
Chapter 1

Introduction

The occurrence of non-differentiability in the modeling and control of various phenomena is

well recognized. It plays an important role in areas like functional analysis, control theory,

differential equations, optimization, mechanics, etc. Consider a simple example of finding the

maxima or minima of a function. The general approach would be to find the derivative of

the function and use the idea that it must be zero at the maximum or minimum points of the

function. But, what if the function itself is non-differentiable? There are a number of problems

in control theory where one or the other associated function needs to be differentiated for the

implementation of the control law. Generally, the functions are assumed to be differentiable in

the analysis and design related to such problems. There are various phenomena related to the

issue of non-differentiability [32]. These issues are very common and are generally ignored in

the design aspects. In order to deal with such important issues, there is a need of a mathematical

insight into such class of problems at the fundamental level. Another important issue is related

with that of uncertainty in the modeling of physical systems. The control must be designed

to guarantee robustness to the uncertainties. One such control design is discussed in this text

in the last part. This chapter gives a brief overview of Fractional Calculus which has been

used throughout the work. The issue of non-differentiability has been illustrated by considering

tracking problem in nonlinear systems and the design of differentiators in further chapters.
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1.1 Literature Review

The issue of non-differentiability has been studied in some remarkable contributions in control

theory. One of these work has been discussed in [32]. It talks of the analysis of differential

equations in the presence of non-differentiability. This is also referred to as Non-smooth

Analysis. Certain Banach spaces have smooth norms which can be used in problems arising

due to non-differentiability. The notions of proximal subgradients has been discussed in [32].

The theory of generalized gradients is another approach in this direction which also operates

in Banach spaces. Value function analysis for constrained optimization has also been studied.

Another direction to such type of analysis is based on directional subderivates. In this work,

fractional-order operators have been used throughout as a tool to overcome the issues arising

due to non-differentiability and uncertainty in control problems.

The first problem involving the non-differentiability issue which has been considered in

this text is that of the tracking problem. It is a general problem in control theory which can

be reduced to an equivalent stabilization problem as discussed in [214]. The tracking problem

has been explored in various contexts in the literature. One of the earlier contributions can

be found in [58]. It has also been explored in the field of robotics. A sliding mode control

based approach is used in [214]. Passivity based scheme is presented for tracking problem of

flexible robot arms [215]. Attitude tracking of spacecrafts has been a major research area in the

context of tracking problems. In this direction, some significant contributions are [217] - [219].

Another notable contribution is [223]. In these applications, there are possibilities where a

sudden change in the desired reference functions may be required at some point of time. The

work presented in this chapter finds an important significance in such problems.

An observer-based controller is designed for output tracking of fractional-order positive

switched systems in [3]. The observer includes equivalent-input-disturbance andSmith predictor.

It is able to reject the disturbance. In [58], a function space analysis is used to find the optimal

input to track the output of the system in a fixed time to minimize the control energy required.

Signal transformation approach to track non-differentiable functions has been attempted by

some authors [228]. In [223], the technique of signal transformation is used to track triangular

function. This approach improves the overall performance of the closed-loop system. Necessary

and sufficient conditions for the stability of the control system are stated for tracking triangular

reference functions.
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In the previous approaches, the desired reference functions have been approximated by

piecewise continuous functions. However, it not possible to use this approximation to all class

of desired reference functions. This situation calls for a revisit of the tracking problem with

some sound mathematical framework. There exist continuous functions for which no first-

order derivatives are defined but they possess fractional-order derivatives of all orders less than

one [10]. This motivates further to have a look on the beauty of fractional calculus and how it

can be utilized in tracking problems where the reference function is not differentiable.

Sliding Mode Control (SMC) is one of the most efficient robust control techniques which

performs quite effectively in the presence of disturbances and uncertainties [121] - [126]. In this

control scheme, the system states are forced to remain on a predefined manifold called sliding

surface and maintained it there. Keeping the states on the sliding surface, they are driven to the

origin. Therefore, the sliding mode based control technique consists of two phases. The first one

is the Reaching Phase, where the system states are driven from their initial values to reach the

sliding manifold in finite time. Then, the states undergo the Sliding Phasewhere they are further

driven to the origin. On the sliding surface, the order of the system dynamics gets reduced, and

robustness is obtained. Recently, the theory has been used for control and observation in several

problems [7] [28] [41] [55] [122].

