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    CHAPTER 2 

 

ANALYSIS OF THE FREE ELECTRON LASER AMPLIFIERS 
 

2.1. Introduction 

The FEL amplifier (FELA) can be operated with multiple wavelengths and allows 

tuning of the wavelengths continuously with some ranges. However, it does not require a 

metallic structure for the interaction which is the major advantage of this device. 

Consequently, it has the potential to either radiate of very high power with metallic walls or 

generation at millimetre to sub millimetre wavelengths, infrared, terahertz radiation, visible, 

UV, XUV or X-ray, where no other sources achieved [Jia (2011), Chen and Joshi (1980), 

Tripathi and Liu (1989), Pellegrini (1990), Oerle and Mathias (1997), Wenlong (2000), 

Pelka et al. (2010), Baxevanis et al. (2013)]. The conventional sources of radiation offer 

very little at terahertz range. The microwave sources, for instance, operate below 60GHz, 

while lasers operate above 30THz and gyrotrons are limited to 30GHz-200GHz range. Free 

electron lasers can offer an alternative. However, conventional magnetic wiggler with 

wiggler period 1cm requires electron beams of energy 3MeV , which escalates the size 

and cost considerably. Using accelerator facilities with intense bunches of electron beams 

via transition radiation or synchrotron, higher pulse energies is generated [Sharma and 

Tripathi (1996)]. Recently, the range of energies as 10 100 J per pulse, intense THz 

frequency has been generated via transition radiation using accelerated electron beam 

passing through plasma to vacuum. Hence there have been efforts to produce THz radiation 

by alternate methods [Tripathi and Liu (1989), Pellegrini (1990)]. Since FELs are an 

extremely adaptable light sources and fascinating devices that produce tunable coherent 



Chapter 2                                                                      Analysis of the Free Electron Laser Amplifiers  

28 

 

radiation over a wide frequency range from sub millimeter wavelengths to visible region 

with high efficiency and huge power levels using energetic electron beams. It comprises a 

high voltage ( 1 )MV power supply (accelerator) and an electron gun, an interaction region 

with a strong wiggler magnetic field, beam pump, radiation coupler (mirror) and 

diagnostics. The device is tunable by tuning the beam voltage. The FELs have a magnetic 

field perpendicular to the beam velocity i.e., the main components, hence, therefore, the 

electrons have an oscillatory motion in transverse direction, which is suitable for interaction 

with either TE mode or TEM mode (TWT is always interacts with the TM mode whereas in 

gyrotron interaction is always with the TE mode only). As fast-wave device, gyrotron is 

interacts with an electromagnetic wave (uniform or periodic magnetic field) by phase 

velocity equal or slightly larger than the light velocity, c , whereas, in FELs, the electron 

oscillation is in transverse direction while its bunching process is in longitudinal direction 

similar to TWT. Hence the free electron lasers can offer an alternative to generate the 

ranges of sub millimetre wavelengths to x-rays. 

The experiments were performed that led to the present day FELs that evolved 

along two separate paths as the type of accelerator and the regime of operations. 

Experimentally in occurrences of FELs, the two types of scattering processes are used as 

one is Compton (wave-particle) scattering and others Raman (wave-wave) scattering 

[Pourkey and Toepfer (1974)]. If the Debye wavelength is much greater than pumped 

wavelengths, the wave-particle process dominates and is called Compton scattering (i.e., 

off single “shielded” particles), whereas, if the Debye wavelength is much smaller than 

pumped wavelengths, then the wave-wave process dominates and Raman scattering occurs 

[Darke et al. (1974), Manheimer and Ott (1974)]. Experimentally, Elias demonstrated the 
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FELs and observed their amplification gain by 7% per pass of a 10.6 m  laser beam with 

70mA beam current which is taked the new possibility of high power tunable FELs [Elias 

et al. (1976)]. After experiments at Stanford University, free electron laser oscillators 

(FELO) have demonstrated for wave-particle simulated scattering above the 3.4 m  

threshold wavelengths using high electron beams energy with low current linear accelerator 

[Deacon et al. (1977)]. Observed efficiencies were less than 0.01%  and attempts to 

improve the efficiency have focused on the use of storage rings to continuously recirculate 

the beam through the wave generation region.  

The first stimulated scattering experiments in the Raman regime using relativistic 

electrons beam was performed by Granatstein in 1976 [Granatstein et al. (1976), 

Granatstein et al. (1977)]. Through the use of intense REBs generators, super radiant FEL 

oscillators were developed by producing megawatt power levels in short interaction 

regions ~ 30cm  at wavelengths ranging from 2mm  to 400 m and with efficiencies as high as 

0.1% . More recently, McDermott reported the realization of a collective Raman FEL for the 

first time. The experiment was designed so as to permit several passes of feedback by 

employing a quasioptical cavity. A laser output of 1MW  were observed at 400 m and 

narrowing line with 2%    and compared to 10%    for the earlier super radiant 

oscillator studies [McDermott, Marshall and Schlesinger (1978)]. An alternative is the 

tapered wiggler and axial fields, which drastically changed the scenario and lead to improve 

the efficiency of the device. It is also observed that, an efficiency of the transfer energy 

enhanced reduction with interaction region along axis [Pant and Tripathi (1994)]. 

This chapter of the thesis is organized as follows.  In Section 2.2, working principal 

of FEL amplifiers, frequency of operations, mechanism of radiation, phase coherence and 
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bunching, Madey‟s theorem for gain, stimulated emission by Madey‟s theorem, principles 

of energy conservation by Madey‟s theorem have been discussed. The Raman regime 

operation in FEL amplifiers, nonlinear states of Raman regime and gain estimate of Raman 

regime in FEL amplifiers have been presented and their behavior of interaction are 

discussed in Section 2.3.  The conclusions are drawn in Section 2.4. 

2.2. Working principle of FEL amplifiers 

In this section, we discussed the working principle of FEL amplifiers as frequency 

of operation, mechanism of radiation emission, phase coherence and bunching/ pre-

bunching, ponderomotive force and growth rate and finally Madey‟s theorem and their 

applications.  

2.2.1. Operating Frequency 

 In a wiggler, if the electron beam is travelling through the structure in the presence 

of an electromagnetic wave, then the interaction of the electron beam is almost zero with an 

electromagnetic wave but in the presence of the wiggler magnetic field, it is possible. 

Hence an arrangement of magnets plays important role to produce wiggler magnetic field 

as shown Fig. 2.1. 
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Figure 2.1: Permanent magnets arrangement for wiggler. 

