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CHAPTER 5 

PROPOSED TECHNIQUES FOR THE 

REDUCTION OF CONTINUOUS TIME 

INTERVAL SYSTEMS CONSIDERING 

DEPENDENCY PROPERTY 

5.1  INTRODUCTION 

In the previous chapters, arithmetic rules are limited to addition, subtraction, 

multiplication and division but in this chapter dependency property has been 

considered in the proposed algorithms and attempt to overcome the drawback of the 

existing techniques.  

From the literature it is clear that dependency problem (Brain Hayes, [212]) is a major 

complicated problem to the application of interval arithmetic. Let consider an 

example for better understanding the square of an interval function, 

2

, , ,e e e e e e           
     

 seems to work in some cases, such as    
2

2,4 4,16 . But 

consider    
2

3,3 9,9    the square of a real number cannot be a negative. The 

correct answer is    
2

3,3 0,9  . The extension of classical model order reduction 

techniques to interval systems, dependency problem is one of the reasons for 

obtaining an unstable reduced order model. Let us check the statement that 

   1,1 1,1   might be zero, or not. There is a dependency issue, well known in 

interval arithmetic (or reliable computing) circles, in which the lack of ability to 

determine the “source” of an interval, i.e. whether two intervals are correlated, leads 

to wider and therefore less useful results.  

Consider an example, if the expression means the set   1,1e e e   the answer is 0. 

If the two intervals are different   1,1e f e   and  1,1f   then the answer is the 

interval  2,2 . 
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5.2  PROBLEM STATEMENT 

Let  nG s the transfer function of a higher order stable continuous interval systems 

given by 

 
 

 

1

0 0 1 1 1 1

0 0 1 1

, , ...... ,

, , ...... ,

n

n n

n n

n n

b b b b s b b s N s
G s

D sa a a a s a a s

      

 

     

            
 

            

   (5.1) 

where j j ja a a   for j = 0, 1, 2, 3, . . . . , n and i i ib b b   for i = 0, 1, 2, 3, . . . . , n-

1are lower bounds and upper bounds for denominator polynomial and numerator 

polynomial of original interval transfer function. The order of the original system is n. 

Let  kR s be the lower order model of the stable original system in the form  

 
 

 

1

0 0 1 1 1 1

0 0 1 1

, , ...... ,

, , ...... ,

k

k k k

k k
kk k

d d d d s d d s N s
R s

D sc c c c s c c s

      

 

     

            
 

            

  (5.2) 

where j j jc c c   for j = 0, 1, 2, 3, . . . . , k and 
i i id d d   for i = 0, 1, 2, 3, . . .  , k-

1 are lower bounds and upper bounds for the reduced order denominator polynomial 

and numerator polynomial interval transfer function. The order of the reduced order 

interval system is k. where k is the reduced order model and k n .  

5.3. MODIFIED DIFFERENTIATION METHOD FOR INTERVAL 

SYSTEMS. 

In this method, we introduced a modified differentiation method for model order 

reduction of large scale interval systems. This method is an alternative method to the 

existing differentiation method (see section 4.7.1). The proposed method has been 

applied for both continuous and discrete time interval systems. The reduction of 

discrete time interval systems is achieved by bilinear transformation. The proposed 

method is significant because it is computationally simple and guaranteed stability. 

The stability of the interval systems is tested with the Kharitonov’s theorem. 

Numerical examples show the effectiveness of the proposed method. 
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We extended the Lucas differentiation method [116] to interval systems with some 

modifications. With examples, we proved that many existing methods [156, 157,161, 

162, 169,172] fails to preserve the stability of reduced order systems whereas the 

proposed method guarantee the stability of the reduced order interval systems. The 

modified differentiation method is computationally simple to apply for both 

continuous and discrete time interval systems.  

Theorem 5.1:  If the reduced order interval polynomial  kR s  satisfies the 

Kharitonov’s theorem then original interval polynomial ( )D s is also stable. 

Proof: Let the higher order polynomial 

1

1 1 1 1 0 0( ) , , .... , ,n n

n n n nD s a a s a a s a a s a a        

 
                     (5.3) 

be a higher order polynomial. Its differentiated polynomial is

 1 2

1 1 1 1( ) , 1 , .... ,n n

n n n nD s n a a s n a a s a a       

 
                  (5.4) 

To obtain the reduced order polynomial, modified Routh approximation has applied 

by using the above two Eqs. (5.3) and (5.4) 

1 2

1 1 2 2 0 0( ) , , .... ,n n

k n n n nR s a a s a a s a a       

   
                 (5.5) 

The construction of Modified Routh approximation has been given in Table1. 

Table.5.1: Modified Routh table 

row 1 
11 11, ,n na a a a      

     12 12 1 1, ,n na a a a   
 

   
     . . . . . . . . . . .  

row 2  21 21, ,n na a n a a      
      22 22 1 1, 1 ,n na a n a a   

 
    
     . . . . . . . . . . .  

row 3 
1 1 31 31, ,n na a a a   
 

   
     2 2 32 32, ,n na a a a   

 
   
     . . . . . . . . . . .  
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From Table 5.1, for better calculation, consider 1 1 31 31, ,n na a a a   
 

   
   

,

2 2 32 32, ,n na a a a   
 

   
   

and so on. 

Therefore, 

 

 

 

 

11 11

31 31 12 12 22 22

21 21

11 11

32 32 13 13 23 22

21 21

2, , , ;

2

2, , , ;........

