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1.1. Motivation for the Thesis 

Integrated circuits (ICs) have experienced tremendous growth over the last six decades. 

During this period, the use of integrated circuits have steadily increased while their size 

has decreased [Moore (1998)]. The most important add-ons for ICs are signal- and power-

routing layers of metals. During the first portion of chip-making, the electronic 

components are fabricated on a silicon wafer. In the back-end-of-line, these components 

are connected through metal wires to each other (to distribute signals) as well as to power 

sources and to the ground. These wires are known as interconnects.  

The function of an interconnect is to distribute the clock and other signals and to 

provide power/ground, to and among, the various circuits functions on a chip [Grabinski 

(2000)]. In the early generations of metal-oxide-semiconductor (MOS) technology, only 

one or two layers were available for metallization. But the transistor density has increased 

tremendously, and the number of layers of interconnects has gone over ten, as shown in 

Fig 1.1. Interconnects close to the transistors need to be small, as they join components 

that are themselves very small and often closely packed together. These lower-level lines 

––called-local interconnects––are usually thin and short. Global interconnects are higher 

up in the structure; they connect different blocks of the IC and are thus typically thick, 

long, and widely separated. Connections between interconnect levels, called vias, allow 

signals and power to be transmitted from one level to the next. 

The basic requirement for many interconnects is to transfer the signal/information 

with high speed. Electronic interconnects are ultra-tiny wires due to shrinking feature 

sizes. The scaling of the ICs has brought many challenges for electronic interconnects, 

thereby limiting IC speed [Ozbay (2006)].  
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Electronic interconnects are now a significant bottleneck in IC technology. For 

boosting the speed of semiconductor chips, a vast amount of information transfer between 

the transistors is required, but that cannot be sustained by electronic interconnects [Miller 

(2010)]. Table 1.1 highlights the limitations of electronic interconnects. Most prominent 

are the increases in delay time for signal propagation, power dissipation, and cross-talk 

amongst wires. These limitations arise by electric charging and discharging when 

information is being transmitted along a metal wire [Conway et al. (2007)]. 

 

 

Figure 1.1: Interconnect architecture including local and global interconnects. 

An alternative to the charging and discharging of wires for transfer of information 

inside ICs is to use optical interconnects. The data-transfer rate increases because photons 

can travel faster than electrons in a chip. However, due to the diffraction limit [Sekhon 

and Verma (2011)], the size of the optical interconnect must be approximately half of the 
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wavelength of the carrier light wave passing through it. Accordingly, the cross-sectional 

dimensions of a optical interconnect do not match the dimensions of electrical contacts. 

Therefore, optical interconnects are not as good as electronic interconnects in integration, 

being limited by the size-mismatch problem. Both electronic and optical interconnects 

provide limited data-transfer rates [Sekhon and Verma (2011)], but higher rates are 

needed due to miniaturization. 

Table 1.1: Limitations of electronic interconnects  

Limitation Summary 

Signal delay 

Signal propagation is limited by the RC time 

constant [Conway et al. (2007)] of an 

interconnect. As the cross-section area of the 

wire is reduced, the wire resistance increases. 

Power dissipation 

As interconnect density increases through 

scaling, the energy dissipated per unit of chip 

area increases proportionally. 

Crosstalk 

The increase in distributed wire resistance per 

unit length with geometric scaling increases 

cross-talk amongst wires. 

 

Electromagnetic surface waves (ESWs) guided by metal/dielectric interfaces are 

called surface-plasmon-polariton (SPP) waves. These surface waves are promising 

candidates for information transfer inside a semiconductor chip because of the strong 

confinement of their fields on the subwavelength-scale [Barnes et al. 2003].  Due to the 

concentration of light below the diffraction limit, SPP-wave-based optical interconnects 

can help bridge the size gap and also speed up the data-transfer rate [Leuthold et al. 

(2013)]. The energy required to receive and send a pulse-modulated SPP wave can be less 

than that needed for the electric charging of a metallic wire. This could allow information 

transfer from one transistor to another transistor with a high bit rate [Sekhon and Verma 

(2011)].  
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With this motivation, a state-of-the-art numerical technique is used in this thesis 

to investigate the propagation and scattering of pulse-modulated carrier SPP waves in an 

environment that represents an interconnect. The investigation is performed in the time 

domain by solving the time-domain Maxwell equations using the finite-difference time-

domain (FDTD) method. The materials involved are characterized using well-established 

models such as the Lorentz and the critical-point models for dielectric materials, and the 

Drude model for metals. The fidelity of information transmission between the transmitted 

signal and the received signal is assessed by statistical techniques, which would 

eventually allow the determination of optimal configurations for information transfer with 

acceptable fidelity. Thus, the feasibility of harnessing SPP waves for information transfer 

inside semiconductor chips is established. 

In the remainder of this chapter, the basic concepts needed for the rest of the thesis 

are provided. The fundamentals of ESWs and their classification based on the types of 

the two partnering materials are presented in Sec. 1.2. The canonical boundary-value 

problem of the propagation of an SPP wave guided by the planar interface of a metal and 

an isotropic dielectric material is formulated in the frequency domain and solved in Sec. 

1.3. Typical models used for the relative permittivities of isotropic and dispersive 

materials are discussed in Sec. 1.4. The FDTD method used in Chapters 2-4 to compute 

the spatiotemporal evolution of the electromagnetic field of a pulse-modulated carrier 

SPP wave is presented in Sec. 1.5. In order to determine the fidelity of information 

transfer by the pulse-modulated carrier SPP wave, two different correlation coefficients 

used in the thesis are presented in Sec. 1.6. A detailed literature review of ESWs and 

ESW-based optical interconnects in semiconductor chips are presented in Sec. 1.7. The 

objective and the research tasks undertaken are provided in Sec. 1.8 and the organization 

of the thesis is described in Sec. 1.9. 
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1.2. Electromagnetic Surface Waves 

An ESW propagates guided by the interface of two different materials, as illustrated in 

Fig 1.2. The amplitudes of the electromagnetic fields of an ESW are usually maximum at 

or near the interface and decrease with the distance on both sides of the interface [Polo et 

al. (2013), Maier (2007)]. Therefore, the fields of an ESW are highly localized to the 

interface. This localization is a desirable quality for optical sensing [Nylander et al. 

