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     CHAPTER 3 

 

MAGNETIC FIELD TAPERING FOR THE GAIN AND EFFICIENCY OF THE 

FEL AMPLIFIERS  

 

3.1. Introduction 

The first relativistic beam experiments demonstrating stimulated scattering in the 

Raman regime were performed by Granatstein in 1976 [Granatstein et al. (1976), 

Granatstein et al. (1977)]. Utilizing intense relativistic electron beam generators, super 

radiant FEL oscillators were demonstrated by producing megawatt power levels in short 

interaction regions ~ 30cm  at wavelengths ranging from 2mm to 400 m and with efficiencies 

as high as 0.1% . More recently, McDermott reported the realization of a collective Raman 

FEL for the first time. The experiment was designed so as to permit several passes of 

feedback by employing a quasioptical cavity. Laser output of 1MW at 400 m and line 

narrowing to 2%    were observed, compared to 10%    for the earlier super 

radiant oscillator studies [McDermott (1978), Marshall and Schlesinger (1978), Walsh 

(1980), Roberson and Sprangle (1989), Tripathi and Liu (1989), Pellegrini (1990), Dattoli 

and Renieri (1993), Liu and Tripathi (1994), Oerle and Mathias (1997), Saldin et al. (1999), 

Shea and Freund (2001), Workie (2001)]. Danley proposed the scheme of gyrotron pumped 

free electron laser to produce FELs radiation at optical frequencies and followed extensive 

efforts to employ high power laser to produce much shorter wavelengths, including X-rays 

[Danly et al. (1987)]. FELs radiation is produced as stimulated Compton back scattering of 

wiggler electromagnetic wave (laser) by the relativistic electron beam [Scharlemann 
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(1986), Sprangle et al. (1979)]. The process can be viewed as a nonlinear coupling between 

the FELs radiation and negative energy beam mode. The wiggler provides phase 

synchronism for the process and stimulates it. 

Freund and Ganguly have introduced a Nonlinear Simulation of a High-Power, 

using a uniform wiggler while tapered wiggler experiment achieved 35%efficiency for 

same frequency using an 3.5 / 850MeV A electron beam in conjunction with a planar 

wiggler with tapered amplitude and explain the high-efficiency operation of FEL amplifiers 

[Ganguly and Freund (1988), Freund and Ganguly (1992)]. In 1993, Chung proposed the 

simulation technique of tapered FEL amplifiers in millimetre and infrared regions and 

developed the nonlinear theory and numerical simulation with the tapered wiggler and the 

axial guide magnetic field. They have also investigated the possibility of a tunable IR-FEL 

with a test linac of energy 20 60MeV  for the feasible to amplify a 14kW signal of 

10.6 m radiation to a 2GW level [Chung et al.
 
(1993)]. Sharma and Tripathi

 
is examined the 

feasibility of the device in the low-current Compton regime, practically, in the Compton 

regime, the whistler wave does not appear to be a suitable wiggler for FELs operation due 

to requirements of extremely high pump power density for reasonable growth rate [Sharma 

and Tripathi (1993)], hence including the effect of finite space charged mode, Raman 

Regime operation plays an important role in whistler-pumped FELs only [Pant and Tripathi 

(1994)]. Orzechowski examined the operation of FEL amplifiers at 35GHz with a peak output 

power of180MW and powered by 3.6 / 850MeV Aof electron beams and find out an 

extraction efficiency of 6% with operating bandwidth of approximately10% , while the 

amplifier saturates at a 1.4mwiggler lengths [Orzechowski et al. (1986)]. Gardelle and 
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Parker emphasized the effects of electron beam quality and space charge on FELs 

efficiency, a very good agreement has been found between experimental results and 

simulations. The collective FELs laser interaction has been studied at millimeter 

wavelengths and the Measurements in a super radiant amplifier configuration indicate the 

production of35MW at 4mmwith an efficiency of 2.5% [Parker et al. (1982), Gardelle et 

al. (1994)]. Lefevre and their groups are also examined the measurements of microwave 

power and frequency in a pulsed-FEL amplifiers (P-FELA) [Lefevre et al. (1997)]. 

Baxevanis gives the general method for analyzing three-dimensional effects in free electron 

laser amplifiers [Baxevanis et al. (2013)]. The theory of longitudinal dynamics of high gain 

free electron laser amplifiers was proposed by Dattoli [Dattoli et al. (2013)]. 

Experimentally, Elias demonstrated the amplification of a 10.6 m  laser beam and since 

then the name-FELs and the gain has been observed by 7%  per pass at an electron beam 

current of 70mA, the experiments indicate the possibility of a new class of tunable high-

power free electron lasers [Elias et al. (1976)]. FELs oscillator and amplifiers have been 

operated above threshold at a wavelength of 3.4 m , experiments demonstrating wave-

particle stimulated scattering with an output in the infrared have been performed at 

Stanford University using a low current, high energy electron beam from a linear 

accelerator [Deacon et al. (1977)], observed efficiencies were less than 0.01%  and attempts 

to improve the efficiency have focused on the use of storage rings to continuously 

recirculate the beam through the wave generation region.  

