CHAPTER 5

PROPOSED  TECHNIQUES FOR THE
REDUCTION OF CONTINUOUS TIME
INTERVAL SYSTEMS CONSIDERING
DEPENDENCY PROPERTY

5.1 INTRODUCTION

In the previous chapters, arithmetic rules are limited to addition, subtraction,
multiplication and division but in this chapter dependency property has been
considered in the proposed algorithms and attempt to overcome the drawback of the

existing techniques.

From the literature it is clear that dependency problem (Brain Hayes, [212]) is a major
complicated problem to the application of interval arithmetic. Let consider an

example for better understanding the square of an interval function,

[e‘,eﬂ2 {e‘,e*}{e‘,eﬂ seems to work in some cases, such as[2,4]2 =[4,16]. But
consider [—3,3]2 #[-9,9] the square of a real number cannot be a negative. The

correct answer is[-3, 3]2 =[0,9]. The extension of classical model order reduction

techniques to interval systems, dependency problem is one of the reasons for

obtaining an unstable reduced order model. Let us check the statement that

[-1,1]-[-1,1] might be zero, or not. There is a dependency issue, well known in

interval arithmetic (or reliable computing) circles, in which the lack of ability to
determine the “source” of an interval, i.e. whether two intervals are correlated, leads

to wider and therefore less useful results.

Consider an example, if the expression means the set {e —e|e e[-1, 1]} the answer is 0.

If the two intervals are different{e— f |e € [—1,1]} and f €[-1,1]then the answer is the

interval [-2,2].
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5.2 PROBLEM STATEMENT

LetG, (s)the transfer function of a higher order stable continuous interval systems

given by

. C[boby |+ b s+ BBy ST ON(s)
SO a e [aasrsa.a]s D) &

where a; <a; <ajforj=0,1,2,3,....,nand by <b <bfori=0,1,2,3,....,n-
lare lower bounds and upper bounds for denominator polynomial and numerator
polynomial of original interval transfer function. The order of the original system is n.
Let R, (s)be the lower order model of the stable original system in the form

R (s)= [ o0 J+[drdy Js ot Ay, dis |87 N () (5.2)

[cg,cg]+[cl’,cf]s+ ...... +[c;,c;]sk D (s)

where ¢; <c;<c{forj=0,1,2,3,....,kand d; <d, <d/fori=0,1,2,3,... k-

1 are lower bounds and upper bounds for the reduced order denominator polynomial
and numerator polynomial interval transfer function. The order of the reduced order

interval system is k. where k is the reduced order model and k({n .

53. MODIFIED DIFFERENTIATION METHOD FOR INTERVAL
SYSTEMS.

In this method, we introduced a modified differentiation method for model order
reduction of large scale interval systems. This method is an alternative method to the
existing differentiation method (see section 4.7.1). The proposed method has been
applied for both continuous and discrete time interval systems. The reduction of
discrete time interval systems is achieved by bilinear transformation. The proposed
method is significant because it is computationally simple and guaranteed stability.
The stability of the interval systems is tested with the Kharitonov’s theorem.

Numerical examples show the effectiveness of the proposed method.
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We extended the Lucas differentiation method [116] to interval systems with some
modifications. With examples, we proved that many existing methods [156, 157,161,
162, 169,172] fails to preserve the stability of reduced order systems whereas the
proposed method guarantee the stability of the reduced order interval systems. The
modified differentiation method is computationally simple to apply for both

continuous and discrete time interval systems.

Theorem 5.1: If the reduced order interval polynomial Rk(s) satisfies the

Kharitonov’s theorem then original interval polynomial D(s) is also stable.

Proof: Let the higher order polynomial

D(s)=[a,.a; |s"+|a, .a,, |s" +...+[ & ,a |s+[a;,a | (5.3)
be a higher order polynomial. Its differentiated polynomial is
D(s)=n[a,,a; |s"*+(n-1)| &, ,,a;, |s"* +..+| 8,3 ] (5.4)

To obtain the reduced order polynomial, modified Routh approximation has applied
by using the above two Egs. (5.3) and (5.4)

R(®)=[a ar, |s" +[a, &, |s"" +..+][a.a; | (5.5)

The construction of Modified Routh approximation has been given in Tablel.