 

Since the electron beam emerging out of the electron gun (with cathode-anode potential 

difference Vo ) possesses kinetic energy bE as [Liu and Tripathi (1994), Schachter (2011)], 

ooeb eVcmE  )1(2  ,      

and, 

                                                      
2

1
cm

eV

e

o
o  .                                        (2.1) 

Where 2/12 ))/(1(  cvbo , is called beam Lorentz factor or the relativistic gamma factor, 

e is the charge of electrons, em is rest mass of electrons, bv is drift velocity and c , light 

speed in vacuum. The momentum, P  and energy, bE  of the electron can be express as, 

2/12 )1(  oecmP  .            (2.2) 
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Now squaring expression (2.2), we have [Liu and Tripathi (1994), Schachter (2011)], 

)1( 2222  oe cmP  .      (2.3) 

Therefore, from expression (2.2) and (2.3), we get that, 

             2/12222 )/1( cmPcmE eeb  .             (2.4) 

After squaring above equation (2.4), one obtains [Liu and Tripathi (1994), Schachter 

(2011)], 

.22422 cPcmE eb                           (2.5) 

This is called the dispersion relation of an electron to the infinite length of interaction from 

initial to final stage changes.  Hence, the resultant of emission has exactly the same 

difference of energy and momentum i.e., phfi EEE  and phfi PPP  . Where iE , 

fE are the initial and final beam energy and iP , fP initial and final momentum and photon 

energy and momentum is phph PE ,  respectively. Therefore the dispersion relation is written 

as 2/12242 )( cPcmE eb  for an infinite length of interaction and PcEb . as shown in Fig. 

2.2 (a). The dispersion relation of the wave is also the asymptote of the dispersion relation 

of the electron. Consequently, it cannot change its state along a line parallel to the 

asymptote. In other words, energy and momentum cannot be conserved simultaneously in 

vacuum. While for the finite length of interaction, the interaction is possible since although 

the energy conservation remains unchanged i.e., Lfi EE  and the constraint on 

momentum conservation is released somewhat and it is written as, L
i fP P

c cT


   , which 
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is clearly less strength than infinite length of interaction of electron. Where, 2 / LT   is 

the scale of the radiation period and 341.05457 10 .secJ   is the Planck constant. Hence 

the dispersion relation for the finite length of interaction of a free electron 

2/12242 )( cPcmE eb  and an electromagnetic plane wave in vacuum, PcEb . are given 

below Fig. 2.2 (b). The constraint on the momentum conservation is less stringent because 

the interaction occurs in a finite length [Schachter (2011)].  

 

 

                   (a)                                                                       (b)                                                               

Figure 2.2: (a) The dispersion relation for the infinite length of interaction and (b) The 

dispersion relation for the finite length of interaction [Schachter (2011)]. 

 

 

 

 

Again when an electron emits a photon of energy 
L  and momentum 

Lk and transferred 

part of momentum 
wk  to the wiggler (where

L , radiation frequency, Lk is the wave 

number, 
wk  is wiggler wave number and 341.05457 10 .secJ   is the Planck constant). If 

energy and momentum are represented as 
Lbf EE  and )]([ wL kkP





 respectively, 

then the emission is satisfied a relation similar as equation (2.5). 
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Therefore, phase synchronism of the electron with beam energy to leads to electron 

bunching and the growth of the radiation wave i.e., 

( ) ,L L w bk k v                     (2.6)  

Since /L Lk c , this equation gives [Liu and Tripathi (1994), Schachter (2011)], 

2 22 2 ,L o w o wk c            

or, 

             2/ 2 .L w o                     (2.7) 

If the wiggler period is shorter, then the radiation frequency is shorter and reduces 

the wavelengths of radiation by increasing the energy of the electron beams. In a wiggler, 

the wiggler wavelength is related as
2

2 2
( )(1 )

(1 ) 2 2

w w w
L

b b o o

a 


   
  


 at b b / cv  . Where 

2 2/ 2 /w w w w wa eB mc eB k mc    is called wiggler constant or wiggler parameter [Roberson 

(1989), Pellegrini (1990)]. Assuming for operating state bv c , the operating wavelength or 

radiation wavelength of FELs L  scales with wiggler period ( w ). In Fig 2.3, the 

line L Lk c   and the beam line L L bk v   have plotted. Fig 2.3 shows the operating point 

of FELs that an electron loses momentum by 
wk  (where, / 2h  , h is Plank constant and 

wk  is wiggler wave number), it‟s also loses energy by L L bk v   and satisfy the equation 

2 2 2 2 1/2c (1 / )b o b om P m c    [Marshall (1985), Liu and Tripathi (1994)]. 
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Figure 2.3: Operating point of FELs [Liu and Tripathi (1994)]. 

 

 

For L Lk c  , an electron loses more momentum in free space without a wiggler, means 

there is no emission. In a FEL, the difference in momentum between that given by electrons 

and absorbed by photons is taken up by the wiggler. Some experiments have been proved 

that the generation of ultraviolet or violet or visible radiation by using gyrotron as a pump 

which is produces radiation in the millimetre wavelength regimes also.  

It has a tremendous advantage over the conventional lasers. Because the frequency 

of this device is tunable, wave length can be changed by changing the energy of the 

electron beam. This tunability is a very important consideration and more over the 

efficiency of the device which is much higher than the conventional laser efficiency. So, it 

is a very important device that which produces radiation over a very wide frequency ranges 

[Tripathi, NPTL (2013)]. Some frequency ranges from millimetre to sub millimetre 

wavelengths (between electronics and photonics regime) are given below Fig. 2.4 [Maria 

(2009), Chen et al. (2016)]. 
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Figure 2.4: Frequency ranges from millimeter to sub millimeter wavelengths (between 

electronics and photonics regime) [Maria (2009), Chen et al. (2016)] 

 

 

 

2.2.2. Mechanism of Radiation Emission, Phase Coherence and Bunching 

In a conventional LASER, the amplification comes from the stimulated emission of 

electrons bound to atoms, whereas, in FELs, the “free” (unbound) electrons are the medium 

of amplification. The free electrons have been stripped from atoms in an electron gun and 

accelerated with relativistic velocities. The electromagnetic fields emitted by the bunched 

electrons are superimposed in phase and the total field amplitude increases. Thus the 

bunching mechanism of an electron energy is stronger shown in Fig. 2.5 [Marshall (1985), 

Liu and Tripathi (1994), Prosnitz and Swingle (1982)]. The electrons are decelerated by the 

field (J . 0)zE   which is emitted coherent radiation with experienced a ponderomotive 

force
P o p

ˆF zF cos( t k z)L  , where
p L wk k k  . The phase velocity of these forces 

is ( / ) cp L pv k  . When the velocity of the beam /L L pv k (at the frequency 22L o wk c  ), 

the wave appears almost a static field and capable to accelerating or decelerating electrons 
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efficiently. If the beam velocity equal to the phase velocity (operating frequency of the 

device, /L L pv k ) i.e., purely static, accelerated and retarded half of the electrons. The 

resultant is no loss or gain. The situation is different when beam velocity,
bv  is slightly 

higher than phase velocity, there are two kinds of regions (i) the accelerated zones where 

zeE 0  and (ii) the decelerated zones where
zeE 0  . 

 

 

Figure 2.5: Schematic of physical mechanism interaction between electron beams and 

planner wiggler [Marshall (1985), Liu and Tripathi (1994), Sirigiri (2001)]. 