Apart from the Ponderomotive potential, the self-consistent of free space charge 

potential )( kztie    is also experienced on electrons to the high relativistic beam current 
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as 40
b

I kA [Pant and Tripathi (1994), Tripathi (2013)]. Since the beam current is very high, 

the susceptibility )( b is greater than unity to the medium, i.e., )1( b , hence, therefore the 

self-consistent of free space charge potential )(  is considered comparatively as 

Ponderomotive potential )( pb  ,i.e., ( )
pb

 
 [Pant and Tripathi (1994), Tripathi (2013)]. 

This chapter of the thesis is organized as follows.  In Section 3.2, Raman regime 

operation for linear tapering of the magnetic fields to the FEL amplifiers deals with an 

interaction of FEL amplifiers, dispersion curve and growth rate and their formalism 

analysis are discussed.  Section 3.3 deals the FEL amplifiers gain and efficiency with phase 

and momentum, trapping of electrons and the gain function and efficiency in Raman regime 

operation. Further, the analytical results with the reported analytical values and their results 

are discussed in Section 3.4. The relevant conclusions are drawn in Section 3.5. 

3.2. Raman Regime Operation 

Raman regime is mode for the free space charge wave i.e., the self-consistent of free 

space charge potential is experienced a force, hence, feeding more and more negative 

energy to the FEL amplifiers. An interaction behavior, dispersive in nature and growth rate 

of the FEL amplifiers in Raman Regime mode is separately described in brief. 

3.2.1. Interaction region of FEL amplifiers  

In a free electron laser, consider the interaction region Lz 0 and it comprises an 

electron plasma density o

opn immersed into a static magnetic field  zBs
ˆ  at (1 / ),s osB B z L  , 

therefore, it is written as [Pant and Tripathi (1994)],            

 ˆ ˆ( ) .oik dz

o oB B x iy e                        (3.1) 
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If the whistler wave propagates through the plasma along ẑ  direction, then an electric 

field is as [Pant and Tripathi (1994), Tripathi (2013)], 

( )
ˆ ˆ( ) ,

o oi t k dz

o oE A x iy e
       (3.2) 

Where, 1/2o
ok

c




2

[1 ]
( )

p

o o c




  
 


and (1 )c co

z

L
   , os

co

eB

mc
  ,

2

1/2( )

o

op

p

o

n e

m



 . Here c  and 

co is frequency of electron cyclotron and initial cyclotron frequency, o is wiggler 

frequency and the wiggler wave number ok ,
p  is plasma frequency and o

opn is density of the 

electron plasma, e  and m are the electronic charge and rest mass, L is the length of 

interaction and c is the speed of light in vacuum,
o and  are free space and relative 

permittivity respectively.  

 

 

Figure 3.1: Beat-wave excitation as FEL amplifiers (FELA), Lz 0 . 

 



Chapter 3                                     Magnetic field tapering for gain and efficiency of the FEL amplifiers 

80 

 

A relativistic density of an electron beam o

obn  and relativistic velocity ˆo

obv z  

propagates through the plasma with a given interaction region Lz 0 as Fig. 3.1. The 

wiggler field appears as an electromagnetic wave frequency 
o o

ob o obk v  and the guided axial 

magnetic field gives to the electrons cyclotron motion at cyclotron frequency c . It acquires 

an oscillatory velocity in transverse direction due to the whistler wave. Therefore, the 

relativistic equation of motion one obtains [Pant and Tripathi (1994), Tripathi (2013)], 

[ .( )] ( ).
o

oob ob
ob ob ob ob ob o

v
m v v eE e v B

t





     


                           (3.3) 

On solving the relativistic equation (3.3) and realizing by i
t



 


and ik  , we have, 

o( ) ( ( )) [ ( )],o o o o ob
ob ob ob ob o ob ob o ob ob ob

o

k Ee
i v v k v v k v E e v

m
  




           

 
(1 / )

.
( / )

o

o o ob o
ob o o o

ob o o ob c ob

eE k v
v

imc k v



   


 

 
   (3.4)    

Here, ˆ( )o o
o

o

k z E
B



 
 , ˆ

o ok k z  , 1

1

obv
k


  and 2 1/2[1 ( / ) ]o o

ob obv c   . Where, o

ob  is relativistic 

gamma factor. The plasma electrons also acquire a drift velocity, hence the equation of 

motion and Maxwell’s third equation, one obtains [Tripathi (2013)],  

[ .( )] , , ,ob o
ob ob ob ob

v B
m v v eE and E

t t

 
      

 
   (3.5)     

Now linearization equation (3.5), the electron cyclotron velocity in x-direction is, 
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                                          ,
( )

x
x

o c

eE
v

im  



     (3.6) 

Similarly the velocity for the electron cyclotron in y -direction is as [Tripathi (2013)], 

               ,
( )

y

y

o c

eE
v

im  



            (3.7) 

Assuming here, the convective term is equal to be zero and , ,y x y xv iv and E iE  . 