In the context of tracking problems, one of the earlier contribution is [214] which discusses

the design of sliding mode control law for robotic manipulators. Some other significant reports

are [225] [226] [215] [229]. Using sliding mode techniques for attitude control of rigid body

is an important class of tracking problems. Some significant work in this direction are [217]

- [219]. Another field of application is described in [220]. However, all of the above mentioned

approaches discuss the tracking problems in the integer-order framework. In the above work, it

is often required to calculate the derivative of the error function e(t) which itself is the difference

between the state x(t) of the system and the desired reference function xr (t). Ultimately, the

information of time-derivative of the reference function ẋr (t) is needed for the techniques to

work. So, the previous approaches restrict the class of reference functions to be tracked.

Another problem involving non-differentiability is that of designing differentiator. There

are numerous efforts in this directionwhich can be found in the literature. One such approach uses

slidingmode control strategy for the estimation of the required derivative [137]. It uses the Super-

Twisting Algorithm (STA) which is a second-order sliding mode control scheme. Being one of

the most popular higher-order sliding mode based technique, it only requires the information of

3



the position variable of the system for its convergence. At the same time, it offers robustness to

the uncertainty as an inherent characteristics of sliding mode control. However, the conventional

explicit discretization of STA suffers from chattering [150]. Full Euler discretization schemes of

the STA are proposed in [148], which achieve only standard first-order accuracy of SlidingMode

Control (SMC). In this discussion, implicit Euler discretization has been used for the integer-

order dynamics of the estimator. For the fractional-order dynamics, Fractional-Adams Moulton

(FAM)method has been used which is suitable for fractional-order equations with discontinuous

right-hand sides [156]. Other approach to suppress chattering is given in [119]. Discretization

is the key step to implementation of control laws. A detailed discussion of the significance of

discrete-time fractional-order differentiators in physical systems is presented in [142]. There

are various methods for discretizing fractional-order operators [147] [174]. They are based on

several methods including continued fraction expansion, radial basis function method, Tustin

method, Taylor series, Newton series and least squares method [147] [144] [146]. Differentiator

design for signals with error is considered in [143].

The existing sliding mode based techniques assume a bound on the second derivative of the

signal for determining the first-order derivative. However, not all the practical signals are second-

order differentiable which may be the case with commonly used circuits and systems. This

imposes a limitation on the class of signals that can be differentiated. Fractional-order operators

can be used to overcome this restriction [10] [28] [201] [173] [166] [167] [168] [170] [192].

In this work, the signal is assumed to have only Hölder continuous first-order derivatives. So,

this technique addresses a large class of signals to be differentiated. In this paper, Fractional

Adams-Moulton (FAM) method has been mainly used as the numerical scheme which is quite

effective in dealing with chattering in the case of fractional-order differential equations with

discontinuous right hand sides [155] [156]. The Riemann-Liouville definition of fractional-

order derivatives has been used throughout the work [56]. In this definition, the signal does not

have to be integer-order differentiated for its fractional-order derivative to be defined.

The sliding mode control schemes are robust with respect to the uncertainties and distur-

bances. The main objective of this class of controllers is to force the system states to stay in

a predefined manifold (sliding surface) and maintain it there in spite of the uncertainties in the

system [120]. Therefore, the sliding mode based design consists of two phases (i) Reaching

Phase in which the system states are driven from the initial state to reach the sliding manifold in

finite time and (ii) Sliding Phase in which the closed-loop system is induced into sliding motion.
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However, when the system states reach sliding phase, the consideration of robustness and order

reduction come into picture which are the most important aspects of the sliding mode based de-

sign. It is worth noting that during the reaching phase, there is no guarantee of robustness [198].