Table.5.1: Modified Routh table

rowl | [a= 4+ | _[4a- o+ (o= At | _[a= o+t | | .o,
| A1, a11:| = |:an &, J _alz’alz] = [anfl’anfl]

row 2 :az_l, azﬂ = (n)[a,;, aﬂ :az‘z,azﬂ =(n —1)[ar;_l, a;_d ...........

row3 | 4= a+. |=[a at
A1 an—l:| = [331: Zj'131}

- + - + -----------
A2 an—2j| = [332 ’ aaz}

128



From Table 5.1, for better calculation, consider [a;_l,ag_l]:[agl,agl] ,

+

[a;_z, an_z] = [agz : agz] and so on.
Therefore,

(a,+a),)
[a';lva;l] = [a{zvafz}_ (aﬂf_a;l) [az},azé]:
2
(a+ay)

I:a32’a3+2:|:|:a131a1+3i|_(_—2+)|:323,a22 e

(5.6)

The midpoint of the interval |a,.a)]| and [a,,a;] is defined by

- +
_9 tay,

o, = mid ([aﬂ]) = aﬂ%aﬂ;azl = mid ([aZl]) 2

Note that the first line is the original polynomial D(s)and the second row is the

differentiation of the row 1. The third row is the reduced order polynomial obtained
by using modified Routh approximation. The third order coefficients are obtained by

the following relation

_ _ o _
|:aij ,aﬂ = [aifz,jﬂ’ aitz,j+1:| _—al 2 |:aifl,j+1’ ai+—1,j+1] (5.7)
i-11
where i=3 & j=1,2,3, . ..., n-1. To overcome the limitations of dependency property

midpoints are used in Egs. (5.6) and (5.7).

The reduced order interval polynomial is stable if it satisfies the Kharitonov’s

theorem. Based on Kharitonov’s theorem the reduced order interval polynomial

R (s) can be written as four polynomials
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A'(s
AZ

a, +a;s+ajs’+ajs’+a, st +a st +-- o
- + +a2 -3 -4 +ab
S)=a; +a/s+a;s’ +a;s° +a; s +ags’ +---- 58)

(s)=

(s)=
AS(S):ag+a{s+a£52+a3+83+a;s4+ag55+....

(s)=

A*(s)=aj +a/s+a,s’° +a;s°+a/s* +a s+

Let us bring in the hyper rectangle or box W of coefficients of the perturbed
polynomials

‘Pz{a‘aeD”,a(saisaﬁ,i=1,2,3,...,n—1} (5.9)

The four Kharitonov’s polynomials are constructed from two different even parts

Ader (s)and Aggs () and two different odd parts Ade (s)and Ag (s)defined below

At (s) =2y +a,5" +a,5" +a,s" +.... 510
AZ (s) =8, +a;s° +a,5" +as’ +.... '
and
A (s)=as+a;s’ +ais® +a;s  +....

(5.11)
Ani(s)=a;s+a;s’ +a;s’ +a,s" +....

The motivation for obtaining the subscripts “max” and “min” is as follows. Let an
arbitrary polynomial a(s) with its coefficients lying in the box ¥ and let a™"(s)be

its even part. Then

A (0)=2; —a,0" +a,0" —a;0° +---

a’(w)=2a,-a,0° +a,0" —ag0° + (5.12)
Avin(@)=8; —a,0° +a,0" —aj@® +----

so that

Ar (@) —2° (@)= (35 —3y)+(a8, — 2, )" +(a; —3, ) 0" +--- (5.13)
and
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a* (@)= Ay (@)= (a0 -3 ) +(a; —a, )" +(a, —a, )"+ (5.14)
Therefore

A (w)<a® ()< AL, (w);we[0,%] (5.15)
Similarly, if a* (s)denotes the odd parts of a(s), it can be verified that

A

(w)<a’(w)<Apy (@);0e[0,x] (5.16)

To proceed, note that the Kharitonov polynomials in Eq. (5.8) can be rewritten as

(5.17)

If all the polynomials with the coefficients in the box V' are stable, it is clear that the
Kharitonov polynomials in Eq. (5.8) must also be stable since their coefficients lie in

Y . For the conserve assume that the Kharitonov polynomials are stable, and let

a(s)=a""(s)+a>*(s)be an arbitrary polynomial with coefficients in the box ¥

with its even part ™ (s)and its odd parta®™ (s).

Since A'(s)and A?(s)are stable and Eq. (5.16) holds, we conclude from Lemma 1

applied toA*(s)and A?(s) in Eq. (5.17) that Aje (s)+a*“ (s)is stable.

min

Similarly Lemma 1 from Chapter 3 applied to A’(s)and A*(s) in Eq. (5.17), we

conclude that Ajer (s)+a% (s)is stable.