 

 

 

Initially electrons are uniformly distributed at all ẑ . However, the ones zones (i) are 

accelerated and quickly move over to zone (ii), whereas those in zones (ii) are retarded, 

spending more time here. Thus there is a net build-up of electrons in the retarding zone, 

resulting is the net transfer of energy from electrons to the wave which is causes of growth 

or amplification [Walsh (1980), Marshall (1985), Liu and Tripathi (1994)]. 
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2.2.3. Ponderomotive Force and Growth of Rate 

The transportation of the beam from the source to the interaction region is also a big 

issue. The wiggler magnetic fields play an important role to the transportation of the beams 

into the interaction chamber of the device. There are two kinds of wigglers, one is a 

permanent magnetic wiggler in which have essentially an arrangement of magnets is called 

a linear wiggler or planner wiggler and second is a circularly polarized wiggler or helical 

wiggler. Therefore, the permanent magnets can place on top in x-axis and underneath on 

the y-axis, then produce a wiggler magnetic field as [Marshall (1985), Tripathi (2013)], 

wik zˆ ˆ( )e .w wx wy wB B B A x iy        (2.8) 

Here the complex notation, which certainly this expression implies that the real part of the 

right hand side (RHS) is to be taken. It means that the wiggler magnetic field have an x-

component because of these magnets and y-component because the magnets placed along 

the y-axis, with alternate polarities and the net magnetic field in this system is, take the real 

part, hence the wiggler magnetic field in x-direction is coswx w wB A k z  and 

sinwy w wB A k z in y-direction. Where wk is the wiggler number and ,w wA B is the wiggler 

amplitudes and these two components are out of phase by / 2 , this is called circularly 

polarized wiggler. The more interesting things are the coherent radiation that is generated 

by the electron beams. The kinetics process of the radiation by examining the response of 

electrons to wiggler and the radiation signal, called FELs signal. 

There are three issues that the response of electrons to a wiggler magnetic field, the 

response of electrons to a radiation field and both either wiggler or electrons i.e., evaluation 

of the non-linear force (called as the ponderomotive forces) that arise due to the coupling 
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between the wiggler and the radiation signal, deals with millions of electron volts energy of 

the beam. The consideration of the ponderomotive forces by the relativistic equation of 

motion for electron beams and ignoring the effect of space charge, DC space charge of the 

beam, is define as the rate of change of momentum [Marshall (1985), Tripathi (2013)], i.e., 

. ( ).b
b b b w

P
v P eE e v B

t


     


    (2.9) 

Where momentum
b bP m v , 2 1/2[1 ( / ) ]bv c   is relativistic gamma factor or Lorentz 

factor, m  is rest mass of electron, bv  is the drift velocity of electrons beam and c is speed of 

the light. Now the equation of motion for fluid electron beam as,  

( )
[ . ( )] ( ).b

b b b b w

v
m v v eE e v B

t





     


              (2.10) 

This equation has two terms on the right hand side (RHS), the first is called the force due to 

the electric and other is called the magnetic force due to wiggler.  

If the magnetic field is time independent then the force on the electron is ( )b wv B , 

which is always perpendicular to velocity ( )bv  and this does not give rise to any energy 

exchange. Here   is becomes a great simplification, means velocity is changes but 

magnitude of velocity does not changes and relativistic gamma is written 

as
2 1/2[1 ( / ) ]o ov c     . Since there is no electric field, the electric force is zero while 

the wiggler magnetic force is presented. Therefore, the equation of motion after 

linearization is written as [Marshall (1985), Tripathi (2013)], 
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                 ˆ ˆ[ ( ). ] [( ) ],w
o o w w o w w

v
m v z v v e v z v B

t



      


     

    ˆ ˆ[ ( . ) . ] [ ( ) ( )].w
o o w w w o w w w

v
m v v z v v e v z B v B

t



         


   (2.11) 

Here ( . )w wv v  and ( )w wv B is a product to perturbed quantities, which is very small and 

ignore it. Therefore, from equation (2.11), we have [Marshall (1985), Tripathi (2013)], 

ˆ[ ] ( ).w w
o o o w

v v
m v e v z B

t z


 
   

 
   (2.12) 

The response wv is due to the effect of wiggler magnetic field, 
wB i.e., a force creates with 

velocity wv , which is in the quasi study state and z-dependence as the source and very small 

which is written as wik z
ew wv a , where wa is an amplitude of velocity due to wiggler. 

Since the RHS of equation (2.12) has time independent (no dependent of time), therefore 

from equation (2.8) and (2.12) and after linearization by ik
z





, we have, 

 wik zˆ ˆˆ0 ( ( )e ,o w o w o wm ik v v ev A z x iy          

.w c
w

o w o w

eB
v

m k k



 
                  (2.13) 

If assume that the free electron laser amplifier as an electromagnetic wave with electric 

field LE , then we have [Marshall (1985), Tripathi (2013)], 

L Li t k z i( t k z)ˆ ˆ ˆ ˆ( )e ( )e .L Li

L L LE A x iy A x iy    
      (2.14) 
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Where ,L Lk  , are wave number and frequency of the FEL, 
LA is amplitude and 

LB is the 

magnetic field produced by transverse electromagnetic wave. These electromagnetic waves 

want to amplify at the expanse of beam energy in a transverse electromagnetic wave. 

Therefore, using Maxwell Third Equation, we have [Marshall (1985), Tripathi (2013)], 

.L
L

B
E

t


  


      (2.15) 

This is the faraday's law of electromagnetic induction and varying with time. After 

linearization by ik  and i
t



 


, putting the value in expressions (2.14) and (2.15), one 

obtains, 

.L
L L

L

ik
B E


                          (2.16) 

Since the beam velocity due to electric field is became ˆ
b o Lv v z v  , therefore, the 

relativistic gamma factor is written as 2 1/2[1 ( / ) ]o Lv v c    . If Lv is very small as 

compare to ˆ
ov z , the relativistic gamma factor is written as 2 1/2[1 ( / ) ]o ov c    . When 

Lv is perpendicular to z-axis then gamma turns out to be unmodified within the limit of 

perturbation analysis. Therefore, the equation of motion after linearization to be [Marshall 

(1985), Tripathi (2013)], 

ˆ ˆ[ ( ). ] [ ( ) ],L
o o L L L o L L

v
m v z v v e E v z v B

t



       


     

ˆ ˆ[ ( . ) . ] [ ( ) ( )].L
o o L L L L o L L L

v
m v v z v v e E v z B v B

t



          


      (2.17) 
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Here ( . )L Lv v  and ( )L Lv B is a product to perturbed quantities, which is very small and 

ignore it. Therefore, from equation (2.17), we have [Marshall (1985), Tripathi (2013)], 

               ˆ[ ( . )] [ ( )].L L
o o L o L

v v
m v e E v z B

t z


 
    

 
    (2.18) 

For a FEL signal, assume here, the beam velocity is Li( t k z)
eL Lv a

 
 , where

La , is the 

constant amplitude of velocity. Therefore, from expressions (2.14) and (2.18) and after 

linearization by ik  and i
t



 


, we have, 

   .L
L

o L

eE
v

im 
      (2.19) 

Here expressions (2.13) and (2.19), have obtained a linear responses of electrons to wiggler 

magnetic field as well as to FEL laser signal independently. 