In order to address robustness issue throughout the entire space, Integral Sliding Mode Control

(ISMC) has been proposed in the SMC literature [198] but its design methodology is based on

full order of the system. However, the system exhibits a reduced-order dynamics after it has

reached the sliding surface, that is, the system order gets reduced by one due to the introduction

of the sliding variable, s such that s = 0 in finite time. As a consequence, the simplicity

and flexibility of the design procedure which are provided by reduced-order subsystem based

design in classical SMC are lost in ISMC. The motivation behind this work is to preserve the

robustness in the system by eliminating the reaching phase such that the system remains on the

sliding manifold from the very initial time. The robustness is guaranteed only in the sliding

phase of design. In this direction, a fractional-order system is considered in the later part of this

text [195] [196]. The effectiveness of the approach is shown for such class of systems by taking

the example of a fractional inverted pendulum [235].

In control theory, it has been reported in the literature that the introduction of controllers

involving integrals and derivatives of arbitrary orders results in higher performance as compared

to the classical controllers with integer order operators [50] [8] [22] [172]. It is observed

that functions which do not possess the first-order derivative, may possess a fractional-order

derivative of order α < 1 provided the function is integrable [10]. Therefore, the above

limitations of classical control strategies can be overcome by using fractional-order rate of

change of the reference function Dαxr (t) in the control law. Various classes of fractional-order

controllers can be found in [8].

The tracking problem for a reference function xr can be considered in two different ways.

In one way, a reference generator system can be considered, and it is desired to obtain some

reference function xr . In the other way, a particular reference function is desired where the

reference generator system can itself be chosen accordingly. Possible reference generator systems

can be networks based on fractional-order elements like supercapacitors and fractional-order

inductors or spring-dashpot fractal networks [89] [91] [95]. For both the two situations, the

corresponding tracking problems can be formulated and the conditions required to achieve the

desired tracking can be derived. This is illustrated by taking an example of switch-controlled

RL circuit and also for a general class of nonlinear systems.
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1.2 The Non-Differentiability Constraints in Control

Nonlinear systems have the characteristic feature of several interesting phenomena which are

inherent to them. These specialities include finite escape time, multiple equilibrium points,

chaos, etc. These systems are often desired to behave in a pre-defined fashion in the presence

of undesired disturbances and uncertainties. According to the objective, the control problems

may be broadly classified into Tracking and Stabilization problems. Several control design

techniques have been proposed in the literature to achieve these objectives. However, many of

the techniques consider a fundamental assumption on the differentiability of the solutions or the

desired trajectories of the system. On the contrary, there is a vast possibility for the functions to

be non-differentiable. In order to address the control problems involving non-differentiability

issues, there is a demand to re-look into such class of problems with a fundamental viewpoint.

For the integer-order derivatives to be defined, it requires for the function to be integer-

order differentiable. However, this seriously restricts the class of functions to which the notion

of integer-order derivatives may be applicable. Further, the control techniques relying on the

manipulation of the integer-order derivatives of the variables cannot be defined if the variables are

not differentiable in the integer-order sense. This limitation comes from the non-differentiability

of the associated functions. Such problems can be tackled by allowing the order of differentiation

to take fractional values. Arbitrary-order derivatives and integrals constitute the amazing world

of FractionalCalculus. Many real-world phenomena are described in amore justifiedway by their

fractional-order models as compared to integer-order models [47] [48] [49]. Fractional-order

controllers have been reported to perform better as compared to their integer-order counterparts.

The problem of non-differentiability is encountered in several control problems [227].

Here, non-differentiability is understood in the integer-order sense throughout [34]. Some of

the problems has been considered in this work in which the issue is resolved by using fractional-

order derivatives. The technique used is based on the work [10]. It has been mentioned in that

paper that functions which do not possess the first-order derivatives have well-defined fractional-

order derivatives of all orders less than 1. This important result is utilized throughout the work

presented here. The use of fractional-order derivatives has been made in the generation and

manipulation of control laws instead of the integer-order derivatives [33]. This results into a

larger class of functions which can be addressed using the scheme presented. Such functions

need only to satisfy the weaker condition of Hölder continuity.
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This chapter discusses the importance of fractional-order systems and their fundamental

characterization at an introductory level. The physical interpretation of fractional-order deriva-

tives and integrals have been explored. Some physical phenomena have been considered which

justify their fractional-order dynamic behaviour. The chapter gives an overall visualization of

fractional-order systems which is very important for control design and implementation aspects

of these systems.

