
Chapter 4

Fractional-Order Sliding Mode Control

under Uncertainty

This chapter proposes a sliding surface which renders the system dynamics to start directly from

itself without a reaching phase. More specifically, the system dynamics is insensitive to matched

disturbances/uncertainties throughout the entire system response. The classical control design

methodology based on reduced-order subsystem is still preserved. It is different from integral

sliding mode control in which the design is based on the full order of the system to reach the

same objective [198]. The simulation results of its application to a fractional inverted pendulum

system is demonstrated.

4.1 Introduction

The control under heavy uncertainties is one of the most challenging control tasks. Sliding

Mode Control (SMC) is one of the most efficient control strategies to deal with uncertain-

ties [198] [200] [176]. Nowadays, it is used in both control and observation of several classes

of problems such as that related to power converters, vehicle motion control, etc. Sliding mode

control has been widely used for fractional-order systems [7] [28] [55] [221]. Remarkable

improvements have been obtained with fractional-order sliding mode based control law design

in various applications. In this context, the technique of using the control scheme free from

any reaching phase has been used for a class of fractional-order uncertain systems to obtain

robustness throughout the state trajectories [55]. It uses the Caputo’s definition (1.3). This

work has been presented here in detail to illustrate the beauty of using fractional calculus in the
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context of sliding mode control.

The main objective of this class of controllers is to force the system states to stay in a

predefinedmanifold (sliding surface) andmaintain it there in spite of the presence of uncertainties

in the system. Therefore, the sliding mode based design consists of two phases (i) Reaching

Phase in which the system states are driven from the initial state to reach the sliding manifold

in finite time and (ii) Sliding Phase in which the closed-loop system is induced into sliding

motion. However, when the system reaches sliding phase, the consideration of robustness

and order reduction come into picture which are the most important aspects of the sliding

mode based design. It is worth noting that during the reaching phase, there is no guarantee

of robustness [198] [200]. In order to address robustness issue throughout the entire space,

Integral Sliding Mode Control (ISMC) has been proposed in the SMC literature but its design

methodology has been based on full order of the system. However, the system exhibits a

reduced-order dynamics after it has reached the sliding surface i.e. the system order gets

reduced by one due to the introduction of the sliding variable, s such that s = 0 in finite time.

As a consequence, the simplicity and flexibility of the design procedure which is provided by

reduced-order subsystem in classical SMC is lost in ISMC. The motivation behind this work is

to preserve the robustness in the system by eliminating the reaching phase such that the system

remains on the sliding manifold from the very initial time.

The main aim of the present work is to address robustness from the very initial time and

also maintain the design methodology based on order reduction for uncertain fractional-order

systems. In order to achieve this, two different methodologies have been adopted:

• An integer reaching law approach is used proposing a sliding surface which eliminates

the reaching phase and also, its stability is proved.

• Secondly, a sliding surface using fractional reaching law approach is proposed followed

by the same procedure as in the case of integer reaching law approach.

Using the theory of fractional calculus, sliding mode control law design using two ap-

proaches are presented here which are integer reaching law approach and fractional reaching

law approach.
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4.2 Motivation

Classical sliding mode control scheme does not give guarantee of robustness in the reaching

phase and only handles uncertainty in the sliding phase of the design. Integral sliding mode

control exists in the literature which ensures robustness throughout the evolution of the system

states [199] [200] [202]. However, the beauty of reduced-order design methodology is lost in

integral sliding mode control. So, a fractional-order sliding mode control approach has been

proposed which is free from any reaching phase and also preserves the reduced-order design

methodology.

4.3 Fractional-Order Sliding Mode Control

Consider a controllable commensurate fractional-order linear time-invariant system [53] [54]

[60] [201] [190] [81],

c
t0Dα

t x̄(t) = Āx̄(t) + B̄
(
u(t) + d(t)

)
(4.1)

where, x̄(·) ∈ Rn are pseudo states , Ā ∈ Rn×n is the system matrix, B̄ ∈ Rn×m is the input

matrix, u(·) ∈ Rm is the control input, d(·) ∈ Rm is the disturbance which is assumed to be

bounded. It is important to mention here that for fractional-order systems, the knowledge of the

initial state, x(t0) is not sufficient to determine the future state of the system. So, the physical

variables do not strictly represent the actual states of the fractional-order system. Therefore, the

terminology ofPseudo States is coined to represent these physical variables [62] [117] [118] [64].