Therefore, the total velocity for the electron cyclotron is [Pant and Tripathi (1994)], 

                     .
( )

o
o

o c

eE
v

im  



     (3.8) 

Now for launch a circularly polarized amplifiers radiation through the length of 0z  end 

with electric field [Pant and Tripathi (1994), Tripathi (2013)],  

                                                   1 1( )

1 1
ˆ ˆ( ) .i t k zE A x iy e               (3.9) 

Where the radiation wave number of the amplifiers, ck /11  and frequency of radiation, 

cp  ,1  . It imparts oscillatory velocities to beam and plasma. If radiated electrons 

move with a whistler wave, then the phase matching condition at, ( , )k , 1 o    and 

1ok k k  to be satisfied as [Pant and Tripathi (1994), Tripathi (2013)], 

                1

1

,o
ob

o

v
k k k

  
 


             (3.10) 

Now on solving the above equation (3.10) at obv c , we have [Tripathi (2013)], 
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2

1 2 .o

ob ok c       (3.11) 

Where
2 1/2[1 ( / ) ]o

ob obv c   , relativistic gamma factor ( )o

ob of electron beam. It is an 

important parameter for the characteristics. If the radiation wavelength of FELs,
1 and the 

wiggler wavelength,
o  then the relativistic gamma factor ( )o

ob  related as 2

1 / 2 o

o ob   . 

The whistler wave and the FELs radiation wave gives oscillatory velocities 

1 1, ,b pv and v  to beam and plasma electrons, then using equation of motion, one obtain, 

 1
1 1 1 1[ ( .( )] ( ),

o
oob b

b ob b b b o

v
m v v eE e v B

t





     


   (3.12) 

Initially no force impart on perturb part to the wave, therefore, realizing by 

i
t



 


and ik  and ignoring second terms on both side, the beam velocity of electrons 

is as [Pant and Tripathi (1994), Tripathi (2013)], 

1
1

1

,b o

ob

eE
v

im 
       (3.13) 

Therefore, the velocity for the electron plasma is [Tripathi (2013)], 

 1
1

1

.p

eE
v

im
         (3.14) 

If the whistler wave and FELs signal impart a Ponderomotive force on beam electrons 

at 1 1( , )k , assuming here, 
1 o    and 1ok k k  , and

c


1
, therefore the total 

Ponderomotive force is as [Pant and Tripathi (1994), Tripathi (2013)], 
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* *

1 1 ,
2 2

pb pb ob b o

e e
F e v B v B

c c
          (3.15) 

Now from Maxwell’s Third equations 1
1 ,and, o

o

BB
E E

t t


     

 
 and after realizing 

by i
t



 


and ik  , one obtains [Tripathi (2013)],  

1 1 1
1 1

1 1

ˆ ˆ, , ,o o o
o o

o o

k k E k k E
B z E and B z E

   

 
         (3.16) 

Now from expressions (3.15) and (3.16), we have [Tripathi (2013)], 

* *

1 1 1

1 1

( )
[{ }{ ( )} { ( )}].

2 ( / )

o

o o ob
pb o o oo o o o

ob o o o ob c ob o ob

e k ve e
F E k E E k E

c im k v im



      


      

 
 (3.17) 

Again using equations (3.2), (3.9) and (3.17) and on solving, we have, 

        
2 *

1 1

1

( )
ˆ( )[ ] .

( / )

o
io o o ob

pb oo o o

o ob o o ob c ob

e A A k k v
F k ze

imc k v



    


  

 
    (3.18) 

Where
1( )ok k dz    , 

1 o    and
1( )ok k k dz  .  

Again we know that [Pant and Tripathi (1994), Tripathi (2013)], 

1
ˆ ˆ( ) .pb pb pb o pbF e iek z ie k k z          (3.19) 

Now from equations (3.18) and (3.19), we have [Pant and Tripathi (1994), Tripathi (2013)], 

                  
*

1 1

1 1

( )
[ ].

( ) ( / )

o

o o o ob
oo o o

o ob o o o ob c ob

eA E k v k
k

mc k k k v



     
 

   
  

          (3.20) 
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Similarly, the Ponderomotive potential for electron plasma is as [Tripathi (2013)],  

*

1 1

1 1

[ ].
( ) ( )

o o
pp o

o o o c

eA E k
k

mc k k



   
   
 

    (3.21) 

Now the Ponderomotive force )(,, kzti

p eEEeF  


produces z-velocity,
2v  

and density, 2bn  perturbation of the electron beam in z-direction, therefore, the equation of 

motion for fluid electron beam due to perturbation under the influence of the 

Ponderomotive force, the electrons acquire an axial velocity as [Tripathi (2013)],  

* *

1

( )
[ . ( )] ( ) ( ),

o
oob ob

b ob ob pb ob b o

v
m v v eE e v B e v B

t





       


             (3.22) 

First of all examine that the RHS term is only of z-component and the total velocity 

is in z-direction, i.e., 2

o

ob obv v v  , need only z-component, this term is become zero, 

because beam velocity is in the z-direction, therefore, this force is perpendicular to z-axis 

and it is equal to zero. It is presuming that, any velocity of electrons perpendicular to z-

axis, so this is the velocity of perturbation. Therefore, equation (3.22) can be written as,  

( )
[ . ( )] 0,

o
oob ob

ob ob b pb

v
m v v eE

t





    


      

( )
[ . ( )] ,

o
oob ob

ob ob b pb

v
m v v eE

t





    


              (3.23) 

Let me linearizing the equation of motion, treating electric field to be a perturbation 

of densities o

obn  and velocities o

obv  to be a perturbation and magnetic field of the wave is 

also to be a perturb. And here, relativistic gamma factor or Lorentz factor, 
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2 1/2[1 ( / ) ]o o

ob obv c   and velocity in z-direction have velocities
2

o

ob obv v v  , due to 

perturbation and relativistic gamma factor 
o

ob  is changed and equal to 

be 2 2 1/2

2[1 ( ) / ]o o

ob obv v c    . For the sake of simplicity, using binomial expansion and 

written as 2 2 1/222
.

