LIST OF FIGURES

Figure 1.1: Interconnect architecture including local and global 4 interconnects.

Figure 1.2: Electromagnetic surface wave guided by the interface of two different materials.

Figure 1.3: Highly localized field of an SPP wave.
Figure 1.4: Geometry for SPP wave propagation.
Figure 1.5: \quad The dispersion diagram of the SPP wave guided by the silver/air interface. The solid line shows the real part, and the dotted line shows the imaginary part of the wavenumber q.

Figure 1.6: \quad Schematics of prism-coupled configuration to excite SPP wave (a) Turbadar-Kretschmann-Raether (b) Turbadar-Otto.

Figure 1.7: Schematic of SPP-wave excitation in the grating-coupled configuration.

Figure 1.8: Cartesian components of the electric and magnetic field component in the YEE cell indexed as (l, m, n).

Figure 1.9: FDTD time-marching algorithm.
Figure 1.10: Schematic showing the different values of correlation coefficients.

Figure 2.1: \quad Schematic of the computational domain of the initial boundary value problem solved for the information carried by a pulsemodulated SPP wave across a gap.

Figure 2.2: \quad Three snapshots of $E_{z}(x, z, t)$ taken at (top) $t=46.88 \mathrm{fs}$, (middle) $t=103.64 \mathrm{fs}$, and (bottom) $t=184.16 \mathrm{fs}$, when $\lambda_{c}=600 \mathrm{~nm}$ and $d=\lambda_{c}$. $E_{z}(x, z, t)$ was normalized by $0.084 \mathrm{~V} \mathrm{~m}^{-1}$ in the top snapshot, $0.050 \mathrm{~V} \mathrm{~m}^{-1}$ in the middle snapshot, and $0.039 \mathrm{Vm}^{-1}$ in the bottom snapshot.

Figure 2.3: Temporal profile of $P_{x}\left(x_{R}, z_{R}, t\right)$ when $\lambda_{c}=600 \mathrm{~nm}$ and the region $\mathfrak{R}_{B}^{\text {right }}$ is occupied by material A. (Top) $d_{R}=35 \lambda_{c}$, (middle) $d_{R}=30 \lambda_{c}$, and (bottom) $d_{R}=25 \lambda_{c}$.

Figure 2.4: Temporal profile of $P_{x}(x, z, t)$ when $\lambda_{c}=600 \mathrm{~nm}$ and the
region $\mathfrak{R}_{B}^{\text {right }}$ is occupied by material A. (Top) $d_{s}=4 \lambda_{c}$, (middle) $d_{S}=20 \lambda_{c}$, and (bottom) $d_{S}=40 \lambda_{c}$.

Figure 2.5: Pearson correlation coefficient between $P_{x}\left(x_{R}, z_{R}, t\right)$ and $P_{x}\left(x_{S}, z_{s}, t\right)$ as a function of $d_{R S}$ when $d_{R}=30 \lambda_{c}, \quad \lambda_{c}=600$ nm , and the region $\mathfrak{R}_{B}^{\text {right }}$ is occupied by material A.

Figure 2.6: Temporal profile of $P_{x}\left(x_{R}, z_{R}, t\right)$ when $d_{R}=30 \lambda_{c}$ and the region $\mathfrak{R}_{B}^{\text {right }}$ is occupied by material B. (Top) $\lambda_{c}=500 \mathrm{~nm}$, (middle) $\lambda_{c}=600 \mathrm{~nm}$, and (bottom) $\lambda_{c}=700 \mathrm{~nm}$.

Figure 2.7: \quad Real and imaginary part of q_{c} versus $\lambda_{c} \in[400,800] \mathrm{nm}$.

Figure 2.8: Normalized spectra of $P_{x}\left(x_{R}, z_{R}, t\right)$ when $d_{R}=30 \lambda_{c}$ and the region $\mathfrak{R}_{B}^{\text {right }}$ is occupied by material B. (Top) $\lambda_{c}=500 \mathrm{~nm}$ (i.e., $f_{c}=600 \mathrm{THz}$), (middle) $\lambda_{c}=600 \mathrm{~nm}$ (i.e., $f_{c}=500 \mathrm{THz}$), and (bottom) $\lambda_{c}=700 \mathrm{~nm}$ (i.e., $f_{c}=428.6 \mathrm{THz}$).

Figure 2.9: Temporal profile of $P_{x}\left(x_{S}, z_{S}, t\right)$ when $d_{R} / \lambda_{c}=30$ and the region $\Re_{B}^{\text {right }}$ is occupied by material B. Top row: $d_{R S}=35 \lambda_{c}$, middle row: $d_{R S}=50 \lambda_{c}$, and bottom row: $d_{R S}=70 \lambda_{c}$. Left column: $\lambda_{c}=500 \mathrm{~nm}$, middle column: $\lambda_{c}=600 \mathrm{~nm}$, and right column: $\lambda_{c}=700 \mathrm{~nm}$.