 Since the Ponderomotive force exerted by the regular magnetic field and radiated 

signal, which evolve in time or space. It imparts an oscillatory velocity to electrons with Lv , 

is the electron velocity due to the laser signal. The electrons experienced force due to 

electric and field magnetic field both, are called Lorentz force or Ponderomotive force and 

this is caused by the interaction of (i) wiggler velocity to laser magnetic field and (ii) laser 

velocity to wiggler magnetic field (both are transverse forces or transverse quantities) and it 

is written as [Marshall (1985), Tripathi (2013)], 

     ( ) ( ) [( ) ( )].p w L w L w L L wF e v v B B e v B e v B              (2.20) 
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Here ( )w wv B  and ( )L Lv B is a product to perturbed quantities which resultants became 

zero. The term ( )w Lv B is act as force which is retarded the electrons and gain energy. It is 

the real part of the complex quantity. Hence we have, 

e[Re Re )] [Re Re ].p w L L wF v B v B          (2.21) 

The product of two parentheses in above equation implies the product of their real parts and 

using identity 
1

Re Re Re(a *)
2

a b b a b     and we get that [Tripathi (2013)], 

     * *{ Re[( ) ( )] Re[( ) ( )]},
2 L

L
p w L w L w L W

o w L o L

ieke e
F B E B E E B E B

m k im   
          (2.22) 

Now solving the above equation (2.22) part by part and one obtains [Tripathi (2013)], 

2

L w
ˆ ˆcos( t k z k z) cos( t z).w L L

p L p L p

o L w

e A A k
F z zA k

m k
 

 
          (2.23) 

Where, 
2

w L L
p

o L w

e A A k
A

m k 
 at1 L

w

k

k
 and ( )p L wk k k  , here phase velocity of ponderomotive 

wave is
( )

L L
p

p L w

v c
k k k

 
  


. If L

p

c
k


 , it is possible to respond that this force act 

resonantly. This is the beauty of free electron laser i.e., Ponderomotive force is resonantly 

interact with the beams and the amplitude of this quantity is proportional to the amplitude 

of the regular field. It is also proportional to the amplitude of the laser field and the 

examination of the energy and gain is improved.  
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Figure 2.6: Accelerating zones and retarding zone by Ponderomotive force with 

pA [Tripathi (2013)]. 

 

 

In a frame consideration, if the Ponderomotive force move with velocity pv in the z-

direction, it appears with new frame as cos zpz p pF A k   , where, Doppler shifted 

frequency of this force is zero. This is called Lorentz transformation of the force. The 

regions of values of x prime for which pzF is positive, are called the accelerating zones and 

the regions of values of x prime for which pzF is negative, are called retarding zone as Fig. 

2.6. As a resultant, the more electrons crossed from the accelerating zones to the retarding 

zones and less leave the retarding zone. So, there is a net bunching of electrons, in the 

retarding zones. Hence there is a net retardation of an electrons and net transferred of 

energy from the electron to wave. The equation of motion as energy balance of an electron 

beam is defined as [Tripathi (2013)], 

                                         2c .b m       (2.24) 
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Where m is the rest mass, c is the velocity of light in free space and   is the relativistic 

gamma factor or Lorentz factor. This is the rate of gain of energy by the electron per 

second, which is equal to the net electric force by wiggler velocity and written as, 

2c ( . ).L wm e E v
t


 


     (2.25) 

Now, there is only one electric field in the system and the velocity is sum of original 

velocity i.e., ˆ( )o L wv z v v  . The dot products of all quantities with 
LE  are turned out to be 

zero. Only the quantity .L wE v is survived. So, the electrons gain energy because of this term 

and it is useful for the evaluation of the energy of the electron as the beam travels with 

distance. Therefore, using equation (2.23) and rearranging equation (2.25), one obtains 

[Tripathi (2013)], 

2

2 2
cos( t z) cos .

m c

w L
L p

o o w

e A A
k A

z v k


 




    


   (2.26) 

Where
2

2 2m c

w L

o o w

e A A
A

v k
 , 1

o

t

z v






 and z tp Lk   . Initially the beam velocity /o p L Lv v k  , 

which is governed the evaluation of the energy for Ponderomotive force of an electron. So, 

the energy of an electron is loses, when cos is positive. Then   is decrease with z i.e., 

regular amplitude which are also depends on the regular wave number wk besides the 

energy of the electron beam. Therefore, the phase of the wave as seen by the moving 

electron evolves according to the equation as [Tripathi (2013)], 

                                                      z t,p Lk                      
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t
.

z

L
p L p

z

k k
z v




 
    

 
    (2.27) 

If the velocity of the electron is zv then the relativistic gamma factor or Lorentz factor is 

as, 21/ 1 ( / )zv c   and the equation (2.26) is governed by 21/ 1 ( / )zv c   . The 

energy transfer from the electron to the wave is weak; the resonant gamma factor ( )r  is 

equal to 2 2 21/ 1 / cr L pk   . Therefore the deviation,   is introduces as ( )r   by 

small modification between  and r . Hence using Taylor to the binomial expansion and 

one obtain [Tripathi (2013)], 

2 2

/
.

( 1) ( 1)

p r p

r r r

k k

z

  

  

 
 

  
         (2.28) 

This equation (2.28) is governed the evaluation of phase momentum to the Ponderomotive 

force. If the length of the interaction chamber is L and varies between from 0z   to 

z L then the dimensionalizing equation (2.28) by / , . .,z L i e z L      and written as, 

2
.

( 1)

p

r r

Lk
P



  


 
 

     (2.29) 

This is called momentum of the wave i.e., 







P , and again equation (2.29), differentiate 

w. r. to z , we have, 

2
.

( 1)

p

r r

LkP

z z



 

 


  
      (2.30)                                                                               

Now dimensionalizing equation (2.30) by / , . .,z L i e z L     , we have, 
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2

2
.

( 1)

p

r r

L kP

z



  

 


  
     (2.31) 

Therefore, expressions (2.31) by (2.26) and (2.29), constitute the energy and phase 

evolution equations and can be rewritten as [Liu and Tripathi (1994), Tripathi (2013)], 

                                                        cos ,
P

A  



  


       

and, 

       .P








        (2.32) 

Where
2

2( 1)

p

r r

L k
A



 



, 

woo

Lw

kvcm

AAe




22

2

 and
2( 1)

p

r r

Lk
P



 





. Now from equation (2.32) and 

divided by each other, one can get, 

. cos ,
P

P A 



 


       (2.33) 

After rearrange 
2( / 2)

( )( ) ( ).
P P P P

P


    

    
  

    
 and integrating equation (2.33) w. r. to , 

we have, 

2

1sin .
2

P
A C          (2.34) 

Now considering here all the electrons are moves at instant time with an initial value of 

normalized energy in oP P P  at in  , therefore 1C is turn out and written as, 

2

1 sin .
2

o
in

P
C A        (2.35) 
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Since 2P cannot be less than zero. It is become negative or positive due to sin  

vary between 1  to 1 . Hence 
1C is depends on the phase of the wave and the values are 

either
1C A ,

1C A  or
1C A . If

1C A , all values of the phase of the wave are accessible 

i.e., all values of  are permissible and such electrons are called passing electrons or 

untrapped electrons. In the second case if
1C A , in that case all value of  are not 

permissible because of both side of the above  equation (2.34) is become positive, means, 

the electrons cannot move in a way, such electrons are called trapped electrons. And in 

third case, if 1C A , the boundary between trapped and untrapped electrons and decides the 

separatrix. Therefore, from above equation (2.34), we have [Liu and Tripathi (1994), 

Tripathi (2013)], 

            
2 2 (1 sin ).P A        (2.36) 

Initially when electron beam launched with some finite energy and the electrons are evenly 

distributed and they are entering the wave at regular intervals with the proper phase. If they 

are inside the separatrix i.e., trapped electrons and those electrons are outside the separatrix, 

are called untrapped electrons shown as Fig. 2.7. 
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Figure 2.7: Phase ( , )P  space trajectories of separatrix of the trapped-untrapped electrons 

[Liu and Tripathi (1994), Tripathi (2013)].  