The same philosophy is followed throughout this presentation.

There always exists an invertible matrix T ∈ Rn×n such that using the linear transformation

z(t) = T x̄(t), (4.1) can be transformed into the regular form,
c
t0Dα

t z1(t) = A11z1(t) + A12z2(t)
c
t0Dα

t z2(t) = A21z1(t) + A22z2(t) + B2(u(t) + d(t))
(4.2)

where,


z1(t)

z2(t)


= z(t), z1(·) ∈ Rn−m, z2(·) ∈ Rm.

As the pair ( Ā, B̄) is assumed controllable, the pair (A11, A12) will also be controllable.

The above system of equations can be represented as,

c
t0Dα

t z(t) = Az(t) + B(u(t) + d(t)) (4.3)
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where, A =



A11 A12

A21 A22


, B =



0

B2


.

Assumption 4.1 For a non-smooth controller, the notions of existence and uniqueness of solu-

tions of the system are usually defined in the Filippov’s sense [7] [127] i.e., considering x as

the pseudo states of the entire system c
t0Dα

t x(t) = f (x(t), d(t)), α > 0, disturbance d ∈ Rm and

assuming f : Rn × Rm → Rn to be locally bounded, then the solutions are defined using the

differential inclusion,
c
t0Dα

t x(t) ∈
⋂
δ>0

⋂
µN=0

cl(co(ζ (Bδ (x) \ N )))

where, cl and co denote the closure and the convex hull respectively. Bδ (x) is the unit ball and

the sets N are all sets of zero Lebesgue Measure.

The sliding surface has been designed using fractional reaching law and integer reaching law

in [7] [197]. Using integer reaching law, the sliding surface for (4.2) is,

s(z, t) = t0 I1−αt (c1z1(t) + z2(t)) (4.4)

where, s : Rn × (t0,∞) → R, c1 ∈ R1×(n−1) and for,

u(t) = B−12 (v − c1{(A11 − A12c1)z1(t)} + A12t0 I1−αt s − A21z1(t) − A22z2(t))

where, v = −k1sign(s), it has been proved in [7] that for s to be zero in finite time, k1 > |B2 | |d |.

In case of fractional reaching law,

s(z, t) = c1z1(t) + z2(t) (4.5)

Using fractional-order derivative of s in (4.5), (4.2) becomes,

c
t0Dα

t z1(t) = (A11 − A12c1)z1(t) + A12s

c
t0Dα

t s = c1c
t0Dα

t z1(t) + c
t0Dα

t z2(t)

= c1{(A11 − A12c1)z1(t) + A12s} + A21z1(t) + A22z2(t) + B2u(t) + B2d

Here, the control u(t) is chosen as,

u(t) = B−12 (v − c1(A11 − A12c1)z1(t) + A12s − A21z1(t) − A22z2(t))
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where, v = −k1sign(s). Using the control, the following closed-loop system results,

c
t0Dα

t z1(t) = (A11 − A12c1)z1(t) + A12s,

c
t0Dα

t s = −k1sign(s) + B2d
(4.6)

Here, some stability concepts need to be discussed. The Lyapunov’s Theory for general

nonlinear systems has also been extended for fractional-order systems in the literature [101]

[103] [104].

