LIST OF FIGURES

Figure 1.1:	Interconnect architecture including local and global interconnects.	4
Figure 1.2:	Electromagnetic surface wave guided by the interface of two different materials.	7
Figure 1.3:	Highly localized field of an SPP wave.	12
Figure 1.4:	Geometry for SPP wave propagation.	13
Figure 1.5:	The dispersion diagram of the SPP wave guided by the silver/air interface. The solid line shows the real part, and the dotted line shows the imaginary part of the wavenumber q .	18
Figure 1.6:	Schematics of prism-coupled configuration to excite SPP wave (a) Turbadar-Kretschmann-Raether (b) Turbadar-Otto.	20
Figure 1.7:	Schematic of SPP-wave excitation in the grating-coupled configuration.	23
Figure 1.8:	Cartesian components of the electric and magnetic field component in the YEE cell indexed as (l, m, n) .	25
Figure 1.9:	FDTD time-marching algorithm.	27
Figure 1.10:	Schematic showing the different values of correlation coefficients.	30
Figure 2.1:	Schematic of the computational domain of the initial boundary value problem solved for the information carried by a pulse-modulated SPP wave across a gap.	42
Figure 2.2:	Three snapshots of $E_z(x, z, t)$ taken at (top) $t = 46.88$ fs, (middle) $t = 103.64$ fs, and (bottom) $t = 184.16$ fs, when $\lambda_c = 600$ nm and $d = \lambda_c$. $E_z(x, z, t)$ was normalized by 0.084 V m ⁻¹ in the top snapshot, 0.050 V m ⁻¹ in the middle snapshot, and 0.039 Vm ⁻¹ in the bottom snapshot.	51
Figure 2.3:	Temporal profile of $P_x(x_R, z_R, t)$ when $\lambda_c = 600$ nm and the region \Re_B^{right} is occupied by material A. (Top) $d_R = 35\lambda_c$, (middle) $d_R = 30\lambda_c$, and (bottom) $d_R = 25\lambda_c$.	53
Figure 2.4:	Temporal profile of $P_x(x, z, t)$ when $\lambda_c = 600$ nm and the region \Re_B^{right} is occupied by material A. (Top) $d_s = 4\lambda_c$, (middle) $d_s = 20\lambda_c$, and (bottom) $d_s = 40\lambda_c$.	54

- **Figure 2.5:** Pearson correlation coefficient between $P_x(x_R, z_R, t)$ and **56** $P_x(x_S, z_S, t)$ as a function of d_{RS} when $d_R = 30\lambda_c$, $\lambda_c = 600$ nm, and the region \Re_B^{right} is occupied by material A.
- **Figure 2.6:** Temporal profile of $P_x(x_R, z_R, t)$ when $d_R = 30\lambda_c$ and the region **57** \Re_B^{right} is occupied by material B. (Top) $\lambda_c = 500$ nm, (middle) $\lambda_c = 600$ nm, and (bottom) $\lambda_c = 700$ nm.
- **Figure 2.7:** Real and imaginary part of q_c versus $\lambda_c \in [400, 800]$ nm. 57
- **Figure 2.8:** Normalized spectra of $P_x(x_R, z_R, t)$ when $d_R = 30\lambda_c$ and the **59** region \Re_B^{right} is occupied by material B. (Top) $\lambda_c = 500$ nm (i.e., $f_c = 600$ THz), (middle) $\lambda_c = 600$ nm (i.e., $f_c = 500$ THz), and (bottom) $\lambda_c = 700$ nm (i.e., $f_c = 428.6$ THz).

Figure 2.9: Temporal profile of $P_x(x_s, z_s, t)$ when $d_R / \lambda_c = 30$ and the **60** region \Re_B^{right} is occupied by material B. Top row: $d_{RS} = 35\lambda_c$, middle row: $d_{RS} = 50\lambda_c$, and bottom row: $d_{RS} = 70\lambda_c$. Left column: $\lambda_c = 500$ nm, middle column: $\lambda_c = 600$ nm, and right column: $\lambda_c = 700$ nm.