[1 ( ) ( ) ( )]
o o

ob obv v vv

c c c
      or 3 2

2

o
o o ob
ob ob

v v

c
    , where 2 2 1/2[1 ( ) / ]o o

ob obv c   , for 

an initial electron velocity obv in the z-direction. Therefore, equation (3.23), after rearrange 

and linearization by ik  and i
t



 


, we have [Pant and Tripathi (1994)], 

                                              
2 2

3
,

pboz z
ob o

ob

eEv v
v

t z m

 
 

 
     

2 3

1

.
( )

pb

z o o

ob ob

ek
v

m kv 


  


     (3.24) 

The resulting density perturbation, obtained by solving the equation of continuity and 

linearizing them, one obtains [Pant and Tripathi (1994), Tripathi (2013)], 

.( ) 0,b

n
nv

t


 


       

   2 2

1

. ,
( )

o

ob
b zo

ob

kn
n v

kv
 


     (3.25) 

Now from expressions (3.24) and (3.25), we have [Pant and Tripathi (1994)], 

   

2

2 3 2

1

.
( )

o

ob pb

b o o

ob ob

ek n
n

m kv 


 


      (3.26) 
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The oscillatory axial velocity 
2 zv interacts with the wiggler field

oB , generating a nonlinear 

force
2

ˆ[ ( )]
2

z o

e
v z B   and the transverse velocity due to wiggler. Therefore, the electrons' 

response to this force is given as [Pant and Tripathi (1994), Tripathi (2013)], 

                    
1[ .( )] ( ),

2

o
oob ob

ob ob ob ob o

v e
mc v v eE v B

t





     


       

2 2 1
2

1 c 1 c

( )
. .

2 ( / ) 2 ( / )

o

z o o b ob
zo o o o o

ob ob o ob ob

ev B eB n kv
v

mc mc kn



       


    

 
 (3.27)               

3.2.2. Dispersion curve  

In the Raman Regime, a self-consistent of free space charge potential )( kztie    is 

also experienced a force on electrons due to high beam current as 40
b

I kA [Pant and 

Tripathi (1994), Tripathi (2013)]. Therefore, after replacing pb
  by ( )

pb
  from equations 

(3.24) and (3.26), one can get, 

2

2 23 3 2

1 1

( ), , ( ).
( ) ( )

o

ob

z pb b pbo o o o

ob ob ob ob

ek nek
v and n

m kv m kv   
     

       (3.28) 

The nonlinear current density at 1 1( , )k can be written as [Pant and Tripathi (1994), 

Tripathi (2013)], 

1

1 2 2

1
,

2

o o

b ob b b ob ob zoJ en v en v en v         

2 2 2 2
1 1 2 1

3 2

1 1 1 c

( )1
( ) .

2 ( ) 2 ( / )

o o o

ob ob ob b ob o
b pbo o o o o

ob ob ob ob ob

e n E e k n v e n kv B
J

im m kv kmc



       





     

 
(3.29) 
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Here also the background plasma density can be obtained from equation (3.29) by 

taking by 1, 0o obv    and replacing 
2, ,o

ob bn and n by 
2, ,o

op pn and n  respectively. Therefore, 

we have [Pant and Tripathi (1994), Tripathi (2013)], 

2 3

11

2

1 1 1 c

( ).
2 ( )

o o

op op o

p pp

e n E e kn B
J

im m c   



    


   (3.30) 

Here 2 pn and pp can be written from expressions (3.21) and (3.26), we have [Pant and 

Tripathi (1994), Tripathi (2013)], 

2

2 2

1

( ),

o

op

p pp

ek n
n

m
         

and,   

*

1 1

1 1

[ ].
( ) ( )

o o
pp o

o o o c

eA E k
k

mc k k



   
  
 

   (3.31) 

  Now the total current density of the beams in transverse direction  1 1 1( )T b pJ J J    ,  

using equation (3.29) and contribution of the background plasma equation (3.30) at 

1 1( , )k is as [Pant and Tripathi (1994), Tripathi (2013)], 

3 22
1 1

2 4 2

1 1

2 33
1

4 2 2

1 c 1 1 1 1 c

( )( )1

2 ( ) ( / )

( ) ( ).
2 ( / )( ) 2 ( )

o oo
ob o o ob pb oob

T o o o o o

ob o ob ob o o ob c ob

o oo
op op oob o

pb ppo o o

ob ob ob

e k n k v Ee n E
J

im im kv k v

e n E e kn Be kn B

cm kv im m c



       

        






 
  

  

    
  

 (3.32)                                                                                              