4.4 Extension of Lyapunov’s Theory to Fractional-Order Sys-

tems

Using Caputo definition, an n−dimensional fractional-order system can be defined as,

c
t0Dα

t x(t) = f (x, t); ∀t ≥ t0 (4.7)

where, α ∈ (0, 1) and f (x, t) is locally bounded in x and piecewise continuous in t for all t ≥ t0

and x ∈ D, whereD ⊂ Rn is a domain which contains the origin x = 0. There are various efforts

for the stability analysis of fractional-order systems in the literature [107]. For stability analysis

of system (4.7), a fractional-order extension of the Lyapunov’s direct method was proposed

in [101] which is based on the following definition:

Definition 4.2 A continuous function γ : [0, t) → [0,∞) is a Class-K Function if it is strictly

increasing and γ(0) = 0.

Theorem 4.3 Let x = 0 be an equilibrium point for the non-autonomous fractional-order

system i.e., f (x, t) = 0,∀t ≥ t0. If there exists a Lyapunov function V (t, x(t)) : [t0,∞) × D →

R and a Class-K function γi (i = 1, 2, 3) such that, γ1(| |x | |) ≤ V (t, x(t)) ≤ γ2(| |x | |) and
c
t0Dα

t V (t, x(t)) ≤ −γ3(| |x | |) where, α ∈ (0, 1) then, the system (4.7) is asymptotically stable.

Theorem 4.4 [100] Let x ∈ Rn be a continuously differentiable vector-valued function. Then,

for any time instant t ≥ t0 and ∀α ∈ (0, 1),

1
2

c
t0Dα

t xᵀ (t)x(t) ≤ xᵀ (t)c
t0Dα

t x(t). (4.8)
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The above results will be used in the later sections for the Lyapunov stability analysis of

fractional-order systems with the proposed control law [110] [111] [112]. Since this result was

derived using Caputo derivatives, the same definition will be used throughout this section unless

mentioned otherwise. Here, it is important to consider the following theorem:

Theorem 4.5 The sliding surface s in (4.5) becomes zero in finite time if k1 > |B2 | |d |.

Proof The Lyapunov function is selected as,

V =
1
2

s2

Then,
c
t0Dα

t V =
1
2

c
t0Dα

t s2

Using (4.8),

c
t0Dα

t V ≤ sc
t0Dα

t s

= s(−k1sign(s) + B2d)

≤ −k1 |s | + |s | |B2d |

= −|s |(k1 − |B2d |)

= −(2V )
1
2 (k1 − |B2d |)

≤ −η(2V )
1
2

where, η = k1 − |B2 | |d | > 0.

Using the above inequality, s = 0 is obtained in finite time [7] which can be derived as

follows: Putting t0 = 0 in (4.6),

c
0Dα

t s = −k1sign(s) + B2d

Taking fractional-order integral of order α on both sides,

0Iαt
c
0Dα

t s = k1 0Iαt sign(s) + B2 0Iαt d (4.9)

Since,

0Iαt
c
0Dα

t s = s(t) − c
0Dα−1

t s(0)
tα−1

Γ(α)

and,

0Iαt c = c
tα

Γ(α + 1)
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Eq. (4.9) becomes after finite time t = T ,

s(T ) − c
0Dα−1

t s(0)
tα−1

Γ(α)
= −k1sgn(s(0))

Tα

Γ(α + 1)
+ B2 0Iαt d

Multiplying with sign(s(0)) and using s(T ) = 0,

−c
0Dα−1

t s(0)sign(s(0))
Tα−1

Γ(α)
= −k1

Tα

Γ(α + 1)
+ B2 0Iαt (sign(s(0))d)

Using the inequality,

0Iαt (sign(s(0))d) ≤ t0 Iαt |d | ≤ 0Iαt d0 = d0
Tα

Γ(α + 1)

Eq. (4.4) becomes,

−c
0Dα−1

t s(0)sign(s(0))
Tα−1

Γ(α)
≤ −(k1 − B2d0)

Tα

Γ(α + 1)

which further results into,

T ≤
Γ(α + 1)c

0Dα−1
t s(0)sign(s(0))

Γ(α)(k1 − B2d0)
(4.10)

which is always finite.

Remark 1.1 It is clear that sliding mode has been obtained after a finite time t ≥ T where,

T is such that s(z,T ) = 0. Further, a modified sliding surface is proposed in which sliding

starts from t ≥ t0 such that the reduced-order design methodology of the classical approach is

preserved.