(1982)] as well as for thin optical interconnects in semiconductor chips [Ozbay (2007), 

Barnes et al. (2003)].  

 

Figure 1.2: Electromagnetic surface wave guided by the interface of two different 

materials.   

ESWs are classified depending on the two partnering materials, as shown in Table 

1.2.  

The Surface-plasmon-polariton wave is the most popularly researched ESW. Its 

propagation is guided by a planar metal/dielectric interface. The electromagnetic fields 

of the SPP wave are strongly bound to the metal/dielectric interface. The plasmon 

component of an SPP wave results from the collective oscillation of free electrons (plasma 

oscillation) on a metal surface illuminated by an external electromagnetic wave. The 

polariton component of an SPP wave results from the collective oscillation of atomic and 

molecular dipole moments in the dielectric partnering material illuminated by an external 

electromagnetic wave. SPP waves are classical counterparts of trains of quasiparticles 

called SPPs [Polo et al. (2013), Maier (2007)].  In this thesis, the SPP wave is used as a 
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carrier wave to transport information inside a semiconductor chip. Therefore, the SPP 

wave is discussed in more detail in Sec. 1.3.  

Table 1.2: Classification of electromagnetic surface wave 

Material A Material B 
Electromagnetic Surface 

Wave 

Dielectric Metal Surface-plasmon-polariton wave 

Homogeneous, 

isotropic dielectric 

Homogeneous, 

dissipative, isotropic 

dielectric 

Uller-Zenneck wave 

Homogeneous 

dielectric 

Homogeneous, 

anisotropic dielectric 
Dyakonov wave 

Homogeneous, 

isotropic dielectric 

Periodically 

nonhomogeneous, 

isotropic dielectric 

Tamm wave 

Homogeneous, 

isotropic dielectric 

Periodically 

nonhomogeneous, 

anisotropic dielectric 

Dyakonov-Tamm wave 

 

The Uller-Zenneck wave is guided by the planar interface of two homogeneous 

and isotropic dielectric materials, of which only one must be a dissipative material 

[Faryad and Lakhtakia (2014)]. The Uller-Zenneck wave is named after Uller [Uller 

(1903)] and Zenneck [Zenneck (1907)] who theoretically established the existence of an 

electromagnetic surface wave guided by the planar interface of air/seawater (dissipative) 

and air/ground (dissipative) respectively in the radio-frequency regime. The phase speed 

of the Uller-Zenneck wave is greater than that of a plane wave in either partnering 

material. This wave does not require any phase-matching technique for excitation, unlike 

SPP waves [Faryad and Lakhtakia (2014)]. The propagation distance of the Uller-

Zenneck wave is in the millimeter range at optical frequencies [Faryad and Lakhtakia 

(2014)]; thus, it can be used for intrachip optical interconnect. 
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The Dyakonov wave is guided by the interface of two dielectric materials that 

differ in crystallographic symmetry [Walker et al. (1998), Crasovan et al. (2005), 

Takayama et al. (2008)]. This special type of ESW was first predicted by Marchevskii et 

al. [Marchevskii et al. (1984)] in 1984, but credit is usually given to a 1988 paper of 

D’yakonov [D’yakonov (1988)], who considered the interface of a uniaxial dielectric 

material and an isotropic dielectric material and showed that, under certain conditions, 

wave propagation can be localized to the interface. In contrast to SPP waves, Dyakonov 

waves can be propagated when both partnering materials are lossless; thus, in practice, 

Dyakonov waves can have much larger propagation distances than SPP waves, which is 

their most fascinating property.  Dyakonov waves are highly directional, propagating in 

a narrow angular range of directions with respect to the optical axis of the uniaxial 

partnering material. Generally, Dyakonov waves are weakly localized and their angular 

existence domain depends on the dielectric properties of both partnering materials [Polo 

et al. (2013), Takayama et al. (2008)]. These waves have potential applications in 

integrated optics, optical sensing [Torner et al. (1995)], and optical waveguiding [Torner 

et al. (1993)]. 

The Tamm wave is guided by the interface of two isotropic dielectric materials 

when one partnering material is periodically nonhomogeneous in the direction normal to 

the interface. Tamm waves are named after I. Y. Tamm because he pointed out that 

electron states at the surface of and inside a material are different [Polo et al. (2013)]. The 

optical analog of a surface electron state is a surface wave guided by the interface of two 

dissimilar materials, at least one of which is periodically nonhomogeneous in the 

direction normal to the interface. Unlike the SPP waves, the number of modes for Tamm-

wave propagation is greater than one [Maab et al. (2011), Polo et al. (2013)]. The 

existence of Tamm waves has been experimentally established [Yeh et al. (1978), 
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Robertson and May (1999), Robertson (1999)] and has been exploited for optical 

biosensing [Konopsky and Alieva (2007)]. Since both partnering materials can be weakly 

dissipative in nature, the propagation distance of a Tamm wave can be higher in 

comparison to that of an SPP wave. 