1.3 The Fractional Calculus

Better results can be obtained by generalizing the order of the operators commonly used in

integer-order calculus [6] [9] [19] [20] [27] [36]. Operations with the resulting fractional-order

derivatives and integrals constitute Fractional Calculus [15] [26]. It is an ancient branch of

mathematics which has developed in parallel with the classical calculus [11] - [18]. It has

received wide research interests in recent years [51] [52] [115] [116] [232]. Naturally, a number

of definitions of the fractional-order operators have been proposed in the literature. However,

three of them are widely used. These are Riemann-Liouville definition, Caputo definition and

Grunwald-Letnikov definition. There is only one definition of fractional-order integral i.e.

Riemann-Liouville definition of fractional-order integral. The fractional-order derivative has

different expressions in all the three definitions. All of them are presented in this section. Each

one includes the Gamma Function in its definition. The Gamma Function plays an important

role in fractional calculus. It is the generalized form of the commonly used exponential function

in integer-order calculus [160] [51] [162] [163] [164].

The idea of fractional calculus was discussed for the first time over a letter from Leib-

nitz to L’Hôpital in 1695. Fractional differential equations have been in use to model physical

phenomena in the last couple of decades [43]. The history of fractional-order calculus can

be found in [14] [15] and the references cited therein. The state space description is given

in [62] [63]. In [2], the authors emphasized on the recent interest of the research commu-

nity in fractional-order systems. New paths have been paved in the fractional calculus theory

in [6]. Due to its wide advantages, in recent years, the study of fractional-order controllers has

witnessed considerable interest [7] [24] [29] [35] [160] [39] [113] [164]. The discussions on

stability of fractional-order systems can be found in [101] - [106]. Several applications of frac-

tional calculus in various fields have been given in [221] [30] [31] and the references cited therein.
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Throughout this work, Riemann-Liouville and Caputo definitions are used [37]. One of

the advantages with Riemann-Liouville definition is that it does not restrict the class of the

functions to which it can be applied. As it can be observed in the expressions of both the

definitions, a mathematical comparison can be made. In the Caputo definition, the function to

be operated is assumed to be continuously differentiable. Now, it can be easily concluded that

this definition can be applied only to smooth functions. This is a serious mathematical constraint

with this definition. On the other hand, the Riemann-Liouville definition of fractional-order

derivative operates on a function by first integrating it and then differentiating. So, a simple

weaker assumption of integrability applies to the function which is operated upon. However, the

initial conditions involved with this definition take values in terms of the fractional-operators

while in case of Caputo definition, the initial conditions have the same form as that of the

conventional integer-order differential equations. For uniqueness of the solutions of differential

equations, one needs to specify the initial conditions. These initial conditions must be such that

they may be related or interpreted in terms of some recognized notions. For the fractional-order

differential equations involving Caputo operator, the initial conditions are the same as that in

the case of integer-order differential equations. This is why Caputo definition is more preferred

in applications. On the other hand, the solution of fractional-order differential equation with

Riemann-Liouville operator involves initial conditions which are in terms of those operators

itself. There is still no concrete interpretation of fractional-order operators existing in the

literature though there are few approaches to the same which will be discussed in later section.

So, the Riemann-Liouville definition is less preferred over the Caputo definition. However,

observing themathematical constraints with the Caputo definition, Riemann-Liouville definition

has been used in this context throughout. A discussion on the initial conditions aspect of

fractional-order systems is done in [108]. The interpretation of initial conditions involving R-L

fractional-order operators can be found in [97]. An initial-value problem using R-L definition

is given in [99].