4.5 Main Results

Consider the system in the same form as in Eq. (4.2). The sliding surface designed for integer

reaching law is,

s = t0 I1−αt

{(
c1z1(t) + z2(t)

)
−

(
c1z1(t0) + z2(t0)

)
e−λ(t−t0)

}

where λ > 0 and c1 ∈ R1×n−1 are the design parameters. Note that the sliding variable, s = 0 at

the initial time t = t0. Then, the system (4.2) is transformed as,

c
t0Dα

t z1(t) = (A11 − A12c1)z1(t) + A12
{

c
t0D1−α

t s +
(
c1z1(t0) + z2(t0)

)
e−λ(t−t0)

}
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ṡ = c
t0Dα

t

{(
c1z1(t) + z2(t)

)
−

(
c1z1(t0) + z2(t0)

)
e−λ(t−t0)

}

= c1
[
(A11 − A12c1)z1(t) + A12

{
c
t0D1−α

t s +
(
c1z1(t0) + z2(t0)

)
e−λ(t−t0)

}]

+ A21z1(t) + A22z1(t) + B2u(t) + B2 f − (−λ)α
(
c1z1(t0) + z2(t0)

)
e−λ(t−t0)

The control input is designed as,

u(t) = B−12
[
v − c1

{
(A11 − A12c1)z1(t) + A12

×
{

c
t0D1−α

t s + (c1z1(t0) + z2(t0))e−λ(t−t0)
}}]
− B−12

(
A21z1(t) + A22z1(t)

) (4.11)

where, v = −k1sign(s). Hence,

ṡ = −k1sign(s) + B2d + Ξ

where, Ξ = B−12 [(−λ)α ((c1z1(t0) + z2(t0))e−λ(t−t0)].

Here, it is important to note that |Ξ| always remains bounded for any initial condition z(t0).

It is proved that once the trajectories start from the sliding surface s at t = t0, they remain on it

and then, asymptotically converge to z1(t) = z2(t) = 0.

Lemma 4.6 If k1 > |B2d | + |Ξ|, then the trajectories are maintained on the sliding surface

s = 0, ∀t ≥ t0.

Proof Consider the Lyapunov function,

V =
1
2

s2

By taking the time derivative of the Lyapunov function along closed-loop subsystem ṡ =

−k1sign(s) + B2d + Ξ,

V̇ = sṡ = s(− k1 sign(s) + B2d + Ξ)

= − k1 |s | + s B2 d + sΞ

≤ − k1 |s | + |s | |B2 d | + |s | |Ξ|

= −(2V )
1
2 (k1 − |B2 d | − |Ξ|)

≤ −η(2V )
1
2

where, η = k1 − |B2d | − Ξ.

When η = k1 − |B2d | − Ξ > 0, Lyapunov stability theory (V = 0 and V̇ ≤ 0) ⇒ V =

0,∀t ≥ t0 implies s = 0, ∀t ≥ t0.
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This completes the proof.

The expression for the finite time, T can be obtained as:

dV
dt
≤ −η

√
2V 1/2∫ T

0
dt ≤ −

∫ 0

V0

dV

η
√
2(V )1/2

T ≤ −
∫ 0

V0

dV

η
√
2(V )1/2

=

√
2V (0)
η

Lemma 4.7 If the matrix (A11 − A12c1) is negative definite, then the closed-loop system is

asymptotically stable.

Proof Take the Lyapunov function,

V =
1
2

z>1 (t)z1(t)

Then,
c
t0Dα

t V =
1
2

c
t0Dα

t z>1 (t)z1(t)

Using (4.8),

c
t0Dα

t V ≤ z>1 (t)c
t0Dα

t z1(t)

≤ z>1 (t)(A11 − A12c1)z1(t) + z>1 (t) A12
{

c
t0D1−α

t s +
(
c1z1(t0) + z2(t0)

)
e−λ(t−t0)

}

As s = 0 from time t = t0, the term (c1z1(t0) + z2(t0))e−λ(t−t0) → 0 as t → ∞, z1(t). If the

matrix (A11 − A12c1) is negative definite, the system is asymptotically stable.