 

 

Since the ponderomotive waves are trapped and move inside the separatrix with a small 

value of momentum P , then they are lose energy and amplify signal to the radiation. 

Therefore, the estimation of that radiation energy of the electrons can be trapped within the 

potential well of the Ponderomotive force and using expressions (2.34) and (2.35), 

employed the expression for momentum of a trapped electron is, 

2

1sin ,
2

P
A C          

 2 1/2[ 2 (sin sin )] .o inP P A          (2.37) 

Now from expressions (2.29) and (2.37), it is also written as, 
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2 1/2[ 2 (sin sin )] .o inP A


 



  


    (2.38) 

Therefore, solving this equation (2.38) iteratively to different powers for 2 2oP A , then 

binomial expands as [Liu and Tripathi (1994), Tripathi (2013)], 

                  
2

2

3

1
(sin sin ) (sin sin ) .

2
o in in

o o

A A
P P

P P


   




     


    (2.39) 

This is the sort of expansion of P  to different powers in amplitude of the Ponderomotive 

force.  

Now the Ponderomotive force produces oscillatory electron z-velocity, ˆ
pv z  and 

density, pn having perturbation of the electron beam in z-direction with phase 

variation ( )L ot k k z    , here , ,L p L oand k k k     , therefore, the equation of motion for 

fluid electron beam due to perturbation as [Tripathi (2013)],  

( )
[ . ( )] ( ) ( ),b

b b L b w b L

v
m v v eE e v B e v B

t





       


   (2.40) 

First of all examine that the term is only of z-component and the total velocity is in z-

direction, i.e., b o pv v v  , therefore, the force ( ) ( )b w b Le v B e v B     is became zero due to 

perpendicular to z-axis. It is written as [Liu and Tripathi (1994), Tripathi (2013)], 

( )
[ . ( )] ,b

b b L

v
m v v eE

t





   


    (2.41) 
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Here relativistic gamma factor or Lorentz factor, 
2 1/2[1 ( / ) ]bv c   and due to 

perturbation, the velocity in z-direction have b o pv v v  . Hence, the relativistic gamma 

factor   is written as 2 2 1/2[1 ( ) / ]o pv v c    . For the sake of simplicity, using a binomial 

expansion and written as
3

2

o p

o o

v v

c
    . Therefore, equation (2.41) and after 

linearization by ik  and i
t



 


, we have, 

3
.

( )

L
p

o o p o

eE
v

im k v 



     (2.42) 

And the continuity equation of motion and linearization by ik  and i
t



 


, we have, 

                                       .( ) 0,b

n
nv

t


 


       

                                       
( )

o p

p

p o

kn v
n

k v
 


     (2.43) 

Now from expressions (2.42) and (2.43), one obtains [Liu and Tripathi (1994), Tripathi 

(2013)], 

3 2
.

( )

o p L

p

o o p o

en k E
n

im k v 



    (2.44)                                    

Therefore the nonlinear current density at ( , )L Lk  can be written as [Liu and Tripathi 

(1994), Tripathi (2013)], 
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w

2 2 22
*

o L p 4 2

/
en v n v (1 ) .

2 4 ( )

c p oo
L

o o o p o

k kn ee
J E

im k v



   
     


    (2.45) 

Now using wave equation for growth rate [Liu and Tripathi (1994), Tripathi (2013)], 

2
2

2
( . ) ( ).o o

J E
E E

t t
 


   

     
 

        (2.46) 

After linearization equation (2.46), by ,ik i
z t


 

    
 

and putting the value of J from 

equation (2.45), one obtain [Liu and Tripathi (1994), Tripathi (2013)], 

2 2 2 22
2

2 2 4 2

/
(1 [1 ]),

4 ( )

p c p w

L

o o p o

k k
k

c k v

 

   
  


     (2.47) 

Rearranging above terms and we get [Liu and Tripathi (1994), Tripathi (2013)], 

2 2 2 2

2 2 2 2

5 2
( )( ) ,

4

p p c p

L p o

o o w

k
k c k v

k

  
 

 
           

2

2 2 2 2( )( ) .
p

L p o

o

k c k v R


 


         (2.48) 

Where

2 2 2

5 24

p c p

o w

k
R

k

 


 , the equation (2.48) is called the dispersion relation of FEL amplifiers 

and 2 1/2

0( / )p o on e m  , plasma frequency of an electron cyclotron,
om is rest mass of the 

electrons, 
0n is the density of the medium, 

o is the free space permittivity and c is the speed 

of light in vacuum.  
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Now the solution of equation (2.48) is around zero simultaneously and there are two 

factors on LHS, i.e. [Liu and Tripathi (1994), Tripathi (2013)], 

2

2 2 1/2( ) ,
p

L p o

o

k c k v



      (2.49) 

Now expressing p ok v    or p ok v   , around the simultaneous zeros, we get [Liu 

and Tripathi (1994), Tripathi (2013)], 

3 2 ,
2

i l

p o

R
e

k v

         

1/3 1 3
( ) ( ).
2 2 2p o

R

k v
        (2.50) 

Here 0,1,2l   and for 1l  , , we get the unstable root with positive imaginary part that 

gives the growth rate ( )  of the wave [Liu and Tripathi (1994), Tripathi (2013)], 

1/33
Im ( ) ,

2 2 p o

R

k v
          

or, 

                                            

2 2

1/3

5 2

3
( ) .

2 8

p c p

o w o

k

k v

 


           (2.51) 



Chapter 2                                                                      Analysis of the Free Electron Laser Amplifiers  

54 

 

The growth rate scales as 2/3

wB , 1/3

pk , 5/3

o
 and one third power of beam current. In equation 

(2.50), when

2

2 2p

o

k c



 , reduces equation (2.51) which gives the operating frequency of 

FEL amplifier and written as [Liu and Tripathi (1994), Tripathi (2013)], 

2 2

1/33
( ) .

2 4

p c

o wk c

 


        (2.52) 

For fixed 
wk  and plans to increase the operating frequency of the FEL, its growth rate falls 

down as 1/2 . Then the power conservation efficiency of the device is, 

2 2

1/33
/ 2 ( ) .

4 4

p c

o wk c

 
 


      (2.53) 

So far we have ignored here the space charge effect at low beam current, however, 

at high beam current, the space charge effect becomes important for the collective 

approaches and shifting the FEL operation from the Compton to Raman regime and 

Cerenkov FEL [Walsh (1980), Marshall (1985), Liu and Tripathi (1994)]. 