The beauty of fractional calculus can make the solution of some challenging problems

possible for which the classical approach of integer-order calculus fails. Fractional calculus is a

generalization of integer-order calculus. It involves generalized expressions of derivatives and

integrals of non-integer order. Out of the several definitions of fractional-order derivatives, two

are the most commonly used which are Riemann-Liouville (R-L) and Caputo definitions [1]- [7]

8



At first, a brief derivation of the expression of fractional-order integral is given here. It comes

from the Cauchy’s formula for iterated integral which is derived as follows:

D−1 f (t) =
∫ t

0
f (x)dx

D−2 f (t) =
∫ t

0

∫ x

0
f (τ)dτdx

=⇒ D−2 f (t) =
∫ t

0

∫ t

τ
f (τ)dxdτ

=⇒ D−2 f (t) =
∫ t

0
(t − τ) f (τ)dτ

D−3 f (t) =
1
2

∫ t

0
(t − τ)2 f (τ)dτ

Continuing in the same manner, the Cauchy’s formula for iterated integral is obtained. In

this formula, it is observed that the multiple times integration of the function on the left-hand

side has been replaced by a single integral term on the right-hand side. This provides a way to

generalize the operation to an arbitrary number of times.

D−n f (t) =
∫ t

0
.....

∫ t

0
f (τ)dτ.....dτ =

1
(n − 1)!

∫ t

0
f (τ)(t − τ)n−1dτ, n ∈ N

The above expression is the Cauchy’s formula which is valid for natural numbers. It

includes the factorial operator. If it is generalized for arbitrary real values, the expression of

Riemann-Liouville definition of fractional-order integral is obtained in which the above factorial

operator is replacedwith the generalized Gamma function. TheGamma function is a generalized

form of the factorial operator. After substituting the Gamma function in place of the factorial

function, the expression for fractional-order integral is obtained. The commonly used definitions

in fractional calculus are discussed next.

Definition 1.1 The fractional-order integral of order α of the function f : (0,∞) → R with

respect to t > 0 and terminal value t0 > 0 is given by

t0 Iαt f (t) :=
1
Γ(α)

∫ t

t0

f (τ)
(t − τ)(1−α) dτ, (1.1)

where Γ : (0,∞) → R is the Euler’s Gamma function:

Γ(α) :=
∫ ∞

0
xα−1e−xdx

Definition 1.2 The R-L definition of the fractional-order derivative of order α is given by:

RL
t0 Dα

t f (t) :=
1

Γ(m − α)
dm

dtm

∫ t

t0

f (τ)
(t − τ)(α−m+1) dτ, (1.2)
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where m ∈ N such that m ≥ dαe, where dαe is the smallest integer greater than or equal to α

where 0 < α < 1.

Definition 1.3 The Caputo definition of the fractional-order derivative of order α of m times

continuously differentiable function f : (0,∞) → R or f ∈ Cm ((0,∞),R) is given by:

c
t0Dα

t f (t) :=
1

Γ(m − α)

∫ t

t0

f (m) (τ)
(t − τ)(α−m+1) dτ. (1.3)

A few important properties of fractional-order derivatives and integrals are as follows [21]:

• For α = n, where n is an integer, the operation c
t0Dα

t f (t) gives the same result as the

classical differentiation of integer order n.

• For α = 0, the operation c
t0Dα

t f (t) is the identity operation:

c
t0Dα

t f (t) = f (t). (1.4)

• Fractional differentiation is a linear operation:

c
t0Dα

t (a f (t) + bg(t)) = ac
t0Dα

t f (t) + c
t0Dα

t g(t). (1.5)

• The additive index law (semigroup property)

c
t0Dα

t
c
t0D β

t f (t) = c
t0D β

t
c
t0Dα

t f (t) = c
t0Dα+β

t f (t), (1.6)

holds for f (t) ∈ C1[0,T] for some T > 0 where, α, β ∈ R+ and α + β ≤ 1 [57].

Before using the fractional-order operators, proper understanding of their operations is very

essential. Visualization of a mathematical notion needs a clear interpretation of the operations

involved in terms of the previously established concepts or phenomena. In the field of fractional

calculus, there are a number of definitions which have been proposed by many researchers. Due

to the presence of a large number of varied definitions, it becomes obvious that one should know

the physical interpretations of the associated definitions [44] [45] [108] [98]. Having an idea of

the interpretations, the definitions can be applied to suitable problems to get the desired results.