In the case when beam current is large i.e., ( 1)b  , the free space charge potential 

can be considerable, hence, the Ponderomotive potential ( )pb   is considered, 
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therefore, rearranging expressions (3.31) and (3.32) can be written as [Pant and Tripathi 

(1994), Tripathi (2013)], 

2 2 2 *

1 1
12

1 1 1 1 c

2 2 2

4 2 4

1 1 c 1

2

1

1 1
[ { }]

4 2 ( ) ( )

( )1 1 1 1

2 4 ( ) ( / ) 2 4 ( / )( )

1 1

2 4 (

pb p p c o o
T oo

ob o o c

o

pb o o ob o pb c

o o o o o o o

o ob ob o o ob c ob ob ob ob

p c

e A k
J k E

i i m c

ek k v E k

im kv k v kv

k

    

         

   

            

 

  

     
 


   

    


1 c

.
)




(3.33) 

Now using 1

TJ 
 in the wave equation, one obtains [Pant and Tripathi (1994), Tripathi 

(2013)], 

     

2
2 11 1

1 12 2

4
,T

i
E E J

c c

  
            

2 2 2 1

1 1 1 1( ) 4 .Tk c E i J           (3.34) 

Comparing equations (3.33) and (3.34), we have [Pant and Tripathi (1994)], 

2 2 2 *

2 2 2 1
1 1 1

1 1 1 1 c

2 2 2

1
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m c

ek k v E i ik

m kv k v kv

    
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     

             

     
 


  

     

   

1R. .B.E        (3.35) 
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Where, 

2 2 2 *

2 2 2 1
1 1

1 1 1 1 c

1
R [ ],

2 ( ) ( )

pb p p c o o
oo

ob o o c

ie A k
k c k
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

        
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  (3.36) 

and, 

 

2 2

1

4 2 4

1 1 c 1
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p c
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 

  


  

    




  (3.37) 

Now for free space, from expressions (3.28) and (3.31) and using Poisson’s equation 

2 4 en   and linearizing by 2 2( ) / , . .,ik en i e k n      that yields [Pant and Tripathi 

(1994)], 

**
11 1 1

1 1 1 1
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[ ] [ ].

( ) ( / ) ( ) ( )
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 (3.38) 

Where

2 2

2 3 2

1 1

1 1
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k k
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


  , 

2

3 2

1( )
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b o o

ob ob

k
kv



 
 


 

and 1 b   . Here is the permittivity in free space and b is the medium susceptibility. 

Hence from equations (3.35) and (3.38) can be written as [Pant and Tripathi (1994)], 
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R. .Q        (3.39) 
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Where, 
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

 . 

Hence, the above equation (3.39), called the dispersion relation and plays an important role 

in Raman Regime operation for the whistler-pumped FEL amplifiers [Pant and Tripathi 

(1994)] i.e., 

R 0, 0. 
     (3.40) 

 

Figure 3.2: Dispersion Relation Curve to the Beam Modes )//( 1 pobpvskv   and 

Radiation Modes )//( 11 pobp vvsk  . Curve blue (Solid Line) and curve red (Dotted 

Line) represent the Beam Modes for tapered and uniform fields and Curve red (Solid Line)  

and curve black (Dotted Line) represent the Radiation Modes and the parameters are as:

 
1 100.2 , 4 , 0.4c, 3 , 2 10 / .pb p c p ob o pv k cm r s         
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Figure 3.3: Radiation Frequency 1
( )  versus Beam Voltage ( )

b
V for the given parameters:  

1 10 10

10.2 , 4 , 0.4c, 3 , 2 10 / , 6.2 10 / , 40( ).pb p c p ob o p bv k cm r s r s V kV               

 

 

Table 3.1 

Analytical dispersive parameters of the FEL amplifiers 

[Pant and Tripathi (1994)] 

 

FEL amplifier parameters Values 

Wiggler wave number (ko) 3cm
-1

 

Plasma frequency (ωp) 2.0 x 10
10

 r/s 

Oscillatory beam velocity (vob) 0.4c 

Beams plasma frequency  (ωpb) 0.2ωp 

Electron cyclotron frequency (ωc) 4ωp 

Electron beams voltage (Vb) ≥40kV 

Radiation frequency (ω1) 6.2 x 10
10

 r/s 
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The dispersion relation of the FEL amplifiers is sensitive to the tapered magnetic 

fields, electron cyclotron frequency and plasma frequency of electrons, which can plays an 

important role in the Raman Regime operations as shown in Fig. 3.2 and an emission of the 

FEL amplifiers frequency )( 1 with the function of beam voltage )( bV  has been shown in 

Fig. 3.3 for the typical parameters listed in Table 3.1. 

3.2.3. Growth Rate 

In this regime, the production of amplifier radiation 1 1
( , )k is estimated through the 

coupling of whistler-pumped (0, )
o

k with negative energy mode ( , )k . Therefore, the free 

space charge mode is feeding more and more negative energy to the amplifier mode. 