A Dyakonov-Tamm wave is guided by the interface of two dielectric materials, 

of which at least one is both anisotropic and periodically nonhomogeneous in the direction 

normal to the interface [Polo et al. (2013)]. The Dyakonov-Tamm wave has a larger 

angular range of direction of propagation in comparison to the Dyakonov wave 

[Takayama et al. (2008), Nelatury et al. (2008)]. Lakhtakia et al. introduced periodic 

nonhomogeneity by using a periodic sculptured thin film (STF) as one of the two 

partnering dielectric materials, the other being isotropic and homogeneous and they 

deduced that larger angular existence domain of Dyakonov-Tamm waves is due to the 

periodic nonhomogeneity of either one or both partnering dielectric materials [Lakhtakia 

and Messier (2005), Lakhtakia (2002), Polo et. al. (2011)]. Agarwal et al. studied the 

propagation of the Dyakonov–Tamm waves guided by the interface of an isotropic 

dielectric material and a periodically nonhomogeneous sculptured nematic thin film 

[Agrawal et al. (2009)]. Gao et al. theoretically examined the propagation of Dyakonov–

Tamm waves guided by a twist-defect interface in a chiral sculptured thin film [Gao et al. 

(2009)].  

1.3. Surface-Plasmon-Polariton Waves 

A surface-plasmon-polariton (SPP) wave is an ESW whose propagation is guided by a 

metal/dielectric interface. The term “surface-plasmon-polariton” indicates that this ESW 

involves both a plasmonic component (in the metallic partner) and a polaritonic 

component (in the dielectric partner). The plasmonic component arises due to the 
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collective oscillations of electrons present on the naked surface of a metal when 

illuminated by an external electromagnetic wave. The polaritonic component results from 

the collective oscillations of the atomic and molecular dipole moments in a similarly 

illuminated dielectric material [Polo et al. (2013), Maier (2007)].  

When air is the partnering dielectric material, the simpler term “surface-plasmon 

wave” is often used, because the polaritonic component is absent. 

Quasiparticles called surface plasmons were predicted as self-sustained collective 

oscillations of electrons at metal surfaces by Ritchie [Ritchie (1957)].  It had already been 

pointed out by Bohm and Pines [Bohm and Gross (1949)a, Bohm and Gross (1949)b, 

Pines (1956)] that the Coulomb interaction between valence electrons in metals exposed 

to electric fields yield collective plasma oscillations similar to the electron-density 

oscillations predicted by Tonks and Langmuir in electrical discharges in gases [Tonk and 

Langmuir (1929)]. In 1959, Powell and Swan demonstrated the existence of electron-

cloud oscillation in electron energy-loss experiments on aluminum [Powell and Swan 

(1959)a, Powell and Swan (1959)b]. Since then, there has been a significant advance in 

both theoretical and experimental investigations of surface plasmons. Surface-plasmon-

polaritons are analogous quasiparticles that can exist on metal/dielectric interfaces. 

The amplitude of the electric field of an SPP wave is maximum at or near the 

interface and decreases with the distance on both sides of the interface, as shown in Fig 

1.3. Therefore, the electromagnetic fields of an SPP wave are highly localized to the 

interface over distances are in the range of present-day electronic circuit elements. Owing 

to stronger localization, SPP-wave-based interconnects are not restricted in size by the 

diffraction limit unlike standard optical interconnects (such as waveguides [Brongersma 

et al. (2007)]). Thus SPP-wave-based interconnects can guide signals at a subwavelength 

scale.  
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Furthermore, SPP waves are extremely sensitive to changes in the refractive index 

near the metal surface. Such a change may result in a shift in the resonant frequency of 

the incident light (if the direction of the incident light is fixed) [Homola et al. (1995)], or 

a change in the resonant direction of the incident light (if the frequency of the incident 

light is fixed) [Liedberg et al. (1993)]. The resonance is manifested as a sudden drop in 

the intensity of the reflected light [Abdulhalim et al. (2008)], as either the frquency or the 

direction of the incident light is varied. The magnitude of the resonance shift is 

quantitatively related to the magnitude of the change in the refractive index of the medium 

in contact with the metal surface. Therefore, SPP waves are commonly used for the 

detection of different types of materials that could be gaseous, liquid, or solid 

[Abdulhalim et al. (2008)]. 

 

Figure 1.3: Highly localized fields of an SPP wave. 

1.3.1. Fields and Dispersion Equation 

Let us consider SPP wave propagation as depicted in Fig. 1.4. The half-space 0z   is 

occupied by an isotropic and homogeneous dielectric material with relative permittivity 

d  , and the half-space 0z   is occupied by an isotropic and homogeneous metal with 
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relative permittivity m . Both d  and m  are functions of frequency, the SPP wave 

being a frequency-domain entity. 

The SPP wave propagates guided by the plane 0z   along the x-direction and 

attenuates as z  . The polarisation of the SPP wave would be described later. Let 

kd  and km  be the wavevectors in the dielectric and metal half-spaces, respectively. The 

wavevector in the region 0z   may be written as 

ˆ ˆ ,k u ud x d zq                                                           (1.1) 

and the wavevector in the region 0z   may be written as 

ˆ ˆ ,k u um x m zq                                                         (1.2) 

where , , andd mq    are complex-valued, and ˆ
xu  and ˆ

zu  are the Cartesian unit vectors. 

Although the wavevectors kd  and km  are different, their components along the 

propagation direction are the same. This is the necessary condition in order to satisfy the 

boundary conditions across the interface z = 0 [Chen (1983)]. 

 

Figure 1.4: Geometry for SPP wave propagation. 

In order for the SPP wave to be bound to the interface 0z  , the z-directed 

components of the wavevectors kd  and km  must be complex-valued with non-zero 
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imaginary parts. For the SPP wave to be localized to the interface and decay as ,z   

the following conditions must be satisfied: 

 

 

Im 0
.

Im 0

d

m





 


 

                                                      (1.3) 

The full set of the frequency-domain Maxwell equations in the absence of 

external sources can be expressed as follows [Chen (1983)]: 

0

0

E B

H D

D

B

i

i





 


   


  


  

  ,                                                   (1.4) 

where the phasors E , H , D , and B  represent the electric field, magnetic field, dielectric 

displacement, and magnetic flux density, respectively. An exp ( )i t  dependence on 

time t is implicit with 1i    and   as the angular frequency. The frequency-domain 

constitutive relations for a linear, isotropic and nonmagnetic medium are  

1

0 ,H B                        0D E  r ,                          (1.5) 

where  7

0 4 10 H / m     and  12

0 8.854 10 F / m    are the permeability and 

permittivity of free space, respectively, and r  is the relative permittivity of the medium. 