Now, since Eq. (5.15) holds, we can apply Lemma 2 from chapter 3 to the two stable
polynomials A%e (s)+a™ (s) and Afe'(s)+a*(s) and we conclude that

min

a™" (s)+a**(s)=a(s)is stable.
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Fig. 5.1: Comparison between proposed method and Differentiation method.

The procedure to obtain reduced order polynomials D, (s)and N, (s)in Eg. (5.2) as

follows.

Step 1: The first row as shown in Table 5.2 is formed from denominator coefficients

of G, (s) (higher order coefficients).

Step 2: The second row is obtained by differentiation of row 1.

Step 3: The third row can be obtained by applying modified Routh approximation

[166]. This process will give reduced order denominator of order n-1.
Step 4: The fourth row can be obtained by differentiation of row 3.

Step 5: The fifth row can be obtained by modified Routh approximation using row 3

and row 4. This will give reduced denominator of order n-2.

The algorithm is illustrated by the following table for obtaining a reduced order

denominator.
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Table 5.2: Denominator Table for Continues Time Interval Systems

row 1 (o a |=[a- a* - atl=la-.a.| |- -
| Q41 a-11] = [an » Ay ] [a12’a12:| = [an—l’ an—l:|

row 2 i

a1 azﬂ = (n)[ag, aﬂ [az_z : a2+2] =(n —1)[a;71, ah} ......

row 3 - a- -~ ax! |
| 331, a31:| [a32 » 832 ]

row 4 _a211a21—1:| = (n_1)[a3‘1,a;1] [a;z,azz] =(n —2)[ag2,a3+2] ......

row 5 — + — -1
I:a51’ a51] I:a52s asz:l

FOW B | e e

a.
— At - + i-21| .- +
[aij » & } = [ai—z,j+1’ ai—2,j+1] P |:ai—1,j+11 ai—l,j+1j|

i-1,1

(5.18)

wherei=3,5,7,9,...& j=12,3,.......
a ,+a’ a_, +a;
oy, =——2t 2L =" T s the middle point of the coefficients.
' 2 ' 2
[a‘ aﬂ—[a‘ a*}—ﬂ[a‘ a*}
31031 | | Y12 ™12 221922
“u (5.19)

The reduced denominator polynomial D, (s)for k =n—1 coefficients (row 3)

[Ck_,Cd = [3511 aérl:I;I:CI:—l’C;—l] = [agz’aé}; """ . (5.20)

Step 6: The first row as shown in Table 5.3 is formed from numerator coefficients of

G, (s) (higher order coefficients).

Step 7: The second row is obtained by differentiation of row 1 in Table 5.3.
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Step 8: The third row can be obtained by applying modified Routh approximation
[166]. This process will give reduced order numerator of order n-2.

Step 9: The fourth row can be obtained by differentiation of row 3 in Table 5.3.

Step 10: The fifth row can be obtained by modified Routh approximation using row 3
and row 4 in Table 5.3. This will give reduced denominator of order n-3.

The algorithm is illustrated by the following Table 5.3 for obtaining a reduced order

numerator.

Table 5.3: Numerator Table for Continues Time Interval Systems

row 1 [bl—l, bﬁ] - [bn:l, bntlJ [afz : afz} = [brlz,briz}

row 2 [bgl’bgl] = (n_l)[ar;—l’a;—l} [bz_wb;z] = (n_z)[ar:—Z’ar:fZ] o

row3 | [bg;, b3, | [ b, b3 |

oW 4 | Ty by |=(n-2) by by | | [bi b |=(n=3) b b |

owS | [ by, bgy | bs5 . be>

(017120

[by.b5 | =[ Bz b | _%[bi_lyi“’ ey
i-11 (5.21)

wherei=3,5,7,9,...& j=12,3,.......

+b" b, +b’
2l A-al. =22 L s the middle point of the coefficients.
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[b?a_b b3+1] - [bl_21b1+2:| _&[bz_z’b;z}
Iz
21 (5.22)

The reduced numerator polynomial N, (s) coefficients (row 3)

[dk‘_l, dE_l] = [b?,_l’ %]i[dk‘-z’dQ—z] = [ba_z’b;z} """ (5.23)

5.4 MODIFIED SCHWARZ APPROXIMATION METHOD FOR
INTERVAL SYSTEMS.

In this section, we propose a modified algorithm based on Routh approximation. This
algorithm can be considered as modification of many existing techniques such as
Schwarz approximation, Direct Routh Approximation Method (DRAM), and « - S
approximation. The existing model reduction methods (Routh approximation,
Modified Routh approximation or Dolgin- Zeheb method, y —& approximation, y
approximation, DRAM and Schwarz approximation) when extended to interval
systems cannot guarantees a stable reduced model but the proposed method
guaranteed the stability of the reduced model if the original system is stable and also

preserves the characteristics of the original system.