- **Figure 2.10:** Pearson correlation coefficient between $P_x(x_R, z_R, t)$ and **61** $P_x(x_S, z_S, t)$ as a function of d_{RS} when $d_R = 30\lambda_c$, $\lambda_c \in \{500, 600, 700\}$ nm, and the region \Re_B^{right} is occupied by material B.
- **Figure 2.11:** $P_x(x_s, z_s, t)$ in the time domain (top left) and frequency domain **62** (top right), when the precursor is very close to the main pulse ($d_s = 0$). Similarly, $P_x(x_s, z_s, t)$ in the time domain (bottom left) and frequency domain (bottom right), when the precursor is widely separated from main pulse ($d_s = 49\lambda_c$) for $\lambda_c = 600$ nm.
- **Figure 3.1:** Schematic of the computational domain of the initial-boundaryvalue problem when the metal bends to form a corner of angle $\alpha \in (0, \pi)$. Materials A and B are dielectric and metallic, respectively. The computational domain is bounded by three perfectly matched layers. The point labeled R is identified as the transmission point, and the point S as the reception point. Point Q is chosen for analysis of the signal scattered in the region occupied by material A beyond the corner.
- **Figure 3.2:** Four snapshots of normalized $P_x(x, z, t)$ taken at (top left) **70** t = 4.94 fs, (top right) t = 17.26 fs, (bottom left) t = 21.96 fs and (bottom right) t = 37.41 fs, when $\lambda_c = 500$ nm and $\alpha = 135^\circ$.

Multiply by 1.1375×10^{-4} W m⁻² to obtain unnormalized $P_x(x, z, t)$.

- **Figure 3.3:** Temporal profile of normalized $P_{ax}(x_R, z_R, t)$ when $d_R = 8\lambda_c$, **72** $\lambda_c = 500 \text{ nm}$, and $\alpha = 135^\circ$. The transmitted signal (left) and the reflected signal (right) at point R are sufficiently separated from each other in time to be distinctly identified. Multiply by 1.1375×10^{-4} W m⁻² to obtain unnormalized $P_{ax}(x_R, z_R, t)$.
- **Figure 3.4:** Temporal profile of normalized $P_{ax}(x_R, z_R, t)$ when $d_R = 8\lambda_c$, **73** $\lambda_c = 500$ nm, and $\alpha \in \{75^\circ, 90^\circ, 120^\circ, 135^\circ, 150^\circ, 180^\circ\}$. Each profile is of the reflected signal at point R. Multiply by 1.1375×10^{-4} W m⁻² to obtain unnormalized $P_{ax}(x_R, z_R, t)$.
- **Figure 3.5:** Temporal profile of normalized $P_{ax}(x_s, z_s, t)$ when $d_s = 5\lambda_c$, **74** $\lambda_c = 500$ nm, and $\alpha \in \{75^\circ, 90^\circ, 120^\circ, 135^\circ, 150^\circ, 180^\circ\}$. Each profile is of the received signal at point S. Multiply by 1.1375×10^{-4} W m⁻² to obtain unnormalized $P_{ax}(x_s, z_s, t)$.
- **Figure 3.6:** Pearson correlation coefficient ρ_{RS} between $P_{ax}(x_R, z_R, t)$ and **76** $P_{ax}(x_S, z_S, t)$ as a function of $\alpha \in [75^\circ, 180^\circ]$ when $d_R = 8\lambda_c$, $d_S = 5\lambda_c$, and $\lambda_c = 500$ nm.
- **Figure 3.7:** Real and imaginary parts of the SPP wavenumber q_c as a 77 function of carrier wavelength λ_c .
- **Figure 3.8:** Temporal profile of normalized $P_{ax}(x_R, z_R, t)$ when $d_R = 5\lambda_c$, **77** $\lambda_c \in \{400, 500, 600, 700\}$ nm, and $\alpha = 135^\circ$. Each profile is of the transmitted signal at point R. Multiply by 1.1375×10^{-4} W m⁻² to obtain unnormalized $P_{ax}(x_R, z_R, t)$.
- **Figure 3.9:** Temporal profile of normalized $P_{ax}(x_s, z_s, t)$ when $d_R = 5\lambda_c$, **78** $d_s = 5\lambda_c$, $\lambda_c \in \{400, 500, 600, 700\}$ nm, and $\alpha = 135^\circ$. Each profile is of the received signal at point S. Multiply by 1.1375×10^{-4} W m⁻² to obtain unnormalized $P_{ax}(x_s, z_s, t)$.
- **Figure 3.10:** Normalized peak intensity of $P_{rad}(x_Q, z_Q, t)$ as a function of **80** $d_Q / \lambda_c \in [3,9]$ with $\lambda_c = 500$ nm fixed. Left: $\alpha = 90^\circ$ and $\beta \in \{0^\circ, 90^\circ\}$. Right: $\alpha = 135^\circ$ and $\beta \in \{0^\circ, 45^\circ\}$. The peak intensity for each value of β is normalized to unity for d_Q / λ_c . The normalized curve for the $1/d_Q$ dependence is also shown.
- Figure 4.1:Schematic of the computational domain of the initial-boundary-
value problem for information transfer by a pulse-modulated SPP
wave guided by a silver/silicon interface across a wall between87