Hence, the growth rate of the FEL amplifiers in this regime [Pant and Tripathi (1994)]
 
is 

defined as, 

1 1

1

1/2

1 1

R
[ . ] .

r

Q
 



 





 
  

 
    

 (3.41) 

Where 1r is the solution of equation (3.39) and from expressions (3.36) and (3.38), we have 

2 2 2 *
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1 1 1 1 1 c 1 1 c

R 1 1 1
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e A k
k

m c

    


            
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     

   
and

2 2

3 3 3

1 1 1

2 2

( )

p pb

o

ob obkv

 

   


 

 
. 

The growth rate is larger as shown in Fig. 3.4, while in the Raman Regime 

operation, occurrences of radiation frequency are quite possible at higher frequencies 

increasing with beam voltage )( bV  shown in Fig. 3.5, on other hand the growth rate 

decreases as increases radiation frequency while it is unaffected in Compton Regime for the 

typical parameters as Table 3.2 [Pant and Tripathi (1994)].  
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Figure 3.4: Growth Rate ( )  versus Beam Voltage ( )
b

V for the Given Parameters:  
1 100.2 , 4 , 0.4c, 3 , 2 10 / , 40( ).pb p c p ob o p bv k cm r s V kV            

 

Figure 3.5: Growth Rate ( )  versus Normalized Lengths )/( Lz for the Given Parameters: 

 
1 10 10 10 10

10.2 , 4 , 0.4c, 3 , ,1.9 10 ,2 10 / , 5.9 10 ,6.2 10 / , 40 .pb p c p ob o pv k cm r s r s L cm                 
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Table 3.2 

Analytical growth parameters of the FEL amplifiers 

[Pant and Tripathi (1994)] 

 

FEL amplifier parameters Values 

Speed of light in vacuum (c) 3.0 x 10
8
 m/s 

Wiggler wave number (ko) 3cm
-1

 

Plasma frequency (ωp) 1.9 x 10
10

 r/s 

2.0 x 10
10

 r/s 

Oscillatory beam velocity (vob) 0.4c 

Beams plasma frequency  (ωpb) 0.2ωp 

Electron cyclotron frequency (ωc) 4ωp 

Wiggler frequency (ƒo) 10GHz 

Wiggler fields (Bo) 3kG 

Axial fields (Bs) Up to 20kG 

Electron beams voltage (Vb) ≥40kV 

Lenghts of Interaction (L) 40cm 

Radiation frequency (ω1) 5.9 x 10
10

 r/s 

6.2 x 10
10

 r/s 
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3.3. FEL amplifiers gain and efficiency 

In the Raman Regime (RR), amplitude of the beat wave is growing with trapped 

electrons while the instability may be saturated for the nonlinear state. Therefore under 

influence, an electric field pb
E  can be written as [Pant and Tripathi (1994)], 

*

1 1

1

( )
ˆ( )[ ] .

( / )

o

io o o ob

pb oo o o

o ob o o ob c ob

eA A k k v
E k ze

im k v


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
 

 
  

(3.42) 

Where
1( )ok k dz    , 

1 o    and
1( )ok k k dz  . Hence the phase momentum, trapping 

of electrons, the gain function ' 'G  variation with electron momentum )( inP  and their 

efficiency are describes as below. 

3.3.1. Phase and momentum equation 

Considering here that the z-component of momentum equation under the beat 

Ponderomotive force can be written as, 2zb zb e
zb pbz

dP dP d
v mc F

dt dz dz


    or 

2

1e
pbz

d
F

dz mc


 . 

Here e
  denotes the electrons relativistic energy at a given point z . Therefore, taking real 

part of the above equation (3.18), one obtained [Pant and Tripathi (1994)],  

2
cos .

pbe
eAd

dz mc


       (3.43) 

Where pb pb
A iE  ,
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Now defining variables
ree   ,

r is the constant resonant energy. Considering 

here,
22 2 2

1/2 1/2

2 2 2 2
(1 ) (1 ) ,oz z

e p p

o

vP P v
E k

m c c c
        , P is the electron momentum and has written 

as 2

1
e

pbz

d
F

dz mc


  or

 

2zb zb e

zb pbz

dP dP d
v mc F

dt dz dz


   . If an electron is moving with the phase 

velocity of the wave, then the resonant gamma factor ( )r  i.e.
2 2

1/2

2 2 2
(1 )o

r

v

c k c


    . Again 

when e  falls to r  the beam can no longer transfer energy to the wave. The deviation of 

energy, e e r      are also effective in resonant case [Pant and Tripathi (1994)]. Hence,  

,e e r
d d d

dz dz dz

  
       (3.44) 

Let ree   , kz t   to write [Pant and Tripathi (1994), Tripathi (2013)], 

2
cos .

pbe
eAd

dz mc





       (3.45)                                                                                       

Now the equation
1 1 1( ) ( )o ot k k dz t k k dz         is governing , then differentiate 

w. r. to z , we have [Pant and Tripathi (1994), Tripathi (2013)],  

1
1( ),o

zb

d
k k

dz v


          (3.46) 

Using assumption, 1/21 1
1 2 2 3/2

1
( )
1 1/ (1 1/ )

o

r r

k k k
c c

 

 
   

 
 [Pant and Tripathi (1994), 

Sharma and Tripathi (1996), Tripathi (2013)], then, 
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1

2 3/2
,

2 ( 1)

e

r

d

dz c

 







      (3.47) 

The expressions (3.43) and (3.44), represent the evaluation of energy and momentum 

equation. Now from equation (3.47), after dimensionalizing z by / , . .,z L i e dz Ld   , we 

have [Pant and Tripathi (1994), Tripathi (2013)], 
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.