Algorithm for reduction of interval systems proceeds as follows.

The denominator table associated with G, (s) has the following structure

[anay]=[a.a] [aan]-[aa] . @l =28 ]
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[8;2,8,22] 0 [35‘4,8.;4} ......

anl

\
ETEN

where

|:aiJT' alJJrj| = |:aiil,j+1! ait1,j+l:| ; J =odd

_ _ _ _ (5.24)
[aij 135] = |:aifl,j+1’ aitl,j+l} _aifl,l[aifl,jJrZ'aitl,j+2:|; J=even
fori=2,3,4,....,n
[[ai,ﬁaifl}J
2
a_.
= b =—23i1=1,2,3,4,..,0 (5.25)
([ai,2 +a§2}l &
2

where ¢, is the midpoint of the interval .

To calculate ¢;, midpoints of the interval was used suggested by Dolgin [166] to

ensure and preserve each row of the point by point properties.
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The numerator table for G, (s) is formed with the even numbered rows the same as

the denominator table and has the following form

[bobi=[bob]  [b,b]=brb ]
[b0nby ] =[braby ]

(a3, ] 0 Eneal 0

(2] 0 [aea.]

where

|:b6,bJ:| = [biil,j+1’ bitl,j"'l}; j=odd (5.26)
[bijT ’ biﬂ B |:bi_—1,j+1’ bi+—1,j+1:| ~Bu [ai_—lvl‘fz ’ aitlv“z] ) =even |

fori=2,3,4,....n

137



2
b.
fa=7———=5=—"31=1234..,n (5.27)
[a,vz +ai'2} a2
2

where £, is the midpoint of the interval .

The numerator and denominator polynomial of the reduced order model are obtained

from the above array by deleting an even number of top rows i.e third row will give

polynomial of degree (n—l) and so on. The block diagram of the modified Schwarz

approximation is shown in Fig.5.2.

We noticed that dependency problem is a major complicated problem to the

application of interval arithmetic. For example squaring an interval. The evident

definition |y, y+]2 =ly"y"|x|y"y"| seems to work in some cases, such as
3, 4]2 =[9,16]. But what about[—4,4]2 =[-16,16] the square of a real number cannot

be a negative. The correct answer is [—4, 4]2 =[0,16]. We introduced midpoint in the

algorithm to overcome the dependency problem.

Proposed system framework: The procedure to obtain reduced order polynomials via

the proposed method named as modified Schwarz approximation (MSA) is as follows.
Step 1: Reciprocal transformation of the higher order interval system G, (S).

Step 2: The denominator table is obtained from the reciprocal transformation of
original denominator interval system as defined in the proposed method. In each even
numbered row, the denominator coefficients are separated by the inclusion of zero, at

every even numbered column.
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Step 3: The numerator table is obtained from the reciprocal transformation of original
numerator interval system together with the denominator table. The even row

elements are the same as those in the denominator table.

Step 4: The reduced order of the system is obtained from the reciprocal
transformation of the coefficients, corresponding to odd numbered rows in the

numerator and denominator tables.

Apply modified Aool , |
igher  APPlyreciprocal  Schwarz fB el
Ord%r TF transformation approximation Reduced

order TF

Re(s) |+

Y
Y

—G, (S) ~ G, (s) Ry (s)

Fig. 5.2. Block diagram of modified Schwarz approximation for continuous time interval systems

5.5 COMPARISON OF METHODS

The proposed method leads to obtain a stable reduced order interval system (ROIS), if
the original high-order interval system is stable. The significant features of the

proposed method can be summarized as follows

Q) The stability preservation of non-interval Routh based approximations
cannot be claimed for the interval Routh based approximation. The
chances of Routh based approximation [156, 157,161, 162, 169, 172]
failure increase with the order of the approximation. The proposed
methods guarantees the stability of the reduced order system.

(i)  The modified Schwarz approximation (MSA) is easily calculated
alternative to the Routh based approximation for producing stable reduced

order interval system.

(i)  The values of the integral square error (ISE) and integral absolute error

(IAE) are compared for the proposed methods and other well know
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5.6

existing order reduction techniques as given in Table 5.10 and showed

better accuracy with the original system.