The simplest solution to Eqs. (1.4) is a plane wave [Mackay and Lakhtakia 

(2019)]. The fields phasors of the plane wave can be written as [Polo et al. (2013)] 

   expE r i M k r                                     (1.6) 

   expH r i N k r                                     (1.7) 

where M and N are amplitude vectors with complex-valued Cartesian components; k is 

the wavevector; and ˆ ˆ ˆu u ux y zx y z  r  is the position vector expressed in the Cartesian 

coordinate system. 

Therefore, field phasors in the metal half-space can be written as 
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   expE M k r m m mr i                                       (1.8) 

   expH N k r m m mr i                                       (1.9) 

and the field phasors in the dielectric half-space can be written as 

   expd d dr i E M k r                                       (1.10) 

   expd d dr i H N k r .                                     (1.11) 

The wave vectors kd  and km  are already explained in Eqs. (1.1) and (1.2). In order to 

determine the field phasors of the SPP wave, the parameters for the SPP wave 

, and m m d dM N , M N  must be determined.   

Introducing Eqs. (1.8)-(1.11) into Eqs. (1.4) [Polo et al. (2013)] 

 
2 2 2

0 ,m mk q                                                      (1.12) 

2 2 2

0 ,d dk q                                                      (1.13) 

where 0 0/k c  is the free-space wavenumber and 0c  is the speed of light. The values 

obtained from Eqs. (1.12) and (1.13) must satisfy Eqs. (1.3). 

  In optics literature, solutions of Eqs. (1.4) can generally be classified into s-

polarized (the electric field E parallel to the interface) and p-polarized (the magnetic field 

H parallel to the interface) electromagnetic modes. In radio-frequency literature, s-

polarized modes are called transverse-electric (TE) modes, and p-polarized modes are 

called transverse-magnetic (TM) modes. The conditions for the SPP wave confinenment 

i.e. Eq. (1.2) does not fullfilled for s-polarised wave. Therefore, the SPP wave guided by 

the interface of two linear, homogeneous, isotropic, non-magnetic, achiral materials has 

to be p-polarized [Maier (2007), Polo et al. (2013)]. Therefore, after choosing the x-axis 

as the propagating direction (see Fig. 1.4), the field phasors in the metal half-space z < 0 

may be written as [Polo et al. (2013)]  

   
0

ˆ ˆq
exp ,

u u
E m x z

m p m

m

r a i
k n

 
  

 
k r                               (1.14) 
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   
0

ˆ expH um
m p y m

n
r a i


  k r .                                        (1.15)  

Similarly, the field phasors in dielectric half-space z > 0 may be written as 

   
0

ˆ ˆq
exp ,

u u
E d x z

d p m

d

r b i
k n

  
  

 
k r                                 (1.16) 

   
0

ˆ expH ud
d p y m

n
r b i


  k r  .                                    (1.17) 

In these equations, pa  and pb  denote the field amplitudes in the metal and dielectric half-

spaces, respectively; m mn   and d dn   are the refractive indexes of metal and the 

dielectric material, respectively; and 0 0 0/    is the intrinsic impedance of free 

space. 

For the tangential component of the electric field to be continuous across the 

interface z = 0, Eqs. (1.14) and (1.16) yield [Polo et al. (2013)]  

m d
p p

m d

a b
n n

 
    ,                                                (1.18) 

and for the tangential component of the magnetic field to be continuous across the same 

interface, Eqs. (1.15) and (1.17) give 

p m p da n b n  .                                                     (1.19) 

Equations (1.18) and (1.19) together yield the condition 

2 2 0m d d mn n    ,                                                (1.20) 

with m
p p

d

n
b a

n
  . The field phasors for the SPP wave then are 
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   

   

   

   

0

0

0

0

ˆ ˆq
exp ,

ˆ exp

ˆ ˆq
exp ,

ˆ exp

u u
E

H u

u u
E

H u

m x z
m p m

m

m
m p y m

m d x z
d p m

d d

m
d p y m

r a i
k n

n
r a i

n
r a i

n k n

n
r a i









 
   

  


   



   
   

  


   


k r

k r

k r

k r

  .                    (1.21) 

Using Eqs. (1.12), (1.13), and (1.20),  

2 2
2 0 m
m

m d

k 


 



                                                     (1.22) 

and  

2 2
2 0 d
d

m d

k 


 



   ,                                                 (1.23) 

where and  m d   must be chosen to satisfy Eqs. (1.3). Here, m  and d  are taken as 

complex quantities. Combining Eqs. (1.12) and (1.22), the dispersion relation of the SPP 

wave is 

0
m d

m d

q k
 

 



  .                                                (1.24) 

The properties of the SPP wave can be examined by dispersion relation. Let us 

choose bulk silver as a metal whose relative permittivity is characterized by the Drude 

model (details are provided in Sec. 1.4.2) and air ( 1d  ) as a dielectric material. Figure 

1.5 shows the real and imaginary parts of the wavenumber q of the SPP wave as a function 

of  𝜔. 

The curve of Re(q) which lies to the right side of the light line is characteristic of 

a non-radiative SPP wave because Re(q) then exceeds the wavenumber 0k  in air. 

Therefore, the SPP wave can not be excited by direct illumination, and special phase 

matching techniques such as grating or prism coupling [Hooper and Sambles (2002), 
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Homola (2006), Otto (1968), Kretschmann and Raether (1968)] are required for the 

excitation of the SPP wave.  For p  , the curve of Re(q) lies to left and is characteristic 

of a radiative SPP wave which is not bound to the silver/air interface. A frequency gap 

exists between the radiative and non–radiative SPP waves with purely imaginary q  

prohibiting propagation [Maier (2007)]. The amplitude of the Im (q) is negligibly small 

for 0.65p p    .  Where p  is the angular plasma frequency and it is described in 

sec. 1.4.2.  