This completes the proof.

Remark 1.2 It is important to note that if we take

v = −λ |s |
1
2 sign(s) − α

∫ t

t0
sign(s)dτ

where α = 1.1∆ and λ = 1.5
√
∆ such that B2 |ḋ(t) | ≤ ∆, where ∆ is some a priori known

constant, then the proposed control (4.11) generates continuous signal and it also proves better

for the chattering minimization problem, which is commonly encountered in the practical

implementation of discontinuous control laws. The controller suggested above is known as
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Super-Twisting in the literature. Again, the trajectories once start from the sliding surface, will

remain there for the subsequent time (for more detailed explanation, see [41] and the references

cited therein).

Now, using fractional reaching law approach, the sliding surface is designed as,

s = c1z1(t) + z2(t) − (c1z1(t0) + z2(t0))e−λ(t−t0) (4.12)

Note that s = 0 when t = t0. Using (4.12), (4.2) becomes,

c
t0Dα

t z1(t) = (A11 − A12c1)z1(t) + A12
{
s + (c1z1(t0) + z2(t0))e−λ(t−t0)

}

c
t0Dα

t s = c
t0Dα

t z1(t) + c
t0Dα

t z2(t) − (c1z1(t0) + z2(t0)) c
t0Dα

t (e−λ(t−t0))

= c1
[
(A11 − A12c1)z1(t) + A12

{
s + (c1z1(t0) + z2(t0))e−λ(t−t0)

}]

+ A21z1(t) + A22z2(t) + B2(u(t) + d(t))

− (−λ)α ((c1z1(t0) + z2(t0))e−λ(t−t0)

(4.13)

The control input is designed as,

u(t) = B−12
[
v − c1

{
(A11 − A12c1)z1(t) + A12 ×

(
s + (c1z1(t0) + z2(t0))e−λ(t−t0)

)}]

− B−12
(
A21z1(t) + A22z2(t)

) (4.14)

where, v = −k1sign(s). From (4.13) and (4.14),

c
t0Dα

t s = −k1sign(s) + B2d + Ξ

where, Ξ = B−12 (−λ)α ((c1z1(t0) + z2(t0))e−λ(t−t0).

Again, the trajectories remain on the sliding surface s = 0 from the very initial time t = t0,

provided,

k1 > |B2 | |d | + |Ξ|

Here, the logic of the associated proof remains the same as previously in the case of Lemma

4.6. The related condition for the asymptotic convergence of z(t) at the equilibrium point also

remains the same as in Lemma 4.7. This can be shown as follows:

Consider the Lyapunov function,

V =
1
2

z>1 (t)z1(t)

Taking the fractional-order derivative,

c
t0Dα

t V ≤ z>1 (t)c
t0Dα

t z1(t)

≤ z>1 (t)(A11 − A12c1)z1(t) + z>1 (t)A12
{
s + (c1z1(t0) + z2(t0))e−λ(t−t0)

}
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Figure 4.1: Fractional Inverted Pendulum [235]

As s = 0 from time t = t0, (c1z1(t0) + z2(t0))e−λ(t−t0) → 0 as t → ∞. Further, z1(t) and hence

the system is asymptotically stable if (A11 − A12c1) is negative definite.

4.6 Illustrative Example

A commensurate fractional-order uncertain system is considered to illustrate the theoretical

results obtained in the paper. The example of a fractional inverted pendulum system is taken as

shown in Fig. 4.1. In this system, an inverted pendulum is mounted on the top of a cart such that

the pendulum is attached to an extension immersed in a viscoelastic solution [235]. The cart is

able to move back and forth. The whole system can be represented by,

ẍ =
1

(mc + mp)

(
1
2

mpl (θ̈cosθ − (θ̇)2sinθ) − f ẋ + F
)

(4.15)

θ̈ =
1

(J + 1
4mpl2)