ILLUSTRATIVE EXAMPLES

Example 5.1: Consider the higher order system reported in Shih feng Yang [165]

P(s)=[2.1,2.6]s° +[76.1,76.7]s° +[119.1,119.6]s* +[111.0,111.6]s®

+[71.8,72.3]s* +[31.0,31.7]s +[9.0,9.9] (5.28)
Casel: Modified differentiation method
Following the algorithm, Table 5.4 is constructed
Table 5.4: Modified Differentiation Method of example 5.1

row | Higher [2.1,2.6] |[76.1,76.7] [119.1,119.6] [9,9.9]
1

order
row | Differentiation | [12.6, [380.5, [476.4,478.4]
2 15.6] 383.5]
row | 5™order [12.17,13. |[39.35,40.18] | [55.18,
3 Modified 27] 56.08]

Routh
row | Differentiation | [60.85, [157.40,160.7 | [165.56,168.2
4 66.35] 3] 6]
row | 4™order [7.20, [21.53, [28.41,
5 Modified 8.70] 22.97] 29.11]

Routh
row | Differentiation | [28.81, [64.60, [56.83,
6 34.81] 68.92] 58.23]
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row | 3%order [4.30, [13.85, [15.086,
7 Modified 6.82] 14.90] 16.28]
Routh
row | Differentiation | [12.91, [27.71, [15.06,
8 20.47] 29.81] 16.28]
row | 2"order [3.92, [9.63,11.26] |[9,9.9]
9 Modified 5.67]
Routh

The fifth order reduced order polynomial is formed from the third row of Table 5.4

R,(5) =[12.1706,13.2707]5° +[39.3507,40.1841]s" + 55.1888, 56.0889]

+[47.6952,48.1952] 5 +[ 25.7156,26.5223]5+[9,9.9] (5.29)

The second order reduced order polynomial is formed from the ninth row of Table 5.4

P, (s) =[3.9205,5.6705]s? + [9.6356,11.2632] s +[9,9.9] (5.30)

The reduced order polynomial stability can be verified by Kharitonov theorem [192].
For above problem some of the existing methods [156, 157, 161, 162, 169, 172] fails
to give the stable reduced order polynomial. It is reported by Yang [165] that Dolgin
and Zeheb method [162] will result in an unstable reduced order model. Without
applying a modified Routh approximation, i.e extending directly differentiation
method proposed by Lucas [116] to interval systems. The reduced order system

cannot give any stability guarantee.
Case 2: Modified Schwarz approximation

The reciprocal transformation on P(s) yields
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P(s) =[9,9.9]s° +[31,31.7]s° +[71.8,72.3]s* +[111.0,111.6]s*
+[119.1,119.6]s? +[76.1,76.7]s +[2.1,2.6]

(5.31)
Following the algorithm in section 5.4, Table 5.5 is constructed
Table 5.5: Modified Schwarz Approximation of example 5.1
[9,9.9] [31,31.7] [71.8,72.3] [111,111.6]
[31,31.7] 0 [111,111.6] 0 e
[31,31.7] [38.1638, [111,111.6] [95.9826, | ......
38.8446] 96.6635]
[38.1638,38.8446] |0 [95.9826, o .
96.6635]
[38.1638,38.8446] | [40.3966, [95.9826, [73.9831,  |......
41.451] 96.6635] 74.9902]
[40.3966,41.451] |0 [73.9831,74.990 | 0
2]
[40.3966,41.451] | [25.4243, [73.9831, [2.1,2.6]
27.0528] 74.9902]
[25.4243,27.0528] | 0 [2.1,2.6]
[25.4243,27.0528] | [69.9279, [2.1,2.6]
71.7148]
[69.9279,71.7148] |0
[69.9279,71.7148] | [2.1,2.6]
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[2.1,2.6]

The italic elements in the table are required to be calculated.

From Table 5.5, we obtain the following polynomials (coefficients of the odd row in

reverse order)
The fifth order reduced order polynomial is formed from the third row of Table 5.5

R(s)=[2.1,2.6]s° +[76.1,76.7]s* +[95.9826,96.6635]s° +[111,111.6]5?

(5.32)
+[38.1638,38.8446] s +[31,31.7]

The fourth order reduced order polynomial is formed from the third row of Table 5.5

P,(s) =[2.1,2.6]s* +[73.9831,74.9902]s° +[95.9826,96.6635]°
+[40.3996,41.451] s +[38.1638, 38.8446] (5.33)

The third order reduced order polynomial is formed from the third row of Table 5.5

Py(s) =[2.1,2.6]s° +[73.9831 74.9902] 5% + [ 25.4243, 27.0528] s +[40.3996,41.451]  (5.34)

The second order reduced order polynomial is formed from the ninth row of Table 5.5

P,(s) =[2.1,2.6]s% +[69.9279, 71.7148]s +[ 25.4243,27.0528] (5.35)

The reduced order polynomial stability can be verified by Kharitonov theorem [192].
For above problem some of the existing methods [156, 157, 161, 162, 169, 172] fails

to give the stable reduced order polynomial.