 

Figure 1.5: The dispersion diagram of the SPP wave guided by the silver/air interface. 

The solid line shows the real part, and the dotted line shows the imaginary part of the 

wavenumber q. 

1.3.2. Characteristics of SPP wave 

The penetration depth, defined as the perpendicular distance in a partnering material over 

which the amplitude of the electric and magnetic field reduces by a factor of 1/ e , is given 

in the two partnering materials as [Polo et al. (2013)] 

 d d1/ Im                                                  (1.25) 



Chapter 1                                                                                                            Introduction                                                                                                   

19 

 

and 

  m m1/ Im   .                                              (1.26) 

Generally, the penetration depths of the fields into the dielectric and the metal are around 

100 nm and 10 nm, respectively in the visible spectral regime [Zia et al. (2006)].  

The propagation distance of the SPP wave is defined as the distance along the 

propagation direction over which the amplitudes of the electric and magnetic fields 

decrease by a factor of 1/ e  and is given as [Polo et al. (2013)] 

 prop 1/ Im q  .                                            (1.27) 

The propagation distance of the SPP wave is typically in the range 10 100 m   for the 

silver/air interface in the visible spectral regime [Barnes et al. (2003)]. 

The phase speed of the SPP wave is given as  

 / Repv q .                                              (1.28) 

The phase speed of the SPP wave is lower than the speed of light in vacuum.  

1.3.3. Excitation of SPP wave at a planar interface 

Since the phase speed of the SPP wave is larger than the phase speed of a bulk plane wave 

in the dielectric partnering material, direct illumination of a metal/dielectric interface 

from the dielectric side cannot excite the SPP wave. Special phase matching techniques 

such as grating coupling [Hooper and Sambles (2002), Homola (2006)],  prism coupling 

[Otto (1968), Kretschmann and Raether (1968), Polo et al. (2013)], near-field excitation 

[Hecht et al. (1996)], and excitation by a highly focused laser beam [Kano et al. (1998)] 

are required.  The two most popular techniques, prism coupling and grating coupling, are 

briefly reviewed next. 

1.3.3.1 Prism-Coupled Configurations 
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An evanescent-wave-coupling mechanism [Polo et al. (2013)] facilitated by total internal 

reflection due to a prism is commonly used to excite the SPP wave. Figure 1.7 shows two 

common configurations for prism coupling: (1) Turbadar-Kretschmann-Raether and (2) 

Turbadar-Otto configurations.  

For the Turbadar-Kretschmann-Raether configuration, as shown in Fig. 1.6 (a), a 

thin metal film is coated on the top of a glass prism with a relative permittivity  prism  that 

exceeds the relative permittivity d  (which is assumed to be real and positive in this 

section). When the metal film is illuminated through the prism at an angle of incidence θ  

that is greater than the critical angle for total internal reflection, a part of the light is 

reflected into the prism, and a part can penetrate the metal by evanescent tunnelling. If 

the thickness of the metal film is very small, the evanescent wave propagates through the 

thin metal film into the partnering dielectric material to excite the SPP wave at the other 

face of the thin metal film. For the SPP wave to propagate at the metal/dielectric interface, 

the component of the evanescent wave’s wavevector parallel to the interface should be 

equal to that of the SPP wave.     

 

Figure 1.6: Schematics of prism-coupled configuration to excite SPP wave (a) Turbadar-

Kretschmann-Raether (b) Turbadar-Otto.  

The other typical configuration is the Otto configuration (Fig. 1.6 (b)), in which 

the prism is separated from the metal film by a thin dielectric gap. If a light wave is 

incident on the prism/dielectric interface at an angle of incidence θ  greater than the 
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critical angle [Polo et al. (2013)] for these two media, an evanescent wave is produced at 

prism/dielectric interface. If the thickness of the partnering dielectric material is smaller 

than the decay length of the evanescent wave’s field, at a certain value of θ , the 

component of the evanescent wave’s wavevector parallel to the dielectric/metal interface 

is matched with the SPP wavenumber, and the SPP wave is excited.  

1.3.3.2 Grating-Coupled Configuration 

The SPP wave can also be excited in the grating-coupled configuration by illuminating a 

periodically corrugated metal grating coated with the dielectric partnering material, as 

shown in Fig. 1.7. The illuminated light wave is diffracted, and if the tangential 

component of the wavevector of a certain order of diffracted light match the SPP 

wavenumber, the diffracted wave can couple with the SPP wave. The grating-coupled 

configuration also allows the reverse process: an SPP wave propagating at a metal-

dielectric interface can be radiated by the grating [Maier (2007)]. Grating coupling is 

currently being investigated for enhanced harvesting of solar energy in photovoltaic solar 

cells [Chen et al. (2010), Faryad and Lakhtakia (2011)].   

 

Figure 1.7: Schematic of SPP–wave excitation in the grating-coupled configuration. 

1.4. Relative-Permittivity Models for Dispersive Isotropic Materials 
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The models for the relative permittivity are functions of the angular frequency   in a 

specific range of free-space wavelength 0 . Each model involves parameters for the 

fitting of experimental data from the literature. The parameters are searched such that the 

difference between the experimental data and the model is minimal. The dispersive 

materials involved in this thesis for the propagation of the SPP waves are characterized 

by using well-established models such as the Lorentz, the Drude and the critical-point 

models.  