silicon and another material. The signal is launched on the plane x=a at time t=0 and the wall between silver and either (a) air or (b) silver is identified as $\{x=0, -\infty < y < \infty, z > 0\}$. (c) Silicon continues beyond the plane x=0 in the half-space z > 0.

- **Figure 4.2:** Variation of the propagation distance Δ_{prop} of the carrier SPP **90** wave with the free-space wavelength λ_c when the partnering materials are silicon and silver.
- **Figure 4.3:** Temporal profile of normalized $P_x(x_R, z_R, t)$ when \Re_c is **92** occupied by air, \Re_D is occupied by silver, and $\lambda_c = 1200$ nm. Left column: $d_R = 3.5 \lambda_c$, middle column: $d_R = 3.0 \lambda_c$, and right column: $d_R = 2.5 \lambda_c$. The top row shows the transmitted signal (red curve) at point R and the bottom row shows the tail of the transmitted signal (red curve) followed by the reflected signal (green curve) at point R. Multiply by 6.8×10^{-6} W m⁻² to obtain unnormalized $P_x(x_R, z_R, t)$.
- **Figure 4.4:** Temporal profile of normalized $P_x(x_R, z_R, t)$ when $\lambda_c = 1200$ nm; **93** $d_R = 3.5\lambda_c$; \Re_c is occupied by (left) air, (middle) silver, and (right) silicon; and \Re_D is occupied by silver. Each profile is of the tail of the transmitted signal (red curve) followed by the reflected signal (green curve) at point R. Multiply by 6.8×10^{-6} W m⁻² to obtain unnormalized $P_x(x_R, z_R, t)$.
- **Figure 4.5:** Temporal profile of normalized $P_x(x_s, z_s, t)$ when $\lambda_c = 1200$ nm **95** and \Re_D is occupied by silver. Top row: \Re_C is occupied by air, middle row: \Re_C is occupied by silver, and bottom row: \Re_C is occupied by silicon. Left column: $d_s / \lambda_c = 1$, middle column: $d_s / \lambda_c = 2$, and right column: $d_s / \lambda_c = 3$. Each profile is of the received signal at point S. Multiply by 6.8×10^{-6} W m⁻² to obtain unnormalized $P_x(x_s, z_s, t)$.
- Figure A.1:Schematic of the PML region surrounding \Re .121