Example 5.2: We consider a numerical example reported by Hwang and Yang [159],
where the » —s method of interval system proposed by Bandyopadhyay et al., [157]
fails to produce a fifth order reduced model. The proposed method successfully
provides a stable reduced order system. The sixth order polynomial is as follows

P(s) =[9,9.5]s° +[31,31.5]s° +[71,71.5]s* +[111.0,111.5]s*
+[119,119.5]s? +[76,76.5]s +[2,2.5]
143
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Casel: Modified differentiation method
The fifth order reduced order polynomial is

P,(s) =[4.7448,5.6615]s° +[23.3238, 24.1572]* +[55.2389, 55.9889] °

+[79.1587,79.8254]* +63.2475,63.8008] s+ [2, 25] (5.37)
The second order reduced order polynomial is
b, (s) =[6.7646,9.1468]s* +[24.8576,25.9643]s +[2, 2.5] (5.38)

The reduced order polynomial stability can be verified by Kharitonov theorem [192].
Case2 : modified Schwarz approximation

The reciprocal transformation on P(s) yields

P(s)=[2,2.5]s® +[76,76.5]s° +[119,119.5]s* +[111.0,111.5]s’
+[71,71.5]s% +[31,31.5]s+[9,9.5] (5.39)

Following the algorithm in section 5.4, Table 5.6 is constructed

Table 5.6: Modified Schwarz Approximation of example 5.2

[2,2.5] [76,76.5] [119,119.5] [111,111.5]

[76,76.5] 0 [111,111.5] o |...

[76,76.5] [115.710, [111,111.5] [70.0708, | ...
116.225] 70.5855]

[115.710,116.225] | 0 [70.0708, o |...

70.5855]

[115.710,116.225] | [87.7986, [70.0708, [27.8774, | ...

88.4677] 70.5855] 28.5416]
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[87.7986,88.4677] | O [27.8774, 0

28.5416]

[87.7986,88.4677] | [32.5156,33.9044] | [27.8774,28.5416] | [9,9.5]

[32.5156,33.9044] |0 [9,9.5]

[32.5156,33.9044] | [2.6663,4.6575] | [9,9.5]

[2.6663,4.6575] |0

[2.6663,4.6575] | [9,9.5]

[9,9.5]

The italic elements in the table are required to be calculated.

From Table 5.6, we obtain the following polynomials (coefficients of the odd row in

reverse order)
The fifth order reduced order polynomial is

P,(s) =[9,9.5]5° +[31 3L5]s* +[70.0708, 70.5855]s° +[111,111.5]s*

(5.40)
+[115.7108,116.2255]5+[76,76.5]

The fourth order reduced order polynomial is formed from the third row of Table 5.6

P,(5) =[9,9.5]* +[27.8774,28.5416]s" +[70.0708,70.5855]s°
+[87.7986,88.4677]s +[115.7108,116.2255] (5.41)

The third order reduced order polynomial is formed from the third row of Table 5.6

P,(5)=[9.95]s° +[27.8774,28.5417]5" + [32.5156,33.9044]5 +[87.7986,88.4677] 5 4y

The second order reduced order polynomial is formed from the ninth row of Table 5.6

P,(s) = [9,9.5]s” +[2.6663,4.6575]s +[32.5156,33.9044] (5.43)
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The reduced order polynomial stability can be verified by using Kharitonov theorem
[192].

Example 5.3: We consider an interval system given by [157,161]

[2,3]s% +[17.5,18.5]5 +[15,16]

G(s) = 5.45
)= 12,3]5 + [17,18]57 +[35,36]5 + [20.5, 2L.5] 6H)
Casel: Modified differentiation method
By using proposed method the second order model is obtained as
.25,9.7 15,1
R,(5) = [8.25,9.75]s +[15,16] (5.46)

[5.12,6.78] 5% +[23.12,24.45]5 +[20.5,21.5]

The step response of the high-order system and reduced order models by proposed
method is shown in Fig. 5.3 and Fig. 5.4. A comparison has been made with the

existing methods

Step Response

_aOD.S Original Lower limit TF .
2 | gL | Bandyopadhyay (1994)
?-4 - Bandyopadhyay (1997) 7]
< * “Yuri & Dolgin (2003)