1.4.1. Lorentz Model 

The Lorentz model comes from the solution of the equation of an electron bound to a 

nucleus driven by an oscillating electric field E . The response is equivalent to the 

classical mass on a spring which has damping and an external driving force. It generates 

damped harmonic oscillations. The complex-valued relative permittivity of an isotropic 

material is given as [Wooten (1972), Kittel, (1974)] 

   
 

22 2
1 1

1 2 /

p

N i N
   

   


 
 

     
        

                 (1.29) 

where 1i    ,     is the dielectric susceptibility, and the constants  , ,p N  

represent the oscillator strength, resonance wavelength and the resonance linewidth of the 

material, respectively.  

The Lorentz model describes radiation absorption due to inter-band transitions. 

These are transitions for which the electron moves to a final state corresponding to a 

different band without changing its wavevector in the first Brillouin zone [Wooten 

(1972)].  

1.4.2. Drude Model 
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Based on the kinetic theory of electrons in a metal, the Drude model is based on the 

assumption that a metal has motionless positive ions and a gas of non-interacting electron. 

This simple model uses the classical mechanical theory of the free electron. It was 

constructed in order to explain the transport properties of conduction electrons in metals 

(due to intra-band transitions in a quantum-mechanical interpretation), conductive oxides 

and heavily doped semiconductors [Wooten (1972)].  

Since the conduction electrons are considered to be free, the Drude oscillator is an 

extension of the single Lorentz oscillator to a case where the restoring force and the 

resonance frequency are zero. The Drude model for the relative permittivity of a metal is 

given as [Johnson and Christy (1972)] 

   
 

2

1 1
/

p

i


   

  

  
     

  

                                   (1.30) 

where 
2

0

d e
p

e

N q

m



  is the plasma angular frequency and   is the relaxation time. Here 

 , ,d e eN m q  are the density of the conduction electron, mass of electron and electronic 

charge, respectively.  The Drude model describes well the optical properties of metals. 

1.4.3. Critical-Point Model 

The critical-point model was introduced in 1998 by Leng for fitting the relative 

permittivity of silicon [Leng et al. (1998)].  This model describes the interband transitions 

in a wide wavelength range. The critical-point model is also able to reproduce the 

dispersion of gold with higher accuracy [Etchegoin et al. (2006)]. It includes a phase 

factor and corresponds to first-order poles in the complex plane [Vial and Laroche (2007), 

Barchiesi et al. (2014)]. It is recommended to take two critical points terms [Etchegoin et 

al. (2006)]. The expression of the critical-point model for two critical point terms is given 

as [Deienga and John (2012)] 
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where  
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                                         (1.32) 

with , , ,and 
p p p pn n n n     as fitting coefficients. 

1.5. Finite-Difference Time-Domain Method 

Among the more popular and widely accepted numerical methods for the solution of 

boundary-value problem is the finite-difference time-domain (FDTD) method [Yee 

(1966), Elsherbeni and Demir (2016)]. Being a time-domain technique, the FDTD 

methods offers several advantages for frequency-domain research since the spectral 

characteristics of the boundary-value problem can be obtained with a single simulation. 

The FDTD method can easily handle composite geometries consisting of different types 

of materials, including dielectric, magnetic, frequency-dependent, nonlinear, and 

anisotropic materials. Also, the method is easy to implement using parallel computation 

algorithms.  

 

Figure 1.8: Cartesian components of the electric and magnetic field component in the 

YEE cell indexed as (𝑙, 𝑚, 𝑛).  
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The FDTD algorithm is constructed from the time-domain Maxwell equations. 

The computational domain is represented by a spatial grid and the Cartesian components 

of the electric and the magnetic fields are computed at certain discrete positions in space 

at discrete instances of time. The first derivatives with respect to time and space appearing 

in the Maxwell equations are approximated by second-order central differences 

[Elsherbeni and Demir (2016)]. A set of equations to calculate the values of fields at a 

future time instant from the values of the fields at a past time instant are thereby obtained, 

leading to a marching algorithm that simulates the evolution of the fields in time.  

The unit cell of the spatial grid is called a Yee cell. Rectangular Yee cells are used 

for a stepped approximation of the geometry with spatial resolution set by the dimensions 

of the unit cell. The discrete spatial positions of the field components, associated with a 

cell indexed as (𝑙, 𝑚, 𝑛), have a specific arrangement in the Yee cell, as demonstrated in 

Fig. 1.8 (for three-dimensional geometry). Yee cells having the dimension x  in the x-

direction, y in the y-direction, and z in the z-direction. For a time-sampling period 

t , the electric field components are sampled at time instants 0, t , 2 t , . . . , p t ; 

however, the magnetic field components are sampled at time instants  
1

2
t ,  

1
1

2
t

 
  

 

, . . . , 
1

2
p t

 
  

 
. The relevant FDTD updating equations for the three-dimensional 

problem if the material is linear, isotropic and non-dispersive are given as [Elsherbeni 

and Demir (2016)] 
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     (1.33) 
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Where, , ,  x y zE E E , , ,andx y z    are the electric field components and permittivity of the 

material in x, y, and z-direction, respectively. Similarly, , ,  x y zH H H , , , andx y z    are 

the magnetic field components and permeability of the material in x, y, and z-direction, 

respectively. 

In order to avoid instability in the simulation, space and time intervals must satisfy 

the Courant-Friedrichs-Lewy condition [Yee (1966), Elsherbeni and Demir (2016)] 

2 2 2
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1 1 1
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 .                                  (1.38) 
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The time-marching algorithm of the FDTD method is illustrated in Fig. 1.9. The 

first step in this algorithm is setting up the computational domain (including objects and 

the material those objects are made of) and the field sources. The field components need 

to be defined as arrays as well. The latter arrays are initialized with zeros, since the initial 

values of the fields are zeros and non-zero values are to introduced as the simulation 

proceeds. At every step of the time-marching iteration, the components of the magnetic 

field are updated for time instant (p + 0.5)Δ𝑡. Then the components of the electric field 

are updated for time instant (p + 1)Δ𝑡. As the computational domain has a finite size in 

space, specific boundary conditions such as absorbing boundary conditions [Berenger 

(1994)] have to be enforced on the spatial boundaries of the computational domain. After 

the fields are updated and boundary conditions are enforced, the current values of any 

desired field components can be captured and stored as output data, for real-time 

processing or post-processing to calculate some other desired parameters. The FDTD 

simulation is continued until some stopping criteria are satisfied. 