2.2.4. Madey’s Theorem for Gain 

 The FEL gain from the stimulated emission can be computed in a very simple way 

by using Madey‟s theorem [Madey (1979)]. There was the two parts of Madey‟s theorem, 

stated by Luchini, Motz and Sirigiri [Luchini and Motz (1990), Sirigiri (2001)]. The authors 

Grover and Pantell also treat each period of the wiggler in an FEL as a radiator and deduce 

the gain equation by using an array of radiators [Grover and Pantell (1985)]. The energy 

lost by an electron in each section of the wiggler is found by computing the decelerating 
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force on the electron through the wiggler. Then using the conservation of energy argument 

one may compute the emitted radiation. The analysis is carried out in the single electron 

limit where the Coulomb interaction between electrons can be neglected. The Madey‟s 

theorem [Madey (1979)] comprises of two parts, the first part relates the stimulated 

emission to the spontaneous emission and the second part provides an expression for 

spontaneous emission in terms of the energy of the beam. 

2.2.4.1. Stimulated emission by Madey’s theorem 

 The rate of stimulated emission is [Luchini and Motz (1990), Sirigiri (2001)], 

. 2 . 1 ..stim emiss absorpN W N W        (2.54) 

Where .stim  is the net rate of stimulated emission, 
.absorpW and 

.emissW are the upward and 

downward transition probabilities per atom per unit time and 
2N  and 

1N  is the electrons 

number in the upper and lower state respectively. If the rate of emission and absorption of 

the number of photons are approximately n times and the rate of spontaneous 

emission .spontW , then the equation (2.54) can be written as [Luchini and Motz (1990), 

Sirigiri (2001)], 

. 2 . 1 .( ( ) ( )).stim spont spontN nW E h N W E      (2.55) 

Where E , is the electron energy and photons energy is h  with photon frequency . In 

FEL, the gain is observed between spontaneous emissions through the wiggler for the finite 

difference. Therefore, from equation (2.55), carrying out the expansion by using Taylor‟s 
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theorem and the first part of Madey‟s theorem is as [Luchini and Motz (1990), Sirigiri 

(2001)], 

. .( ).stim spont

d
Nnh W

dE
      (2.56) 

Since spontaneous emission is not a function of the energy of the particle, therefore, 

for the conventional laser theorem, the above equation (2.56) is neglected; however, in a 

FEL the above term is significant due to spontaneous emission. Thus one may tune the 

radiation frequency of an FEL by varying the electron energy that makes it a very attractive 

source for a variety of applications. 

2.2.4.2.  Principles of energy conservation by Madey’s theorem 

 The spontaneous emission for the perturbation of first order electron energy is 1 , 

then the second part of Madey‟s theorem for the spontaneous emission are as [Luchini and 

Motz (1990), Sirigiri (2001)], 

1

2 2 2
2

2 2
.

8

o

o o

d I m c

d d E




  
  


    (2.57) 

Where
2

od I

d d 
, called radiation intensity per unit frequency and per unit solid angle, oE  is 

the strength of electric field, ω is electromagnetic radiation frequency and the permittivity 

of free space is o . Hence, the second part of Madey‟s theorem is also written as [Luchini 

and Motz (1990), Sirigiri (2001)], 

1

2

2

1
.

2

d

d
 


         (2.58) 
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Where
2 , the stimulated emission by the energy conservation and 

1

2  is average 

spontaneous emission for the Madey‟s theorem [Shih and Yariv (1981)]. 

Let us consider the Lorentz force to an electron traversing through a uniform planar wiggler 

is [Luchini and Motz (1990), Sirigiri (2001)], 

2c .v.
d

m eE
dt


       (2.59) 

If the TEM electric field seen by the electron is ˆE cos( t kz )oxE     . Therefore, 

linearizing equation (2.59), one obtains, 

2 1 ˆc v cos( t kz ).o o

d
m xe E

dt


         (2.60) 

Assuming here 1 is the first order perturbation to the relativistic Lorentz factor and vo is 

the unperturbed dc beam velocity. If the transverse velocity of the electron is 

v cosxo wk z (due to the wiggler magnetic field), where 2 /w wk   and w  is the wiggler 

period. Hence equation (2.60) can be written as, 

2 1c v cos( t kz )cos( ),xo o w

d
m e E k z

dt


          

1

2

v
[cos( t kz ) cos( t kz )].

2 c

xo o
w w

e Ed
k z k z

dt m


               (2.61) 

At this point it must be mentioned that for the Doppler up-shifted scattered wave to be 

synchronous with the electron beam the following relation is hold as, 
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k 0,
v

w

zo

k


         (2.62) 

Again integrating equation (2.61) w. r. to time and noting that v /zo dz dt is the 

longitudinal velocity of the electron beam, assuming here k
v

w

zo

k k


    and l is the 

length of the interaction region. Therefore, we have [Luchini and Motz (1990), Sirigiri 

(2001)],  

                                           
1 2

v sin( ) sin( )
( ).

2 c v

xo o

zo

e E kl

m k

 


  
 


    (2.63) 

In equation (2.61), the terms arising from the integration of the second 

termcos( t kz )wk z    is dropped because at synchronism given by equation (2.62) 

while the term cos( t kz )wk z    is dominant term and have also assumed that vzo to be 

constant and neglected the phase excursions that produced due to the variation in v z . Now 

equation (2.63), squaring both side and averaging 1 over  which gives [Luchini and Motz 

(1990), Sirigiri (2001)], 

                    2 2 2

1 2

sin( )
v1 2( ) ( ) .

2 2 c v
( )

2

o xo

zo

kl
eE

klm




 


         (2.64) 

Since the conservation of canonical momentum, which follows that ( )P eA is a constant, 

here P is the momentum and A is the vector potential of the wiggler field. Therefore the rms 

value of the magnetic wiggler initially and by using w wB A , can be written as, 
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,
2

w w
w

B
A




               (2.65) 

Where
wA and

wB are the rms value of the vector potential and magnetic field of the wiggler 

respectively. The transverse component of the canonical momentum is zero to ensure along 

the z-axis, then xo oP eA and we have [Luchini and Motz (1990), Sirigiri (2001)], 

                                                   .w w
xo rms

eA

mc




 
       (2.66) 

Where, w w
w

w

eA eB

mc k mc
   . Now from expressions (2.64), (2.65) and (2.66), we have 

[Luchini and Motz (1990), Sirigiri (2001)], 

                     2 2 2 2

1 2

sin( )
1 2( ) ( ) ( ) .
2 2 c

( )
2

o w

zo

kl
eE l

klm








 


                (2.67) 

Finally seeing that the spontaneous emission is depends on 2 2(sin( ) / ( )) (sin( ) / ( ))
2 2

kl kl
 

 
 .  
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Figure 2.8: Spectral function for the spontaneous emission of a cold beam helical wiggler 

[Gover et al. (1984)]. 

 

 

 

 

 

 

The spontaneous emission spectrum peaks for a zero frequency mismatch, 

i.e., ( 0)  is given in Fig. 2.8 have assumed a planar wiggler configuration in this analysis 

and ignored the effect of the planar wiggler by assuming that the longitudinal velocity is 

conserved. This effectively leads to an FEL in a helical wiggler and hence the plot in Fig. 