03 + +G.V.K. R. Sastry (2000) ]

Chuan-ging and Yang (2010)
Pratheep (2013)
+——* Siva Kumar (2015)

©——"9ROIM (Proposed method MDM)

[ [ [
0 2 4 Time (séconds) 8 10 12

Fig.5.3. Step response for Modified Differentiation method (lower limit TF)
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Step Response
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Fig.5.4. Step response for Modified Differentiation method (upper limit TF)

The impulse response of the high-order system and reduced order models by proposed
method is shown in Fig. 5.5 and Fig. 5.6. A comparison has been made with the

existing methods

Impulse Response

2 I 0 T 0 I
Original Lower limit TF
Bandyopadhyay (1994)
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Fig.5.5. Impulse response for Modified Differentiation method (lower limit TF)
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Impulse Response
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Fig.5.6. Impulse response for Modified Differentiation method (upper limit TF)

The bode plot of the high-order system and reduced order models by proposed
method is shown in Fig. 5.7 and Fig. 5.8. A comparison has been made with the

existing methods

Phase (deg)

Magnitude (dB)

Bode Diagram

T T T U U] T T UL T T T T T

P NGO S

ttt+ttttt

+ + +
-10(— Original Lower limit TF
Bandyopadhyay (1994)
20— | ° * Bandyopadhyay (1997)
* +Yuri & Dolgin (2003)
30—~ |+ +G.V.K. R. Sastry (2000)
Chuan-ging and Yang (2010)
40 Pratheep (2013) |
+———+Sjva Kumar (2015) T
50— 9°ROIM (Proposed method MDM) : o ocoaxk r SRR,
0 - BtO~D D Brdodie ot + L, | ‘ T T T T : T T T T U
45
90—
-135& r r roro ¢t r r ror ororrrf r r r ¢ orororrf r r T S S S
10° 10" Frequency’ (rad/s) 10" 10°

Fig.5.7. Bode plot for Modified Differentiation method (lower limit TF)
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Bode Diagram
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Fig.5.8. Bode plot for Modified Differentiation method (upper limit TF)
The nyquist plot of the high-order system and reduced order models by proposed
method is shown in Fig. 5.9 and Fig. 5.10. A comparison has been made with the
existing methods
Nyquist Diagram
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Fig.5.9. Nyquist plot for Modified Differentiation method (lower limit TF)
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Nyquist Diagram

0.5 T T i [
04+
Original Upper limit TF
031 Bandyopadhyay (1994)
.@0'2 [ . * Bandyopadhyay (1997)
X
?i-l*' © “Yuri & Dolgin (2003)
.E O |+ +G.V.K. R. Sastry (2000)
(o))
rés).l — Chuan-ging and Yang (2010)
0.2 Pratheep (2013)
0.3 +——+Sjva Kumar (2015)
04l & ©ROIM (Proposed method MDM)
05 [ [ [ i i [ T i S,
-1 -0.8 -0.6 -0.4 -0.Real Axis 0 0.2 0.4 0.6
Fig.5.10. Nyquist plot for Modified Differentiation method (upper limit TF)
Table 5.7: Comparison of methods
Methods Overshoot (%) Rise time | Settling Steady state
(Sec) time (Sec)
Original 0.413 1.15 1.86 0.732
system
Proposed 0 1.36 2.7 0.732
method
Bandyopadhya | 2.13 1.36 3.47 0.732
y etal., [157]
Sastry et al., | 9.93 0.847 4.1 0.564
[161]
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Case 2: Modified Schwarz approximation

The second order reduced model is obtained directly from third row of Table 5.7 and
Table 5.8.

Table 5.8: Construction of denominator array of example 5.3

[20.5,21.5] [35,36] [17,18] [2,3]
[35,36] 0 [2,3]
[35,36] [15.2255,16.817] | [2,3]

[15.2255,16.817] |0

[15.2255,16.817] | [2,3]

[2,3]

Table 5.9: Construction of numerator array of example 5.3

[15,16] [17.5,18.5] [2,3]
[35,36] 0 [2,3]
[17.5,18.5] [0.6902,2.1268]

[15.2255,16.817] 0

[0.6902,2.1268]

[2,3]

The italic elements in the table are required to be calculated

[0.6902,2.1268]s+[17.5,18.5]