 

Figure 1.9: FDTD time-marching algorithm.  
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The FDTD method provides the approximation of the real behaviour of the field 

and introduces an error to the solution. The error varies with frequency, the spatial grid 

size, and direction of propagation of the wave. The difference of actual phase velocity 

and the phase velocities numerically obtained by the FDTD method is known as 

numerical dispersion. The temporal and spatial sampling periods Δt, Δx, Δy, and Δz are 

chosen sufficiently small to reduce the numerical dispersion error.  

1.6. Correlation Coefficients 

In order to assess the adequacy of a communication system, a suite of received signals 

have to be correlated against a suit of the corresponding transmitted signals. This is done 

by using advanced statistical techniques which would eventually allow the determination 

of optimal configurations for information transfer with acceptable fidelity. For example, 

consider a communication system in which points labeled R and S are identified as the 

points of transmission and reception, respectively, as shown in Fig.1.10. The transmitting 

signal has any specific shape such as the Gaussian pulse shown in Fig. 1.10.  The received 

signal consist of (1) a shifted and scaled version of the transmitted signal and (2) random 

noise in the form of distortions of the shape and duration resulting from the propagation 

of the signal in the medium.  The information which is transmitted in the form of the 

Gaussian pulse can be successfully recovered at the reception point if the received signal’s 

shape and duration are similar to those of the transmitted signal. The similarity between 

the transmitted and the received signals is assessed quantitatively using correlation 

coefficients.   

Correlation coefficients are used in statistics to measure the strength of the 

relationship between two quantities that vary in relation to a certain parameter. Of the 

several types of correlation coefficients used to determine the similarity between two 

signals, the Pearson correlation coefficient [Rodgers and Nicewander (1988)] is perhaps 
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the most widely used one. In this thesis, the fidelity of the information transfer by a pulse-

modulated carrier SPP wave is determined by the Pearson and the concordance 

correlation coefficients [Lin (1989)]. The Pearson correlation coefficient correlates the 

shapes and duration of two signals  x t  and  y t , whereas the concordance correlation 

coefficient correlates the agreement between the two signals.  

The Pearson correlation coefficient (
xyp ) is defined as [Rodgers and 

Nicewander (1988)] 
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where    ,x x t y y t    
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Figure 1.10: Schematic showing the different values of correlation coefficients. 

The range of 
xyp  is [-1, 1], where 

 +1 indicates a strong positive relationship (Fig. 1.10, case I),  

 0 indicates no relationship at all, (Fig. 1.10, case II) and  
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 -1 indicates a strong negative relationship (Fig. 1.10, case III).  

The concordance correlation coefficient is defined as [Lin (1989)]   

xy xyC P bC                                                       (1.41) 

where the bias factor 
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Since bC  is [0, 1] and 
xyP [-1, 1], it follows that 

xyC [-1, 1]. In general, the 

concordance correlation coefficient is less than the Pearson correlation coefficient [Liao 

et al. (2016)]. The closer that 
xyC is to unity, the stronger is the correlation or 

anticorrelation, as indicated by the sign of 
xyC . If  y t  is independent of the  x t , then 

0
xyC  .     

1.7. Literature Review 

Electromagnetic surface waves are investigated widely by researchers. Excellent 

introductions to ESWs and SPP waves can be found in various books [Polo et al. (2013), 

Maier (2007)] and numerous review papers [Pitarke et al. (2007), Barnes et al. (2003), 

Zayats et al. (2005), Zia at al. (2006)]. The pioneer experimental setups for facile 

excitation of SPP waves were introduced by Otto [Otto (1968)] and Kretschmann and 

Raether [Kretschmann and Raether (1968)].  
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In 1903, the existence of an electromagnetic surface wave guided by the planar 

interface of air/seawater was theoretically established [Uller (1903)]. Four years later, a 

similar theoretical study of electromagnetic wave propagation on the planar interface of 

air and ground in the microwave regime was proposed by Zenneck [Zenneck (1907)]. In 

1909, Sommerfeld further mathematically analyzed the electromagnetic wave 

propagation on the interface two different material [Sommerfeld (1909)] which is now 

known as the Zenneck wave [Hill and Wait (1980)].  In 1949, Bohm described plasma 

oscillations in metals exposed to electric fields [Bohm and Gross  (1949)a, Bohm and 

Gross  (1949)b]. Pierce observed the oscillations of ionic plasmas in vacuum tubes [Pierce 

(1949)]. The quantum of plasma oscillations is a quasiparticle dubbed the plasmon [Pines 

(1956)]. A few years later, the energy losses of electrons impinging on a metal film were 

explained in terms of electronic-plasma oscillations occurring at the film’s surfaces 

[Ritchie (1957)]. Two years later, in a series of electron energy-loss experiments Powell 

and Swan [Powell and Swan (1959)a, Powell and Swan (1959)b] demonstrated the 

existence of these collective excitations, the quanta of which Stern and Ferrell called the 

surface plasmon [Stern and Ferrell (1960)].  

Since then, there has been a significant advance in both theoretical and 

experimental investigations of surface plasmons. Classically, a train of surface plasmons 

is called a surface-plasmon wave. When the metal has a boundary with a dielectric 

material, the term surface-plasmon-polariton wave is used, as explained in Sec. 1.3. SPP 

waves have been employed in wide spectrum of applications such as optical biosensing 

[Nylander et al. (1982), Malmqvist (1993), Chien and Chenb (2004)], surface-plasmon 

resonance technology [Gordon and Ernst (1980), Schuster et al. (1993), Homola et al. 