2 ( 1)
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d c

 
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
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
    (3.48) 

The above equation (3.48) is called Ponderomotive wave momentum i.e., 
d

P
d




  [Pant 

and Tripathi (1994), Tripathi (2013)], therefore, 

                                               1
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Again equation (3.48), differentiate w. r. to z and from equation (3.45), putting the value 

of
2

cos
pbe

eAd

dz mc





  , we have [Pant and Tripathi (1994), Tripathi (2013)], 
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or,                                            
1

3 2 3/2
cos .

2 ( 1)

pb

r

eA LdP

dz mc





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
        (3.51) 

After dimensionalizing z by / , . .,z L i e dz Ld   , the above equation (3.51) can be 

written as [Pant and Tripathi (1994), Tripathi (2013)], 
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   (3.52) 

Expressions (3.49) and (3.52) defined the energy and phase momentum equations 

respectively and can be rewritten as [Pant and Tripathi (1994), Tripathi (2013)], 

cos ,
dP

A
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

        

and,                                                         .
d
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           (3.53) 

Where A is constant i.e., 

2

1

3 2 3/22 ( 1)

pb

r

eA L
A

mc







and 1

2 3/2
.

2 ( 1)

e

r

L
P

c

 







  

3.3.2. Trapping of electrons 

Since an electron can lose the energy and transfer it to the wave between / 2  

to / 2 . Therefore integrating equation (3.53) w.r.to  and it can be written as [Pant and 

Tripathi (1994), Tripathi (2013)], 

2 22 sin 2 sin ,
in in

P A P A    
    (3.54) 

Where, the values of electron momentum ( P ) and phase ( ) at the entry point 0z  , 

are 0in
P P


  and 0in 

 


  respectively.  

Equation (3.54) shows the trajectories of the trapped electrons with the phase space 

( , )P  at different values of ( ,in inP  ). If 
2 2 sin 2in inP A A   and 

2P >0, all values of   



Chapter 3                                     Magnetic field tapering for gain and efficiency of the FEL amplifiers 

99 

 

are not accessible i.e., trajectories of electrons are representing localized and trapped. 

Therefore, the separatrix is given by [Pant and Tripathi (1994), Tripathi (2013)],  

2 2 (1 sin ).P A                                                   (3.55) 

Initially, at 0z  electron lies uniformly with 
inP P  i.e., horizontal line for all times in the 

( , )P  plane. Therefore, the separatrix of electrons are trapped as Fig 3.6. If the electrons 

are inside the separatrix, called trapped electrons and some ones are outside the separatrix, 

called untrapped electrons. If 0z  , i.e., electrons are some gain energy or lose energy. 

 

 

Figure 3.6: Normalized momentum ( )P  versus Normalized phase ( ) of beam electrons 

for the parameters. 
1 01, 0.2, 0.028, 1.5, 1.6.o o coa a         
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3.3.3. Gain function and efficiency 

The electron bounces back and forth inside a potential energy well. Such electrons 

are trapped electrons. Since the ponderomotive wave slows down with z , the trapped 

electrons also slow down losing energy to FELs radiation. The energy losing by an electron 

is ( 1)inP P P     or
1 2 1( )P P P     . Now the average values of < P > over the initial 

phases yields, 

2 2

2

sin
( ).

8

A d x
P

dx x
   

    
 (3.56) 

Where,
2

in
P

x  , hence the Fig. 3.6, shows the gain function as, 
2

2

sin
( )

d x
G

dx x
  with initial 

values of in
P  or o r

  . If o r
  , the net electrons energy is transfer to the waves

 
[Pant 

and Tripathi (1994)]. 

Figure 3.7, shows the gain as a function ' 'G , with the variation of electron 

momentum )( inP  and the net electrons energy is transfer to the ponderomotive wave which 

is quite considerable at KVVb 40 . An efficiency of the wave is enhanced adiabatically 

with slowing down the Ponderomotive waves also. Hence, the magnetic field tapering is 

improved the performance of the FEL amplifiers.  
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Figure 3.7: Gain as a function )(G  Versus Momentum )( inP  of trapped electrons [Pant 

and Tripathi (1994), Tripathi (2013)]. 

 

Now the net radiated energy by the trapped electrons [Liu and Tripathi (1994)] for 

the value of r and P at 0  and 1 is as, 

2 1 0

2 3/2

( ) (0) (1)
[ (0) (1) ].

2 ( (0) 1)
r r

r

L P P
mc

c

 
  



   
   


                           (3.57) 

Where < > denotes the average value of the trapped electrons and  )1()0( PP  can be 

find out by equation (3.53). Hence the efficiency by trapped electrons is as, 

2
,

( (0) 1)
tr

rmc










                                                  (3.58) 
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Now the total efficiency of the wave for a phase ( ) between / 2  to / 2  in the FEL 

amplifiers is,
 
[Liu and Tripathi (1994)], 

( 0) ( 1)
.

