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CHAPTER 6 

PROPOSED TECHNIQUES FOR THE 

REDUCTION OF DISCRETE TIME INTERVAL 

SYSTEMS 

6.1  INTRODUCTION 

 For discrete time interval systems also the same arguments as for the 

continuous interval systems hold as far as the need for reduced order modeling is 

concerned. Moreover the fast development and usage of small digital computers and 

the processors in the design and implementation of control systems have increased the 

importance of reduced order modeling methods for discrete systems. In this chapter 

some of the techniques developed in previous sections (4.4.1 & 5.3) for continuous 

interval systems are extended to the discrete time case.  

It is shown in [143] that the bilinear transformation can be used to extended Routh 

approximation, Hurwitz polynomial approximation, stability equation and retaining 

dominant poles to reduced z  transfer functions in the w domain. The major 

drawback that due to the nature of bilinear transformation, the initial value of the step 

response of reduced order models may not be zero even though the initial value of the 

step response of the original system is zero. This draw back has been removed in the 

proposed new methods by using linear transformation  1z w  . 

6.2  PRELIMINARIES 

Let the transfer function of a higher order discrete time interval systems be 
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The thk  order reduced model of  nG z is expressed as 
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6.3  ERROR INDEX 

The error index ' 'J is specified by the following algorithm 
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where y and ry  are the outputs of the original interval system  nG z and the reduced 

order interval system  kR z respectively at sampling instants pt , M is the number of 

sampling periods.  

 

 6.4   MODIFIED DIFFERENTIATION METHOD FOR DISCRETE TIME 

INTERVAL SYSTEMS. 

Algorithm to obtain reduced order discrete interval models 

Case1: Modified differentiation method 

Step 1: The first row formed from the original denominator coefficients of ( )nG z

(higher order coefficients). 

Step 2:  The second row is obtained by differentiation of row 1. 

Step 3: The third row is obtained by applying modified Routh approximation. This 

process will give reduced order denominator of order n-1.  

Step 4:  The fourth row is obtained by differentiation of row 3. 

Step 5: The fifth row can be obtained by modified Routh approximation using row 3 

and row 4. This will give reduced denominator of order n-2 and so on 

Case2: Appling linear transformation 

Step 1: Apply linear transformation  1z w  to the higher order system  nG z , 

then, the first row as is obtained as ( 1)nG w and then denominator coefficients can be 
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formed in terms of w, then the procedure to obtain reduced interval models are same 

as shown in Table 2. 

Step 2:  The second row is obtained by differentiation of row 1. 

Step 3: The third row is obtained by applying modified Routh approximation. This 

process will give reduced order denominator of order 1n .  

Step 4:  The fourth row is obtained by differentiation of row 3. 

Step 5: The fifth row can be obtained by modified Routh approximation using row 3 

and row 4. This will give reduced denominator of order 2n  and so on. 

Step 6: Substitute  1w z   in the reduced order model. 

For better understanding the above algorithm, Fig 6.1 is useful. 

G(z) G(w+1) R(w+1) R(z)

Apply modified 

differentiation 

method

Apply Linear 

transformation
Apply z 

=(w-1)

Higher 

Order TF Reduced 

order TF

 

Fig. 6.1.  Block diagram of modified differentiation method. 

The linear transformation  1z w  has the consequence of shifting all the poles and 

zeros of  nG s by a distance 1 unit in the complex plane. Thus for a stable or 

minimum phase system  nG z the poles and/or zeros of the corresponding  nG w  

need not lie within the unit circle. 
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Case3: Appling bilinear transformation 

Step 1: Apply bilinear transformation
1
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, where 1w  and then 

denominator coefficients can be formed in terms of w, then the procedure to obtain 

reduced interval models are same as shown in Table 2. 
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Step 2:  The second row is obtained by differentiation of row 1. 

Step 3: The third row is obtained by applying modified Routh approximation. This 

process will give reduced order denominator of order 1n .  

Step 4:  The fourth row is obtained by differentiation of row 3. 

Step 5: The fifth row can be obtained by modified Routh approximation using row 3 

and row 4. This will give reduced denominator of order 2n  and so on. 