2.8 depicts the emission spectrum for an FEL in a helical wiggler also [Sirigiri (2001), 

Gover et al. (1984)]. Now substituting equation (2.67) into Madey‟s theorem equation 

(2.57), we have obtained the expression for the spontaneous emission as [Luchini and Motz 

(1990), Sirigiri (2001)], 

2 2 2
1/2 2 2

3 2

sin( )
2( ) ( )( ) ( ) .

32
( )

2

o o w

o zo

kl
d I eIk l

kld d

 

    






   (2.68) 
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Where I , is the beam current, v / czo zo  is the normalized longitudinal velocity of the 

electron and 
o is the permeability of free space. 

The first order perturbation of the electrons by the electromagnetic field causes 

bunching of the electrons without a net energy transfer. Hence the second part of Madey‟s 

theorem as equation (2.58) and the principle of conservation of energy the gain of the FEL 

is equal to be [Luchini and Motz (1990), Sirigiri (2001)], 

2

2
2

.
1

( )
2

o area

I
mc

eGain

oE cA





         (2.69) 

Where areaA  is the cross-sectional area of an optical wave field and assuming that it is much 

greater than that of electrons in the FEL amplifiers. Now using expressions (2.58), (2.86) 

and (2.69) and the expression is as [Luchini and Motz (1990), Sirigiri (2001)],  

2 2

2 2

( )
2

1 sin
( ) ( ) ( ).

2 2 2

o w

kl
zo

eE l d d kl

mc d d


 


   



     (2.70) 
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Figure 2.9: Gain function for the spontaneous emission of a cold beam helical wiggler 

[Luchini and Motz (1990), Sirigiri (2001)]. 

 

 

The gain function for the spontaneous emission of a cold beam helical wiggler is 

shown in Fig. 2.9. Here ignored the variation of (v / v )xo zo  with   as compared to the 

variation of kl  with   and the derivative of kl with respect to can be evaluated. Hence 

the expression for the total gain of an FEL is as [Luchini and Motz (1990), Sirigiri (2001)], 

3 2
1/2 2 2

2 5 3

( )
2

(1 )1 sin
( ) ( )( ) ( ) .

8 2

o w w

klo zo

kleI d
Gain

mc d


   

      



   (2.71) 

Also the Gain function for the spontaneous emission of a cold beam helical wiggler express 

as Fig.2.9, that for a positive gain i.e., 0    and in particular the maximum gain 
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occurs at 1.3   . This value of   corresponds to the electrons travelling slightly faster 

than the electromagnetic wave and transferred energy to the wave when they tend to get 

pulled back into phase. The spontaneous and stimulated emission is obtained by using 

Madey‟s theorem as done [Luchini and Motz (1990), Sirigiri (2001)]. 

2.3. Raman regime operation in FEL amplifiers 

Raman regime is mode for the free space charge wave. Consider a uniform beam of 

cold electrons of density on and the velocity ˆ
bv z  is subjected to an electrostatic 

perturbation )(, kztieE  


. Here is the consideration only of ( , )ok k  and real part 

of the forces. The product of two parentheses in above equation implies the product of their 

real parts and using identity 
1

Re Re Re(a *)
2

a b b a b     and we get that [Walsh (1980), 

Marshall (1985), Liu and Tripathi (1994)], 

* *[( ) ( )].
2

p b o o b

e
F v B v B          (2.72) 

Let the wiggler magnetic field and the laser fields be [Marshall (1985), Liu and Tripathi 

(1994)], 

( )ˆ ,o oi t k z

oE xAe
 

      

and,    

                                                               .o o
o

o

k E
B




                     (2.73) 
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Therefore, from equation of motion and Maxwell‟s third equation for relativistic electron 

beams, we have [Marshall (1985), Liu and Tripathi (1994)], 

[ .( )] ( ),o b
b o b b o

v
m v v eE e v B

t





     


     

and,                                                       .
B

E
t


  


         (2.74) 

Assuming that the convective term is equal to be zero and o
c

eB

m
  . Now the linearization of 

equation (2.74), by ik  and i
t



 


, one obtain [Marshall (1985), Liu and Tripathi 

(1994)], 

( ),o o b b c

eE
i v v

m
            (2.75) 

and,                                                          ( ) ,oikE i B                                                                                                        

.
o

k E
B




       (2.76) 

Since wave are circularly polarized then separate an impart oscillatory wave by equations 

(2.74) and (2.75) in x direction and y direction as , ,oy ox oz bv iv and v v  , we have, 

ˆ ,o
o

o o

eB
v x

im k
  

and,                                                     ˆ .b

o o

eE
v z

im k
                                                       (2.77) 
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Now from expressions (2.72), (2.73), (2.76) and (2.77), we get that [Marshall (1985), Liu 

and Tripathi (1994)], 

          * * ( )ˆ[( ) ( )] zi ( ) .
2 2

t kzc
p b o o b

o o

ke e
F v B v B A e

k





           (2.78) 

Then the ponderomotive force )(,, kzti

p eEEeF  


, produces z-velocity,
2v  and 

density,
2n  perturbation of the electron beam, hence from equation (2.78), one obtain 

[Marshall (1985), Liu and Tripathi (1994)], 

2 3
,

( )
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o o

F
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im kv 
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
                                                                              

and,                                              
2

2 3 2
.

( )

o

o b

n ek
n

m kv 


 


                     (2.79) 

Which on using the Poisson‟s equation 2 24 ,( ) / , 0en ik en         that yields for free 

space [Marshall (1985), Liu and Tripathi (1994)], 

       

2

3 2
1 1 .

( )

p

b

o bkv


 

 
   


     (2.80) 

Where  is the permittivity and b is the susceptibility of the medium in wave and 

here 0  , gives the space charge mode [Marshall (1985), Liu and Tripathi (1994)], i.e., 

                 
3/2

.
p

b

o

kv





       (2.81) 
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The one with the lower sign has / 0     , i.e., mode of energy is negative and the 

coupling of negative energy mode ( , )k with the wiggler (0, )ok that produces the amplifier 

radiation 
1, 1( )k in the operation of Raman Regime (RR). The effect of space charge feeds 

energy to amplifier which is become more and more negative that leading to the 

simultaneous growth of the beam space charge and radiation charge mode [Marshall 

(1985), Liu and Tripathi (1994)]. 

The density perturbation can be written from equations (2.79) and (2.80) with space 

charge effect potential ( )  and ponderomotive potential 
P( )  and ( )  is replaced 

by
P( )  i.e., 2 3 2

2 P[ ( ) / ( ) ]o o bn n ek m kv     . The Poisson‟s equation yields as, 

                     
P 0,b            

  P.b                (2.82) 

Then the current density at 1, 1( )k , using continuity equation, we have, 

2 2

1 o 1 2 o o

1
J en v en v v .

2 8

o

o

n e E k

im  
             (2.83) 

Now using 1J  in the wave equation, one obtains [Marshall (1985), Liu and Tripathi (1994)], 

2

1 1
1 1 1 12 2
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Comparing expressions (2.82) and (2.84), we have [Marshall (1985), Liu and Tripathi 

(1994)], 

         

22 2

o2 2 2

1

v
( ) .

2

p

b

o

k
k c


  




        (2.85) 

The simultaneous zero of the two factors on LHS gives the frequency of operation of the 

FEL and the equation (2.85), called the dispersion relation of FEL amplifiers [Marshall 

(1985), Liu and Tripathi (1994)]. 

