Figure 1.1:	Peak brightness of free-electron lasers in the VUV and X-ray regime compared to 3rd generation light sources.	7
Figure 1.2:	Free Electron Lasers (FELs) (a) Typical layout (b) Geometrical configuration (c) Schematics sketch.	9
Figure 1.3:	Free electron laser amplifiers configuration.	15
Figure 1.4:	Free electron laser oscillators configuration.	16
Figure 1.5:	Self-amplified spontaneous emission (SASE) FELs.	16
Figure 2.1:	Wiggler magnets arrangement.	31
Figure 2.2:	(a) The dispersion relation for the infinite length of interaction and (b) The dispersion relation for the finite length of interaction.	33
Figure 2.3:	Operating point of FELs.	35
Figure 2.4:	Frequency ranges from millimeter to sub millimeter wavelengths (between electronics and photonics regime).	36
Figure 2.5:	Schematic of physical mechanism interaction between electron beams and planner wiggler.	37
Figure 2.6:	Accelerating zones and retarding zone by Ponderomotive force with A_p .	44
Figure 2.7:	Phase (P, ψ) space trajectories of separatrix of the trapped- untrapped electrons.	49
Figure 2.8:	Spectral function for the spontaneous emission of a cold beam helical wiggler.	60
Figure 2.9:	Gain function for the spontaneous emission of a cold beam helical wiggler.	62
Figure 2.10:	Phase (P, ψ) space trajectories of the trapped electrons.	71
Figure 2.11:	Gain as a function of initial electron energy.	73
Figure 3.1:	Beat-wave excitation as FEL amplifiers (FELA).	79
Figure 3.2:	Dispersion Relation Curve to the Beam Modesand Radiation Modes. Curve I (Solid Line) and II (Dotted Line Validation)	90

Represent the Beam Modes and Curve III Represent the Radiation Modes for the given parameters as Table 3.1.

- **Figure 3.3:** Radiation Frequency (ω_1) versus Beam Voltage (V_b) for the **91** given parameters as Table 3.1.
- **Figure 3.4:** Growth Rate (Γ) versus Beam Voltage (V_b) for the given **93** Parameters as Table 3.2.
- **Figure 3.5:** Growth Rate (Γ) versus Normalized Lengths (z/L) for the **93** given Parameters as Table 3.2.
- Figure 3.6: Normalized momentum versus normalized phase of beam 99 electrons.
- Figure 3.7: Gain function (G) Versus Momentum (P_{in}) of trapped 101 electrons.
- **Figure 3.8:** Efficiency (η) versus normalized distance (ξ) . **102**
- Figure 4.1:Typical layout (a) and 3-D schematic diagram for simulation of108the FEL amplifiers (b & c).
- Figure 4.2:Flow chart of design procedure of the FEL amplifiers.119
- **Figure 4.3:** Fields pattern of the FEL amplifiers for the desired $_{TM_{01}}$ mode **126** (i) Electric field patterns at the input port (a) contour plot (b) vector plot (c) Magnetic field patterns at the input port , contour plot, and (ii) Magnetic field patterns at the output port (d) contour plot and (e) vector plot.
- Figure 4.4:FEL amplifiers simulated and desired observation for (a) S-128parameters (b) Impedance in Ohm (c) Power accepted.
- Figure 4.5:FEL amplifiers output power vs radiated frequencies.129
- Figure 4.6:Cross sectional view of the helical wiggler.132
- **Figure 4.7:** Simulation results for the case of **Iron helix** with rectangular **134** cross section as (a) The helix geometry without drift tube (b) Transverse Magnetic Field Amplitude B_x (T) & B_{\perp} (T) without drift tube (c) The helix geometry with drift tube (d) Transverse Magnetic Field Amplitude B_x (T) & B_{\perp} (T) with drift tube.
- **Figure 4.8:** Simulation results for the case of **steel helix** with round cross **137** section as (a) The helix geometry without drift tube (b) Transverse Magnetic Field Amplitude B_x (T) & B_{\perp} (T) without drift tube (c) The helix geometry with drift tube (d) Transverse Magnetic Field Amplitude B_x (T) & B_{\perp} (T) with drift tube (e)

Transverse Magnetic Field Amplitude $B_x(T)$ with drift tube (f) Transverse Magnetic Field Amplitude $B_{\perp}(T)$ with helix wire diameter and The predictions of formula (4.15) is also validated for square cross section as shown in (f).

- Figure 4.9:Simulation results for the case of Iron helix with round cross139section as (a) The helix geometry without drift tube (b)Transverse Magnetic Field Amplitude B_x (T) & B_{\perp} (T) without
drift tube (c) The helix geometry with drift tube (d) Transverse
Magnetic Field Amplitude B_x (T) & B_{\perp} (T) with drift tube.
- Figure 4.10:Simulation results for the case of Iron helix with round cross140section as (a) The helix geometry with copper drift tube (d)Transverse Magnetic Field Amplitude B_x (T) & $B_{\perp}(T)$ with copper drift tube.
- Figure 4.11:Simulation results for the case of Iron helix with round cross141section as (a) The helix geometry with copper drift tube (d)Transverse Magnetic Field Amplitude Bx (T) & $B^{\perp}(T)$ with
copper drift tube.
- Figure 4.12: CST design model of FEL amplifiers (a & b) Lay out (c) 144 diagram for simulation of the FEL amplifiers.
- Figure 4.13:Wiggling view of the electron beams during PIC Simulations145(a), & (b).
- Figure 4.14: Power evolution of the electron bunches transfer to the RF 146 wave.
- Figure 4.15:Frequency spectrum of the TM_{11} mode.146
- Figure 4.16:Temporal amplitude curve of the TM_{11} mode.148
- Figure 4.17:Temporal power plot of the TM_{11} mode.148