5.47
[2,3]57 +[15.2255,16.817]s +[35,36] (547

Iiz (S) =
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The above model has large steady state error in the step response. This can be
removed by comparing dc gain of the higher order system and reduced order model

which results in a gain factor K =[1.32,1.6056]. Finally the reduced order model is

K ([0.6902,2.1268]s+[17.5,18.5])
[2,3]s% +[15.2255,16.817]s +[35,36]
[0.9111,3.4148]s +[23.1,29.7036]
[2,3]s” +[15.2255,16.817]s +[35,36] (5.48)

Rz (S) =

The model obtained by Bandyopadhyay et al., [157] is as follows

[1.0091,1.2552]s +[0.8409,1.1168]
s? +[2.0181, 2.4430] s +[1.1492,1.5007] (5.49)

Rz (5) =

The model obtained by Sastry et al., [161] is given by

[0.94,1.35]5+[0.8409,1.168]
s? +[2.0181,2.4430]s +[1.1492,1.5007 (5.50)

Rz (S) =

A comparison of the step response of the model obtained by proposed method and
existing methods is shown in Fig. 5.11and 5.12. The comparison of the proposed
method with existing methods for a reduced model is given Table 5.9. The
comparison of error for lower limit and upper limit of the proposed method and

existing methods is given in Table 5.10.

Step Response
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Fig.5.11. Step response for Modified Schwarz Approximation (lower limit TF)
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Step Response
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Fig.5.12. Step response for Modified Schwarz Approximation (upper limit TF)

The impulse response of the high-order system and reduced order models by proposed
method is shown in Fig. 5.13 and Fig. 5.14. A comparison has been made with the

existing methods

Impulse Response
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Fig.5.13. Impulse response for Modified Schwarz Approximation (lower limit TF)
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Impulse Response
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Fig.5.14. Impulse response for Modified Schwarz Approximation (upper limit TF)

The bode plot of the high-order system and reduced order models by proposed
method is shown in Fig. 5.15 and Fig. 5.16. A comparison has been made with the

existing methods

Bode Diagram
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Fig.5.15. Bode plot for Modified Schwarz Approximation (lower limit TF)
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Bode Diagram
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Fig.5.16. Bode plot for Modified Schwarz Approximation (upper limit TF)

The nyquist plot of the high-order system and reduced order models by proposed
method is shown in Fig. 5.17 and Fig. 5.18. A comparison has been made with the

existing methods

Nyquist Diagram
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Fig.5.17. Nyquist plot for Modified Schwarz Approximation (lower limit TF)
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Fig.5.18. Nyquist plot for Modified Schwarz Approximation (upper limit TF)
Table 5.10: Comparison of methods
Methods Overshoot (%) Rise time (Sec) | Settling ~ time | Steady state
(Sec)
Lower | Upper | Lower | Upper | Lower | Upper | Lower | Upper
limit limit limit limit limit limit limit limit
Original system | 0.413 0.146 | 1.15 1.05 1.86 1.68 0.732 | 0.774
Proposed 0.103 15 0.693 | 0.666 |1.11 0.954 0.66 0.825
method
Bandyopadhyay | 0.0873 | 1.07 |2.04 |1.14 |3.33 1.76 1.09 0.774
[157]
Sastry [161] 9.92 1.49 0.847 | 1.09 4.1 1.64 0.564 | 0.778
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Table 5.11: Comparison of reduced order models of example 5.3

S.No | Methods ISE IAE
Lower Upper Lower Upper
limit limit limit limit

Bandypodayay et

1 al., [156] 0.00878538 | 8.87354E-05 | 0.264278635 | 0.009542405
Bandypodayay et

2 al., [157] 2.36319E-05 | 4.39626E-06 | 0.005001512 | 0.002108643
Dolgin and Zeheb

3 [162] 0.008876522 | 8.01481E-05 | 0.265977631 | 0.009118821

4 Sastry etal., [161] | 0.225673362 | 0.00949689 | 1.343641109 | 0.275550326
Chuan-ging and

5 Yang [171] 0.010817047 | 0.010362791 | 0.290640962 | 0.287856756
Pratheep et al.,

6 [176] 1.19446E-05 | 9.93222E-07 | 0.003594415 | 0.001092456
Siva Kumar et. al

7 [177] 2.93246E-06 | 0.001205443 | 0.002187121 | 0.098172255
Proposed Method

8 (MDM) 3.43581E-06 | 6.63119E-08 | 0.001861249 | 0.00025824
Proposed Method

9 (MSAM ) 0.041274021 | 0.052353858 | 0.574617967 | 0.647171326
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