3/2
.

o

p

bkv





       (2.86) 

For )(2,
2/3

2

2/1

o

p

boo

o

p
vk









  , around this frequency we expand r i    and from 

equation (2.85) to obtain growth rate ( ) as [Marshall (1985), Liu and Tripathi (1994)], 

o 1/2

3/2

v
Im ( ) .

2

p

o

k 


 


       (2.87) 

The neglect of collective effects implies 1b , so that
3/2

p

o




  . This defines the boundary 

condition between Raman and Compton regimes. 

2.3.1 Nonlinear state of Raman regime in FEL amplifiers 

To understand the dynamic of trapped electrons in the ponderomotive wave 

(neglecting space charge effects), the single particle equation of motion, 
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2
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eE
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
    (2.88) 

Where,
22 2 2
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2 2 2 2
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e p p

o

vP P v
E k

m c c c
        , P is the momentum of electrons and 

has written as
z

mc

z

P
v

t

P ez
z

z













 2

. It is very useful for defining the resonant gamma 

factor,
r  of an electron moving with the phase velocity of the wave

2 2
1/2

2 2 2
(1 )o

r

v

c k c


    . 

Let
ree   , kz t   to write [Marshall (1985), Liu and Tripathi (1994)], 
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
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 


     (2.89) 

And differentiate kz t    w.r.to z and taking 1/2

2

1
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k
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

 or 2 1/2(1 1/ )r
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
 

 
     (2.90) 

Now dimensionalizing „z‟ by the length of the interaction region L, i.e., z L    and 

putting in equation (2.90), we have [Marshall (1985), Liu and Tripathi (1994)], 

                                     
2 3/2

.
2 ( 1)

e
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L
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 

 
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
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                    (2.91) 

This is called momentum of the wave i.e., 







P , 



Chapter 2                                                                      Analysis of the Free Electron Laser Amplifiers  

69 

 

                  
2 3/2

.
2 ( 1)

e

r

L
P

c

 

 


 
 

              (2.92) 

Now again differentiate w.r. to , and putting the value of
2

cos
pe

eE

z mc





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
, we get 

[Marshall (1985), Liu and Tripathi (1994)], 
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This is called equation of energy evaluation equation of the wave. Hence [Marshall (1985), 

Liu and Tripathi (1994)], 

                                         cos ,
P
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
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
        

and, 
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Where, 
2

3 2 3/22 ( 1)

p

r

eE L
A

mc







. This is constitute the set of energy and momentum equations 

with the consideration of constant A , however, an electron lose energy to the wave between 

/ 2  to / 2  with change in   at the exit point, ( 1)  is , i.e.,  entryexit PP  [Marshall 

(1985), Liu and Tripathi (1994)]. Hence the FEL energy conversion efficiency is as, 

( 0) ( 1)
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( 0) 1

e e

e ok L
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2.3.2. Gain estimate of Raman regime in FEL amplifiers 

Since the single pass amplification of radiation is small. It is worthwhile on solving 

equation (2.94), it can be obtain an interesting results for the constant value of A  and 

written as [Marshall (1985), Liu and Tripathi (1994)], 

2 22 sin 2 sin .in inP A P A        (2.96) 

Where 
0inP P  and 

0in     are the values of P and at the entry point 0z  . 

Equation (2.96) gives Phase ( , )P  space trajectories of the trapped particles for different 

values of ,in inP  as given in Fig. 2.10 [Marshall (1985), Liu and Tripathi (1994)]. 

For
2 2 sin 2in inP A A  , all value of   are not accessible (since 

2P has to be >0), i.e., the 

trajectories of particles are localized, representing trapped particles. Therefore, the 

separatrix is given by,  

2 2 (1 sin ).P A       (2.97) 

Fig. 2.10 follows equation (2.97). If the initial conditions of an electrons is
1C A , 

i.e., inside the circle are called trapped electrons while outside the circle i.e.,
1C A , the 

electrons trajectory are called untrapped. If 1C A , the boundary between trapped and 

untrapped electrons are called the separatrix. Here, 
2

1 sin
2

o
in

P
C A   . Initially when 

electron beam launched with some finite energy and the electrons are evenly distributed 

and they are entering the wave at regular intervals with the proper phase.  
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Figure 2.10: Phase ( , )P  space trajectories of the trapped electrons [Marshall (1985), Liu 

and Tripathi (1994)]. 

 

 

If they are inside the separatrix i.e., trapped electrons and those electrons are outside 

the separatrix, are called untrapped electrons. Since the ponderomotive waves are trapped 

and move inside the separatrix with a small value of momentum P , then they are lose 

energy and amplify signal to the radiation. 

Then the energy lost by an electron ( 1)inP P P     in passing through the interaction 

region is
1 2 1( )P P P      . Therefore the average P over the initial phases yields 

[Marshall (1985), Liu and Tripathi (1994)], 

2 2 2 2

3 2

sin
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2 8 8
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o
o o

PA A d x A G
P P P

P dx x
           (2.98) 
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Where, 
2

inP
x   or 

2

oP
x  . Hence the Fig.2.11, shows the variation of gain as function, 

2

2

sin
( )

d x
G

dx x
   , as a function of 

in oP P  or
o r  . If

o r  , the net transfer energy from 

the electrons to the wave [Marshall (1985), Liu and Tripathi (1994)], however, an estimate 

of efficiency, in the Compton regime of FEL operation, electron gives energy to the wave 

as long as /bv k . Hence the gain function ' 'G , with the variation of electron momentum 

( )oP and the net electrons energy is transfer to the ponderomotive wave which is quite 

considerable at KVVb 40 [Pant and Tripathi (1994)]. An efficiency of the wave is 

enhanced adiabatically with slowing down the Ponderomotive waves also. The positive 

gain function for the spontaneous emission of a cold beam helical wiggler expressed 

between 0x    and the maximum gain occurs at 1.3x   . This value of 

x corresponds to the electrons travelling slightly faster than the electromagnetic wave and 

transferred energy to the wave. During the emission process, electron velocity thus falls 

from ( ) /b rv k    to /bv k , gives an efficiency [Liu and Tripathi (1994)], 
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In the Raman case the frequency
3/2

o

p

bkv





  , of the space charge mode is detuned as the 

beam loses energy.  
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Figure 2.11: Gain ( )G  as a function of initial electron energy [Marshall (1985), Liu and 

Tripathi (1994)]. 

 

2.4. Conclusion 

The fundamental analysis of the linear and nonlinear formalism has been presented 

to explore the analysis of FEL amplifiers and their behavior into the interaction region. In 

the present chapter, the working principal of FEL amplifier, frequency operations, 

mechanism of radiation, phase coherence and bunching, Madey‟s theorem for gain, 

stimulated emission by Madey‟s theorem, principles of energy conservation by Madey‟s 

theorem are discussed here. The Raman regime operation, nonlinear state of Raman regime 

and gain estimate of Raman regime in FEL amplifier has been presented to investigate the 

beam-wave interaction behavior in an interaction chamber of the FEL amplifier. The 

studies of the FEL amplifiers are used in the subsequent chapters for their design analysis 

and performance improvements. 