(
1
2

mpl ( ẍcosθ + gsinθ) + τ
)

(4.16)

dατ
dtα
= −ωα

l τ − kωα
l θ̇ − k

(
ωl

ωh

)α d (α+1)θ

dt (α+1) (4.17)
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where, x is the position of the cart, θ is the angle of deflection of the pendulum, mc is the mass

of the cart, mp is the mass of the pendulum, f is the friction coefficient of the cart, τ is the

applied torque, k is the damping coefficient of the viscoelastic solution, α is the derivation order

of the damper, ωl andωh are the lower and higher frequencies of the bandwidth of the fractional

derivative. The state vector is chosen as,

X =
[
x

d0.5x
dt0.5

dx
dt

d1.5x
dt1.5

θ
d0.5θ

dt0.5
dθ
dt

d1.5θ

dt1.5
τ

]T

The above equations can be represented in pseudo state-space form having commensurate order

0.5 which can be further linearized about the equilibrium point of the system resulting into:

d0.5X (t)
dt0.5

= AX (t) + B(u(t) + d(t)) (4.18)

where,

A = α



0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 a43 0 a45 0 0 0 a49

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 a83 0 a85 0 0 0 a89

0 0 0 0 0 0 a97 a98 a99



B = α
[
0 0 0 0.116 0 0 0 0.338 0

]T

where, α = 1
4J (mc+mp )+mcmp l2 , a43 = −4 f J − f mpl2, a45 = m2

pl2g, a49 = 2mpl, a83 = −2 f mpl,

a85 = 2mpgl (mc + mp), a89 = 4(mc + mp), a97 = −kα(ωl )0.5, a98 = −kα( ωl

ωh
)0.5, a99 =

−α(ω)0.5, b4 = J + mpl2, b8 = 2mpl. Here, J is the moment of inertia of the pendulum and l

is its length. The values taken are mp = 0.53 kg, mc = 3.2 kg, l = 0.36 m, f = 6.2 kg.sec−1, J =

0.065 kg.m2, k = 0.1 N.m.sec.αrad−1, ωl = 0.1 rad.sec.−1, ωh = 10 rad.sec.−1, g = 9.81 m.sec.−2,
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d(t) = 0.1 sin(t). The sliding surface is chosen as,

s(t) = ([c1 c2 c3 c3 c4 c5 c6 c7 c8 1] X (t))

− ([c1 c2 c3 c3 c4 c5 c6 c7 c8 1] X0)e−λ(t−t0)

where, c1 to c8 are the gain values selected such that the reduced-order dynamics is stable. The

controller parameter k1 has to be selected such that k1 > |B2d | + |Ξ|. We know that |B2d | = 0.1

and |Ξ| is also small. Hence, we choose k1 = 10 and λ = 0.4. The evolution of states, sliding

surface and control input with time are shown in Figs. 4.1, 4.2 and 4.3 respectively.

As obtained in the simulation results, stabilization of the state trajectories about the origin is

obtained in finite time. At the same time, the states remain on the sliding surface from the

starting time t = 0 due to the designed sliding surface. The exponential nature of the control

action can be seen during the finite time in which the state transients can be observed. After

finite time, the discontinuous sliding mode control action maintains the states X = 0 for all time.
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Figure 4.2: Evolution of States (x1 to x9) with time

4.7 Summary

The work presented in the chapter proposes a new sliding mode control based controller for

uncertain fractional-order systems. Two different control schemes, one based on integer reaching

law and the other on fractional reaching law have been used in order to maintain the trajectories

on the sliding surface from the very initial time preserving robustness. The simplicity of the

technique lies in the control design being based on the reduced order subsystem as in the
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Figure 4.3: Evolution of Sliding Surface (s) with time
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Figure 4.4: Evolution of Control Input (u) with time

case of classical sliding mode control. Robustness is ensured throughout the evolution of the

trajectories form the very initial time. The effectiveness of the proposed approach is verified

through numerical simulation for the case of a fractional inverted pendulum system.
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