List of Figures

1.1	Geometrical Interpretation of Fractional-Order Integral [40]	11
2.1	Switch-Controlled <i>RL</i> Circuit (DC Chopper)	21
2.2	Switch-Controlled Fractional <i>RL</i> Circuit	27
2.3	short	32
3.1	Basic circuit diagram of Buck Converter	47
3.2	Estimation Precision of $ e_1 $ and $ e_2 $ of system (3.35) by using the differentia-	
	tor (3.7) with conventional explicit Euler method denoted by "I-STA" vs the	
	proposed fractional-order differentiator (3.9) with the scheme (3.33) denoted by	
	"Pro." (a) $ e_1 $ and $ e_2 $ w.r.t. the time stepping size h and the parameters are set	
	as $\alpha = 0.8$, $\kappa_1 = 1.5\sqrt{L}$, $\kappa_2 = 1.1L$, $L = 300$. (b) $ e_1 $ and $ e_2 $ w.r.t. the gain pa-	
	rameter <i>L</i> and the parameters are set as $\alpha = 0.8$, $\kappa_1 = 1.5\sqrt{L}$, $\kappa_2 = 1.1L$, $h = 0.01s$.	48
3.3	Estimated states \hat{x}_1 and \hat{x}_2 of system (3.35) in the presence of model uncertainty	
	$\phi(t, x) = -2 \sin(t) \sin(t) + 2\cos^2(t)\operatorname{sgn}(\sin(t))$ with the proposed fractional-	
	order differentiator (3.9) with the scheme (3.33) denoted by "Pro." and the	
	conventional integer-STA based differentiator (3.7) denoted by "I-STA". The	
	parameters $\alpha = 0.8$, $\kappa_1 = 1.5\sqrt{L}$, $\kappa_2 = 1.1L$, $L = 50$, $h = 0.01$ s	49
4.1	Fractional Inverted Pendulum [235]	61
4.2	Evolution of States $(x_1 \text{ to } x_9)$ with time	63
4.3	Evolution of Sliding Surface (s) with time	64
4.4	Evolution of Control Input (u) with time	64