The search for finding proper interpretations of fractional-order integrals and derivatives have

been quite long since their formulations. In this direction, a significant contribution is the work

presented in [40]. The fractional-order integral of order α,

t0 Iαt f (t) :=
1
Γ(α)

∫ t

t0

f (τ)
(t − τ)(1−α) dτ (1.7)
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Figure 1.1: Geometrical Interpretation of Fractional-Order Integral [40]

can also be expressed as

t0 Iαt f (t) :=
1
Γ(α)

∫ t

t0
f (τ)dgt (τ) (1.8)

where,

gt (τ) =
1

Γ(α + 1)
{tα − (t − τ)α} (1.9)

The homogeneous time-scale consists of equal intervals of flowing time. Apart from the

concept of classical homogeneous time scale, the fractional-order differentiation and integration

can be considered to operate in a non-homogeneous time scale or the Cosmic time scale [40]

which is composed of non-equal time intervals. The homogeneous time scale can be considered

as an ideal notion for the non-homogeneous time scale. The function gt (τ) has the scaling

property,

gt1 (τ1) = gkt (kτ) = kαgt (τ)

Consider a three-dimensional space with the axes (τ, gt, f ). The function gt (τ) is plotted

in the plane (τ, gt ) for 0 ≤ τ ≤ t. Along the obtained curve, a fence can be formed of

varying height f (τ). So, the top edge of the fence represents a line in three-dimensional space

(τ, gt (τ), f (τ)), 0 ≤ τ ≤ t. For the purpose of further illustrations, consider Fig. 1.1 used

here from [40]. The fence can be projected onto the plane (τ, f ). The area of this projection

corresponds to the integral,

I1 =

t∫
0

f (τ)dτ (1.10)
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while the same fence can be projected onto the plane (gt, f ), the area of which corresponds to

the integral (1.8) or (1.7). This projection on the plane (gt, f ) is the geometric interpretation

of the fractional-order integral (1.7) for fixed t. For gt (τ) = τ, both the projections overlap

each other showing that the classical definition of integral is a special case of the generalized

fractional-order integral.

1.4 The Regularization Approach

Consider the system of the following form

ẋ = f (x, u), x, f ∈ Rn, u(x) ∈ R (1.11)

u(x) =




u+ if s(x) > 0

u− if s(x) < 0
(1.12)

where the component of vector f , scalar functions u+, u− and s(x) are continuous and smooth,

and u+(x) , u−(x).

The regularization approach to find the solution of the discontinuous dynamic system has

very important physical interpretation [123]. It is assumed that the sliding mode occurs on the

sliding surface, s(x) = 0. The equation of motion is derived using the method of regularization.

Let the discontinuous control be implemented with some imperfections of unexpected nature,

control is assumed to take one of the two extreme values, u+ or u−, and the discontinuity points

are isolated in time. Since discontinuity points are isolated in time, the solution exists in the

conventional sense beyond the sliding surface. Further assume that the state velocity vector

f + = f1 = f (x, u+) and f − = f2 = f (x, u−) to be constant for some point x on the surface

s(x) = 0 within a short interval [t, t + ∆t]. Let the time interval ∆t consists of two sets of

intervals ∆t1 and ∆t2 such that ∆t = ∆t1 + ∆t2, where ∆t1 and ∆t2 is the amount of that time

when control of magnitude u+ and u− is active.

Mathematically, increment of the state vector in this interval ∆t is given by,

∆x = f1∆t1 + f2∆t2 (1.13)

and the average state velocity is given as,

ẋaverage =
∆x
∆t
=

f1∆t1 + f2∆t2
∆t1 + ∆t2

= f1
∆t1

∆t1 + ∆t2
+ f2

∆t2
∆t1 + ∆t2

= α f1 + (1 − α) f2 (1.14)
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where α = ∆t1
∆t is relative time for control to take value u+ and (1 − α) to take value u− and also

0 ≤ α < 1.