Step 6: Substitute
1

1

z
w

z

 
  

 
in the reduced order model 

6.5    TRUNCATION BASED METHOD USING LINEAR 

TRANSFORMATION 

 

6.5.1   TRUNCATION METHOD  

Denominator of the reduced order polynomial is reduced by alpha truncation method 

Step 1: Reciprocal of higher order interval denominator polynomial 
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Step 2: Apply linear transformation  1z w   
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Step 3: Contraction of    table 

 

Table 6.1: Construction of    table 
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From the Table 6.2, we can obtain reduced order polynomial 
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The reduced order polynomial depends on the reciprocal of  ˆ 1kD w  

Step 4: Reciprocal transformation of  ˆ 1kD w  

Step 5: Substitute  1w z   in step 4. 

Numerator polynomial is reduced by using   truncation. 

Step6: Reciprocal of higher order numerator 
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Step 7: Apply linear transformation 
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Step 8: Contraction of   table 

Table 6.2: Construction of    table 

 1

0 0 0,b b b      

2

0 1 1,b b b      

1

2 2 2,b b b      

2

2 3 3,b b b      

............... 

...............  

................ 

.................  

1

0
1 1 1

0

,
b

a
     

3 1 1

0 2 1 1 2,b b a        3 1 1

2 4 1 1 4,b b a      
............... .................  

 

 

     

   

1 1

2

2 1 2 2

1 1 2

1 0

ˆ 1 1

ˆ 1 1

...............................

ˆ ˆ ˆ1 1 1

ˆ ˆ1 0; 1 0

k k k

D w w

D w w w

D w D w D w

where

D w D w



  

  



  

   




     


    



 

163 
 

  

2

0
2 2 2

0

,
b

a
     

 

4 2 2

0 2 2 2 2,b b a        ...................    

3

0
3 3 3

0

,
b

a
     

 

....................     

....................  ....................     

 

Let  ˆ 1kN w  denote the numerator of the thk Routh convergent respectively 

 

 

 

   (6.9) 

 

The reduced order depends up on the order of the system reciprocal of  ˆ 1kN w  

Step 9: Reciprocal transformation of step 8. 

Step 10: Substitute  1w z    

6.5.2    TRUNCATION AND FACTOR DIVISION METHOD  

The numerator polynomial is reduced by using factor division method 
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For mathematical simplification assume 
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The reduced transfer function is 
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6.6 ILLUSTRATIVE EXAMPLE  

Example 1: Consider a third order system describe by the transfer function 
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Case 1: Modified differentiation method  

 
     2 2

1,2.5 [8,10]
( )

2.6678,3.5006 3.2335,3.3668 0.8,0.85

z
R z

z z




 
     (6.19) 

Case 2: Modified differentiation method by using linear transformation 
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Case 3: Modified differentiation method by using bilinear transformation 
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By using bilinear transformation the obtained reduced order model is an non-

minimum phase system. The impulse response of the lower and upper bond of high-

order system and reduced order system obtained by using the propose method are 

shown in Fig. 6.2 and Fig. 6.3. The step response of the lower and upper bond of 

high-order system and reduced order system obtained by using the propose method 

are shown in Fig. 6.4 and Fig. 6.5. In Table 6.1, the comparison of error index has 

been verified and compared with the existing techniques. The important limitation of 

Kharitonov’s theorem is that it cannot be applied directly to discrete time interval 

polynomials. To overcome this limitation, bilinear transformation is used in the 

Kharitonov’s theorem for studying the stability of the for discrete time interval 

systems (Mastorakis [204]).  

Table 6.3: Comparison of Error index 

S. No Methods M “J” Error Index 

 

Lower Limit Upper Limit 

1 Proposed method 

(MDM) 

2 

107.2958 

134.1428 

2 Proposed method 

(MDM by using linear 

transformation) 

2 1.3428 7.4154 

3 Proposed method 

(MDM by using 

bilinear 

transformation) 

2 12.0829 26.5229 
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4 Proposed method 

(  truncation 

method) 

2 1.30965 0.5976 

5 Proposed method  

(  truncation and 

factor division 

method) 

2 38.6074 10  42.8088 10  

6 Ismail et. al., [178] 2 9.9116 2.4058 

7 Singh and Chandra 

[183] 

2 3.4249 0.7721 

 

 

Fig. 6.2. Comparison of impulse response (lower limit) 
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Fig. 6.3. Comparison of impulse response (upper limit) 

 

Fig. 6.4. Comparison of step response (lower limit) 
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Fig. 6.5. Comparison of step response (upper limit) 
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Case 5:   truncation and Factor division method 
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Fig. 6.6. Comparison of step response (lower limit) 

 

Fig. 6.7. Comparison of step response (upper limit) 
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Fig.6. 8. Comparison of impulse response (lower limit) 

 

Fig. 6.9. Comparison of impulse response (upper limit) 
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