( 0) 1

r r

r

   


 

  


 
                                                 (3.59) 

For the following set of parameters: 
1 01, 0.2, 0.028, 1.5, 1.6o o coa a       , an 

efficiency of a trapped electron is estimated as 20%  (Fig. 3.8), while the reduction along 

the interaction region of about 10 % [Pant and Tripathi (1994)] with the variation of 

magnetic field tapering. Hence, the intensity of FEL amplifiers are influenced little with 

dynamics of beams by tapering but it might not be detrimental to the instability in FEL 

amplifiers. 

 

Figure 3.8: Efficiency ( ) versus normalized distance ( / )z L   for the parameters, 

1 01, 0.2, 0.028, 1.5, 1.6, 40 .o o coa a L cm         
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Tapering of the DC magnetic field is a crucial role to enhance the efficiency of the net 

transfer energy of the wave, which is estimated as 20% achievable efficiency than that of 

the 5% for uniform FEL amplifies [Pant and Tripathi (1994)]. It is also higher than 

experimentally demonstrated the high power FEL amplifiers (FELA) using relativistic 

electron beams (REBs) at 35GHz for 1.2dB/cm growth rates and estimated an experimental 

efficiency >3% with 50dB gain for uniform amplifiers while examined an effect of tapering 

on axial magnetic field to enhance the efficiency and power of the device that indicate the 

production of >75MW at 75GHz with experimental efficiency of 6% [Gold et al. (1984)]. 

 

3.4. Result and discussion 

 The Normalized dispersion curve for the beam modes )//( 1 pobpvskv   and 

radiation modes )//( 11 pobp vvsk  are shown in Fig. 3.2 for the typical parameter as 

Table 3.1. The dispersion relation of the FEL amplifiers is sensitive to the tapered magnetic 

fields, electron cyclotron frequency and plasma frequency of electrons, which plays an 

important role in this configuration. An emission of the FEL amplifiers frequency )( 1 with 

the function of beam voltage )( bV  has been showed in Fig. 3.3 for the typical parameter as 

Table 3.1. In this device, we study the operation of Raman Regime to the generation of 

sec/102.6 10

1 rad  frequency for radiation mode using with IREBs as Fig. 3.5 for the 

typical parameter as Table 3.2. The growth rate decreases as increases with frequency of 

operation of the amplifier while it is unaffected in Compton Regime [Pant and Tripathi 

(1994)]. It is also clear that the growth rate is inversely proportional to the radiation 
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frequency of the device, however, in the Raman Regime operation, the growth rate is larger 

while occurrences of radiation is quite possible at higher frequency increasing with beam 

voltage )( bV
 
of the amplifiers as Fig 3.4 for the typical parameter as Table 3.2. The 

mechanism of background plasma density can serve for tenability of the higher frequency 

of the device. Although the frequency of radiation can be tuned by very small wiggler 

period and/or higher electron beams energy, however, in practically, it is not accessible 

more easily for high beams energy as well as shortening the wiggler periods. The separatrix 

of the trapped electrons are shown as Fig 3.6, means passing electrons are outside the 

separatrix i.e., electrons are some gain energy or lose energy to the waves. 

Fig. 3.7 shows the gain function ''G  with the variation of electron momentum )( inP  

and the net transfer energy is quite considerable at KVVb 40 , however, tapering of the 

magnetic field is a crucial role for enhancing the efficiency of the net transfer energy of the 

wave (Fig. 3.8) and estimated as 20% which is higher than that of the 5% [Pant and 

Tripathi (1994)]. An intensity of FEL amplifiers can be influenced little with dynamics of 

beams by tapering but it might not be detrimental to the instability in FEL amplifiers.  

3.5. Conclusion 

The analytical formalism of the magnetic field tapering on Whistler-Pumped FEL 

amplifiers in Collective Raman Regime operation is developed. The tapering raises the 

efficiency of the device to 20% for typical parameters. The gain function ''G  with the 

variation of electron momentum )( inP  and the net transfer energy is quite considerable 

at KVVb 40 , however, tapering of the magnetic field is a crucial role for enhancing the 
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efficiency of the net transfer energy of the wave and estimated as 20% which is higher than 

that of the 5%. The dispersion relation of the FEL amplifiers is sensitive to the linear 

tapered magnetic fields, electron cyclotron frequency and plasma frequency of electrons. 

For the synchronism of the pumped frequency, it is closed to electron cyclotron frequency 

which is resonantly enhanced the wiggler wave number that produces the amplifier 

radiation for higher frequency from sub-millimeter wave to optical ranges. Gyrotron may 

be envisaged to launch a whistler in a magnetized plasma channel. As the beam slows down 

by imparting energy to FEL amplifiers radiation, the wiggler wave number of the whistler 

wave is enhanced by reducing the cyclotron frequency to maintain phase synchronism of 

radiation with the beam space charge mode while the cyclotron frequency is taken to have a 

negative tapering of the amplifiers. The frequency and power of the FEL amplifiers can be 

controlled by tuning the magnetic field and/or plasma density also by increasing the energy 

of electron beams. Presence of plasma ensures the space charge and current neutralization 

and larger power handling capacity of the devices. 