To get the velocity vector ẋ along the sliding surface we have to take limit ∆t → 0. Hence

sliding motion is represented as,

ẋ = α f1 + (1 − α) f2 (1.15)

One can also interpret Eqn.(1.15) as the velocity vector in the vicinity of a point on a discontin-

uous surface which is complemented by a minimal convex set, and the state velocity vector of

the sliding motion belongs to this set. Because the state trajectories during sliding mode are in

the sliding surface s = 0, the parameter α should be selected such that the state velocity vector

of the system (1.15) is in the tangential plane to the sliding surface. Mathematically one can

write

ṡ = ∇[s(x)]. ẋ = ∇[s(x)](α f1 + (1 − α) f2) = 0 (1.16)

where ∇[s(x)] =
[
∂s
∂x1
· · · ∂s

∂xn

]

The solution of above equation is given by

α =
∇(s). f2

∇(s).( f2 − f1)
(1.17)

Substituting the α from Eqn.(1.17) to (1.15), one can get motion in sliding mode as

ẋ = fsliding =
∇(s). f2

∇(s).( f2 − f1)
f1 −

∇(s). f1
∇(s).( f2 − f1)

f2 (1.18)

1.5 The Equivalent Control Method

Sliding mode occurs in the surface s(x) = 0, therefore, the function s and ṡ have different signs

in the vicinity of the surface and ṡ+ = ∇(s). f1 < 0, ṡ− = ∇(s). f2 > 0. Also one can easily check

that ṡ = ∇(s) fsliding = 0 for the trajectories of system (1.18) and show that they are confined to

the switching surface s(x) = 0.

The geometrical interpretation of the equivalent control method is described as follows. In

sliding mode control, our main aim is to design a control law so that the state trajectories are

confined to a sliding manifold in finite time. From a geometrical point of view, the equivalent

control method does the same job. It replace the discontinuous control on the intersection of the
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switching surface by a continuous one such that, the state velocity vector lies in the tangential

manifold. Mathematically, consider the system,

ẋ = f (x) + B(x)u x, f (x) ∈ Rn, B(x) ∈ R, u ∈ Rn (1.19)

u(x) is defined as,

u(x) =




u+ if s(x) > 0

u− if s(x) < 0
(1.20)

So,

ṡ =
∂s
∂x

ẋ = G(x) f (x) + G(x)B(x)uequivalent = 0 (1.21)

where G = ∂s
∂x . Assuming the matrix GB is nonsingular for any x, find the equivalent control

uequivalent as the solution of the Eqn.(1.21).

uequivalent = −G(x)B(x)−1G(x) f (x) (1.22)

and substituting uequivalent into (1.19) to yield the sliding mode equation s = 0 as,

ẋ = f (x) − G(x)B(x)−1B(x)G(x) f (x) (1.23)

The physical interpretation of the equivalent control method is as follows. For the occur-

rence of the ideal sliding mode it was assumed that the control changes at high (theoretically

infinite) frequency such that the state vector is oriented precisely along the intersection of dis-

continuity surfaces. In reality however, various imperfections make the state oscillate in some

vicinity of the intersection and control components are switched at finite frequency alternatively

taking the positive and negative values. These oscillations have high frequency as well as slow

components. All most all plants under control act as a low pass filter. Due to this low pass

filter characteristic high frequency component is filtered out, and its motion in sliding mode is

determined by the slow component. Practically it is reasonable to assume that the equivalent

control is close to the slow component of the real control, which can be derived by filtering out

the high-frequency components using a low-pass filter.

Mathematically, the output of a low-pass filter,

τ ż + z = u (1.24)
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tends to the equivalent control

lim
τ→0, ∆τ→0

z = uequivalent (1.25)

where τ, ∆ are the time constant of low pass filter and width of the manifold respectively.

To eliminate the high-frequency component of the control in sliding mode, the frequency

should be much higher than 1
τ , or

1
f << τ, hence, ∆ << τ. Finally, the time constant of the

low-pass filter should be made to tend to zero because the filter should not distort the slow

component of the control.

1.6 Motivation

Classical control design principles often require the information of the derivative of one function

or the other. The function can be the reference function which is to be tracked of the any signal

which is to be differentiated. Generally, integer-order derivative is used to solve these problems.