Figure 2.10: Pearson correlation coefficient between $P_{x}\left(x_{R}, z_{R}, t\right)$ and $P_{x}\left(x_{S}, z_{S}, t\right)$ as a function of $d_{R S}$ when $d_{R}=30 \lambda_{c}$, $\lambda_{c} \in\{500,600,700\} \mathrm{nm}$, and the region $\mathfrak{R}_{B}^{\text {right }}$ is occupied by material B.

Figure 2.11: $\quad P_{x}\left(x_{S}, z_{S}, t\right)$ in the time domain (top left) and frequency domain (top right), when the precursor is very close to the main pulse ($d_{S}=0$). Similarly, $P_{x}\left(x_{S}, z_{S}, t\right)$ in the time domain (bottom left) and frequency domain (bottom right), when the precursor is widely separated from main pulse ($d_{S}=49 \lambda_{c}$) for $\lambda_{c}=600 \mathrm{~nm}$.

Figure 3.1: \quad Schematic of the computational domain of the initial-boundaryvalue problem when the metal bends to form a corner of angle $\alpha \in(0, \pi)$. Materials A and B are dielectric and metallic, respectively. The computational domain is bounded by three perfectly matched layers. The point labeled R is identified as the transmission point, and the point S as the reception point. Point Q is chosen for analysis of the signal scattered in the region occupied by material A beyond the corner.

Figure 3.2: Four snapshots of normalized $P_{x}(x, z, t)$ taken at (top left) $t=4.94 \mathrm{fs}$, (top right) $t=17.26 \mathrm{fs}$, (bottom left) $t=21.96 \mathrm{fs}$ and (bottom right) $t=37.41 \mathrm{fs}$, when $\lambda_{c}=500 \mathrm{~nm}$ and $\alpha=135^{\circ}$.

Multiply by $1.1375 \times 10^{-4} \mathrm{~W} \mathrm{~m}^{-2}$ to obtain unnormalized $P_{x}(x, z, t)$.

Figure 3.3: Temporal profile of normalized $P_{a x}\left(x_{R}, z_{R}, t\right)$ when $d_{R}=8 \lambda_{c}$, $\lambda_{c}=500 \mathrm{~nm}$, and $\alpha=135^{\circ}$. The transmitted signal (left) and the reflected signal (right) at point R are sufficiently separated from each other in time to be distinctly identified. Multiply by $1.1375 \times 10^{-4} \mathrm{~W} \mathrm{~m}^{-2}$ to obtain unnormalized $P_{a x}\left(x_{R}, z_{R}, t\right)$.

Figure 3.4: Temporal profile of normalized $P_{a x}\left(x_{R}, z_{R}, t\right)$ when $d_{R}=8 \lambda_{c}$, $\lambda_{c}=500 \mathrm{~nm}$, and $\alpha \in\left\{75^{\circ}, 90^{\circ}, 120^{\circ}, 135^{\circ}, 150^{\circ}, 180^{\circ}\right\}$. Each profile is of the reflected signal at point R. Multiply by $1.1375 \times 10^{-4} \mathrm{~W}$ m^{-2} to obtain unnormalized $P_{a x}\left(x_{R}, z_{R}, t\right)$.

Figure 3.5: Temporal profile of normalized $P_{a x}\left(x_{s}, z_{s}, t\right)$ when $d_{s}=5 \lambda_{c}$, $\lambda_{c}=500 \mathrm{~nm}$, and $\alpha \in\left\{75^{\circ}, 90^{\circ}, 120^{\circ}, 135^{\circ}, 150^{\circ}, 180^{\circ}\right\}$. Each profile is of the received signal at point S. Multiply by $1.1375 \times 10^{-4} \mathrm{~W}$ m^{-2} to obtain unnormalized $P_{a x}\left(x_{s}, z_{s}, t\right)$.

Figure 3.6: Pearson correlation coefficient $\rho_{R S}$ between $P_{a x}\left(x_{R}, z_{R}, t\right)$ and $P_{a x}\left(x_{S}, z_{s}, t\right)$ as a function of $\alpha \in\left[75^{\circ}, 180^{\circ}\right]$ when $d_{R}=8 \lambda_{c}$, $d_{S}=5 \lambda_{c}$, and $\lambda_{c}=500 \mathrm{~nm}$.

Figure 3.7: Real and imaginary parts of the SPP wavenumber q_{c} as a function of carrier wavelength λ_{c}.

Figure 3.8: Temporal profile of normalized $P_{a x}\left(x_{R}, z_{R}, t\right)$ when $d_{R}=5 \lambda_{c}$, $\lambda_{c} \in\{400,500,600,700\} \mathrm{nm}$, and $\alpha=135^{\circ}$. Each profile is of the transmitted signal at point R. Multiply by $1.1375 \times 10^{-4} \mathrm{~W} \mathrm{~m}^{-2}$ to obtain unnormalized $P_{a x}\left(x_{R}, z_{R}, t\right)$.

