)

hewg Evaporative heat transfer coefficient from water to glass cover

 $(W/m^2 K)$

Qrwg Radiative heat transfer rate from water to glass cover (W/m²)

hrwg Radiative heat transfer coefficient from water to glass cover

 $(W/m^2 K)$

Qtwg Total heat transfer rate from water to glass cover (W/m²)

htwg Total heat transfer coefficient from water to glass cover (W/m²)

K)

Qcdgi-go Conductive heat transfer rate from glass inner surface to outer

surface (W/m²)

Pgi Partial vapour pressure at glass inner surface temperature (N/m²)

Tw Temperature of water (°C)

ME Equivalent heat capacity (J/K)

Pw Partial vapour pressure of water (N/m^2)

Kg Thickness of glass (mm)

Lg Thickness of liner

K Thermal conductivity (W/m K)

X Thickness (mm)

Temperature (°C)

Eeff Effective emissivity

Q Heat transfer rate (W/m^2)

Ee Effective remittances