However, this operator requires the function to be differentiable for its application. Physical

systems possess a wide variety of signals. Not all of the associated functions are necessarily

differentiable. In such a scenario, there is a strong need for a more generalized operator which

relaxes the condition of differentiability and considers a large class of functions. Fractional-order

derivatives can be opted to serve the purpose.

Finite-time tracking of reference functions in nonlinear systems has been one of the major

control tasks required to be performed in various applications. Numerous important contribu-

tions can be found in the literature in the direction of achieving finite-time stability [183]- [185].

However, the derivative of the reference function is generally required in the implementation

of the control law which is a serious limitation of the well-established control techniques in

this context. The tracking problem can be approached in a more generalized way by allowing

the order of the derivative to take fractional values. This requires the tracking problem to be

explored at the fundamental level with a sound mathematical framework.

Sliding mode control is often utilized in achieving the desired tracking objective in finite

time. It also has the capability of providing disturbance rejection and robustness to parametric

uncertainties. However, the classical sliding mode scheme assumes the reference function to

be differentiable with a bound for the convergence of the error dynamics. So, the conventional

integer-order framework restricts the allowable class of reference functions that can be tracked.
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In this context, fractional-order operators can be utilized so that the reference functions which do

not possess the first-order derivative and satisfy theHölder condition [1] can also be tracked using

limited control action. So, a larger class of reference functions satisfying a certain condition

can be addressed using the technique proposed in this chapter.

The study of fractional-order derivatives and integrals is done in a branch of mathematics

known as Fractional Calculus [1] [6] [7]. It has been observed that physical systems can be more

accurately represented by their fractional-order models. The nature of some phenomena can

inherently be described only by considering them as fractional-order systems [6]. This makes it

obvious to explore the tracking problems in a new dimension.

1.7 Organization of the Thesis

The entire thesis is divided into five chapters. Chapter 1. starts with a discussion on the

motivation behind the work. Then, the main contribution is briefed. The related work in the

literature has been discussed in the next section. Then, a brief outline of fractional calculus

is given including the definitions used and the physical interpretation of the fractional-order

operators. The properties of these operators have been mentioned which are further used in the

entire text.

Then, it comes to the main problem in Chapter 2. The tracking problem is introduced

for a general class of nonlinear systems followed by the consideration of a switch-controlled

RL circuit as a case study. The required condition on the reference function for the desired

trajectory tracking is derived for constant and smooth reference functions. The problem with

the integer-order approach in tracking non-differentiable reference functions is highlighted. An

approach based on fractional-order operators is proposed resulting into a relaxed condition on

the reference function which is derived. This technique uses limited control action. Simulation

results have been given for the switch-controlled RL circuit for tracking a sawtooth reference

function.

Continuing in the same direction, Chapter 3. highlights the non-differentiability issue

in the classical super-twisting algorithm based differentiator. The required condition on the

second-order derivative of the signal is discussed. The constraint is relaxed by using fractional-

order dynamics in the estimation part resulting into fractional-order differentiator. Further,

discretization of the equations has been done with implicit Euler method for chattering suppres-
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sion. The technique has been tested through simulation on a signal which is not second-order

differentiable.

Chapter 4. considers the aspect of uncertainty in the design of control laws. It highlights

on the robustness aspects of the design. Classical sliding mode based design lacks robustness in

the reaching phase of design and can only guarantee it when the states are on the sliding surface.

In order to guarantee robustness in the entire evolution of the states, integral sliding mode

control has been proposed in the literature but it lacks the advantage of the reduced-order design

technique. In order to guarantee robustness in the entire state-space and also to preserve the

reduced-order design methodology, a reaching phase-free approach is proposed in this chapter

for uncertain fractional-order systems. Further, its application in the case of a fractional inverted

pendulum is shown through simulation.

Finally, Chapter 5. states the overall conclusions of the work with future perspectives.

1.8 Summary

The chapter gives an overview of the non-differentiability and uncertainty aspects of general

control problems for nonlinear systems. Some related constraints and various approaches

available are discussed. A brief introduction about fractional calculus is given with various

definitions which are widely used. Physical interpretation of the definitions has been provided

for visualization of the presented approaches.
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