(1999), Green et al. (2000)], scanning tunnelling microscopy [Berndt and Gimzewski 
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(1991)], and surface-plasmon microscopy [Rothenhausler and Knoll (1988), Flatgen et 

al. (1995)].  

Renewed interest in SPP waves has come from recent advances in the 

investigation of the electromagnetic properties of nanostructured materials [Pendry 

(1999)]. In order to enhance optical transmission, light is concentrated and channelled 

through a periodic arrays of holes in a dielectric slab [Leuthold et al. (2010), Chuttinan 

and Noda (2000)].  However, due to the diffraction limit, the size of the optical waveguide 

(dielectric photonics waveguide) is several wavelengths long. Hence a huge size 

mismatch between the large-scale of integrated photonics and the small scale of integrated 

electronics occurs [Leuthold et al. (2013), Sekhon and Verma  (2011)].  

The most attractive aspects of the SPP wave is that its fields are concentrated on 

the subwavelength length scale [Barnes et al. (2003)]. Thus, SPP-wave-based optical 

interconnects may overcome the limitations of the electronic and optical interconnects 

and can be used to transmit the information inside a microelectronic chip. SPP-wave-

based optical modulators and switches have also been successfully investigated [Krasavin 

and Zheludev (2004), Haffner et al. (2015)]. 

The research on SPP-wave-based circuits has made major advances in the past 

few years. Many researchers provided a perspective and possibilities of merging the 

electronics and photonics at the nanoscale by SPP wave [Brongersma et al. (2007), 

Schuller et al. (2010)]. In 2007, Conway compared electronic and SPP-wave-based 

interconnects and showed that latter offer higher interconnect density, shorter signal 

delay, and less cross talk compared to the former [Conway et al. (2007)]. In 2008, Kim 

demonstrated a chip–to–chip optical interconnect that exploits long-range SPP wave 

propagation [Kim et al. 2008].  
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SPP wave propagation along a continuous planar dielectric/metal interface is 

heavily investigated using Maxwell equations in the frequency domain [Abdulhalim et 

al. (2008), Maier (2007), Polo et al. (2013), Homola (2006)]. Very few papers on the 

scattering of an SPP wave by a discontinuity are available [Novitsky (2010), Foley et al. 

(2014)]. Recently Armin et al. investigated the SPP wave propagating on a surface 

discontinuity [Armin et al. (2018)]. 

1.8. Research Objective 

The objective of the research undertaken for this thesis is to investigate the propagation 

and scattering of pulse-modulated carrier SPP waves in the time-domain in an 

environment that represents an interconnect such as may be encountered in an IC. The 

motivation for investigating the transport of information using SPP waves is to overcome 

the limitations of electronic interconnects in a semiconductor chip.  

The research tasks carried out for this thesis are as follows:  

(i) Analysis of the effect of the carrier frequency on information transmission, 

as the constitutive properties of materials are frequency-dependent, in 

general. 

(ii) Comparison of the shapes and durations of the transmitted and received 

pulses, 

(iii) Determination of the effects of choosing different materials on information 

transmission.  

1.9. Organization of the Thesis 

In Chapter 2, information carried by a SPP wave across a semi-infinite gap on the metallic 

side of a planar metal/dielectric interface is numerically investigated in the time-domain. 

The Drude model is used for the relative permittivity of the metal and air is taken as the 

dielectric material. The FDTD method is used to compute the evolution of the 
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electromagnetic fields everywhere in a computational domain encompassing the guiding 

interface as well as the gap. The pulse-modulated carrier SPP wave is launched in the 

computational domain by applying the initial fields and proper boundary conditions to 

the launching plane. Due to the different spectral components of the signal having 

different phase speeds, the temporal profile of the signal broadens as it moves in the 

forward direction and amplitude reduction occurs due to the dissipation of 

electromagnetic energy in the metal. Information transfer by SPP wave is investigated: 

(1) for the abrupt termination of the metal to determine the characteristics of the launched 

signal and (2) when the metal is restored after the gap of width equal to the carrier 

wavelength in free space. The Pearson correlation coefficient of the forward-directed 

component of the Poynting vector at two points on either side of the gap is calculated. 

The received signal is found to be strongly and positively correlated with the transmitted 

signal, a promising result for information transfer through SPP-wave-based optical 

interconnects. 

In Chapter 3, transfer of information via a pulse-modulated carrier SPP wave 

around a concave corner formed by two planar metal/air interfaces is presented. The 

signal is launched along the first metal/air interface and received along the second 

metal/air interface.  The effects of the corner angle and carrier wavelength on information 

transmission are investigated. The dependency of the scattered field on the radial distance 

from the corner is also examined for two different corner angles. The signal received after 

traversing the concave corner is strongly and positively correlated with the transmitted 

signal.   

In Chapter 4, transport of information by a carrier SPP wave guided by a planar 

silicon/silver interface in the near-infrared spectral regime is presented. The pulse-

modulated carrier SPP wave encounters an upright wall between silicon and air or silicon 
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and silver. The transmission of the signal beyond this wall is simulated to determine the 

fidelity of information transfer beyond the wall, as assessed using the Pearson and the 

concordance correlation coefficients. Information can be transferred across a few tens of 

micrometers, which amounts to more than 600 transistors laid end-to-end in 14-nm 

technology chips.  

In Chapter 5, the research presented in the thesis is summarized. The major 

conclusions emanating from the research and their significance are highlighted. Finally, 

some lines of investigation for future research suggested.    

Appendix A describes the perfectly matched layer (PML) bordering the 

computational domain to prevent reflection back into the computation domain. The 

details of the incorporation of the PML in the FDTD method are presented. 

Appendix B includes the MATLAB programs that can be used to obtain the 

numerical results presented in Chapters 2, 3, and 4. 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 1                                                                                                            Introduction                                                                                                   

36 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