Figure 3.9: Temporal profile of normalized $P_{a x}\left(x_{S}, z_{S}, t\right)$ when $d_{R}=5 \lambda_{c}$, $d_{s}=5 \lambda_{c}, \lambda_{c} \in\{400,500,600,700\} \mathrm{nm}$, and $\alpha=135^{\circ}$. Each profile is of the received signal at point S . Multiply by $1.1375 \times 10^{-4} \mathrm{~W}$ m^{-2} to obtain unnormalized $P_{a x}\left(x_{s}, z_{s}, t\right)$.

Figure 3.10: Normalized peak intensity of $P_{r a d}\left(x_{Q}, z_{Q}, t\right)$ as a function of $d_{Q} / \lambda_{c} \in[3,9]$ with $\lambda_{c}=500 \mathrm{~nm}$ fixed. Left: $\alpha=90^{\circ}$ and $\beta \in\left\{0^{\circ}, 90^{\circ}\right\}$. Right: $\alpha=135^{\circ}$ and $\beta \in\left\{0^{\circ}, 45^{\circ}\right\}$. The peak intensity for each value of β is normalized to unity for d_{Q} / λ_{c}. The normalized curve for the $1 / d_{Q}$ dependence is also shown.

Figure 4.1: Schematic of the computational domain of the initial-boundaryvalue problem for information transfer by a pulse-modulated SPP wave guided by a silver/silicon interface across a wall between
silicon and another material. The signal is launched on the plane $x=a$ at time $t=0$ and the wall between silver and either (a) air or (b) silver is identified as $\{x=0,-\infty<y<\infty, z>0\}$. (c) Silicon continues beyond the plane $x=0$ in the half-space $z>0$.

Figure 4.2: \quad Variation of the propagation distance $\Delta_{\text {prop }}$ of the carrier SPP wave with the free-space wavelength λ_{c} when the partnering materials are silicon and silver.

Figure 4.3: Temporal profile of normalized $P_{x}\left(x_{\mathrm{R}}, z_{\mathrm{R}}, t\right)$ when \mathfrak{R}_{C} is occupied by air, \Re_{D} is occupied by silver, and $\lambda_{c}=1200 \mathrm{~nm}$. Left column: $d_{\mathrm{R}}=3.5 \lambda_{c}$, middle column: $d_{\mathrm{R}}=3.0 \lambda_{c}$, and right column: $d_{\mathrm{R}}=2.5 \lambda_{c}$. The top row shows the transmitted signal (red curve) at point R and the bottom row shows the tail of the transmitted signal (red curve) followed by the reflected signal (green curve) at point R. Multiply by $6.8 \times 10^{-6} \mathrm{~W} \mathrm{~m}^{-2}$ to obtain unnormalized $P_{x}\left(x_{\mathrm{R}}, z_{\mathrm{R}}, t\right)$.

Figure 4.4: Temporal profile of normalized $P_{x}\left(x_{\mathrm{R}}, z_{\mathrm{R}}, t\right)$ when $\lambda_{c}=1200 \mathrm{~nm}$; $d_{\mathrm{R}}=3.5 \lambda_{c} ; \mathfrak{R}_{C}$ is occupied by (left) air, (middle) silver, and (right) silicon; and \mathfrak{R}_{D} is occupied by silver. Each profile is of the tail of the transmitted signal (red curve) followed by the reflected signal (green curve) at point R. Multiply by 6.8×10^{-6} $\mathrm{W} \mathrm{m}{ }^{-2}$ to obtain unnormalized $P_{x}\left(x_{\mathrm{R}}, z_{\mathrm{R}}, t\right)$.

Figure 4.5: Temporal profile of normalized $P_{x}\left(x_{\mathrm{s}}, z_{\mathrm{s}}, t\right)$ when $\lambda_{c}=1200 \mathrm{~nm}$ and \Re_{D} is occupied by silver. Top row: \Re_{C} is occupied by air, middle row: \mathfrak{R}_{C} is occupied by silver, and bottom row: \mathfrak{R}_{C} is occupied by silicon. Left column: $d_{\mathrm{S}} / \lambda_{c}=1$, middle column: $d_{\mathrm{S}} / \lambda_{c}=2$, and right column: $d_{\mathrm{S}} / \lambda_{c}=3$. Each profile is of the received signal at point S . Multiply by $6.8 \times 10^{-6} \mathrm{~W} \mathrm{~m}^{-2}$ to obtain unnormalized $P_{x}\left(x_{\mathrm{s}}, z_{\mathrm{s}}, t\right)$.

Figure A.1: \quad Schematic of the PML region surrounding \mathfrak{R}.