2

a a

a a a a a a
a a

a a

a a a a a a
a a

 

     

 

 

     

 



            




 


            
 



    (5.6) 

The midpoint of the interval 
11 11,a a    and 

21 21,a a    is defined by 

     11 11 21 21
11 11 21 21;

2 2

a a a a
mid a mid a 

    
    . 

Note that the first line is the original polynomial  D s and the second row is the 

differentiation of the row 1. The third row is the reduced order polynomial obtained 

by using modified Routh approximation. The third order coefficients are obtained by 

the following relation 

2,1
2, 1 2, 1 1, 1 1, 1

1,1

, , ,
i

ij ij i j i j i j i j

i

a a a a a a




     
       



      
     

   (5.7) 

where i=3 & j= 1,2,3, . . . . , n-1. To overcome the limitations of dependency property 

midpoints are used in Eqs. (5.6) and (5.7).  

The reduced order interval polynomial is stable if it satisfies the Kharitonov’s 

theorem. Based on Kharitonov’s theorem the reduced order interval polynomial

 kR s  can be written as four polynomials 
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 

 

 

 

1 2 3 4 5

0 1 2 3 4 6

2 2 3 4 5

0 1 2 3 5 6

3 2 3 4 5

0 1 2 3 5 6

4 2 3 4 5

0 1 2 3 5 6

s a a s a s a s a s a s

s a a s a s a s a s a s

s a a s a s a s a s a s

s a a s a s a s a s a s

     

     

     

     

        


        


        


        

          (5.8) 

Let us bring in the hyper rectangle or box  of coefficients of the perturbed 

polynomials 

 , , 1, 2,3,..., 1n

i i ia a a a a i n            (5.9) 

The four Kharitonov’s polynomials are constructed from two different even parts 

 max

even s and  min

odd s  and two different odd parts  max

odd s and  min

odd s defined below 

 

 

2 4 6

max 0 2 4 6

2 4 6

min 0 2 4 6

....

....

even

even

s a a s a s a s

s a a s a s a s

   

   

      


      

     (5.10) 

and 

 

 

3 5 7

max 1 3 5 7

3 5 7

min 1 3 5 7

....

....

odd

odd

s a s a s a s a s

s a s a s a s a s

   

   

      


      

     (5.11) 

The motivation for obtaining the subscripts “max” and “min” is as follows. Let an 

arbitrary polynomial  a s  with its coefficients lying in the box   and let  evena s be 

its even part. Then 

 

 

 

2 4 6

max 0 2 4 6

2 4 6

0 2 4 6

2 4 6

min 0 2 4 6

e

e

e

a a a a

a a a a a

a a a a

   

   

   

   

   

      


      


      

     (5.12) 

so that 

         2 4

max 0 0 2 2 4 4

e ea a a a a a a                (5.13) 

and 
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         2 4

min 0 0 2 2 4 4

e ea a a a a a a               (5.14) 

Therefore 

       min max ; 0,e e ea              (5.15) 

Similarly, if  odda s denotes the odd parts of  a s , it can be verified that 

       min max ; 0,o o oa              (5.16) 

To proceed, note that the Kharitonov polynomials in Eq. (5.8) can be rewritten as 

     

     

     

     

1

min min

2

min max

3

max min

1

max max

even odd

even odd

even odd

even odd

s s s

s s s

s s s

s s s

    


     


     


     

       (5.17) 

If all the polynomials with the coefficients in the box are stable, it is clear that the 

Kharitonov polynomials in Eq. (5.8) must also be stable since their coefficients lie in 

 . For the conserve assume that the Kharitonov polynomials are stable, and let 

     even odda s a s a s  be an arbitrary polynomial with coefficients in the box   

with its even part  evena s and its odd part  odda s . 

Since  1 s and  2 s are stable and Eq. (5.16) holds, we conclude from Lemma 1 

applied to  1 s and  2 s  in Eq. (5.17) that    min

even odds a s  is stable. 

Similarly Lemma 1 from Chapter 3 applied to  3 s and  4 s  in Eq. (5.17), we 

conclude that    max

even odds a s  is stable. 

Now, since Eq. (5.15) holds, we can apply Lemma 2 from chapter 3 to the two stable 

polynomials    max

even odds a s  and    min

even odds a s  and we conclude that 

   ( )even odda s a s a s  is stable.  
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Fig. 5.1: Comparison between proposed method and Differentiation method. 

The procedure to obtain reduced order polynomials  kD s and  kN s in Eq. (5.2) as 

follows. 

Step 1: The first row as shown in Table 5.2 is formed from denominator coefficients 

of ( )nG s (higher order coefficients). 

Step 2:  The second row is obtained by differentiation of row 1. 

Step 3: The third row can be obtained by applying modified Routh approximation 

[166]. This process will give reduced order denominator of order n-1.  

Step 4:  The fourth row can be obtained by differentiation of row 3. 

Step 5: The fifth row can be obtained by modified Routh approximation using row 3 

and row 4. This will give reduced denominator of order n-2. 

The algorithm is illustrated by the following table for obtaining a reduced order 

denominator. 
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Table 5.2: Denominator Table for Continues Time Interval Systems 

row 1 
11 11, ,n na a a a      

     12 12 1 1, ,n na a a a   
 

   
   

 . . . . . . 

row 2  21 21, ,n na a n a a      
      22 22 1 1, 1 ,n na a n a a   

 
    
     . . . . . . 

row 3 
31 31,a a  

   32 32,a a  
   . . . . . . 

row 4  41 41 31 31, 1 ,a a n a a       
      42 42 32 32, 2 ,a a n a a       

     . . . . . . 

row 5 
51 51,a a  

 
 52 52,a a  

 
 . . . . . . 

row 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . .  

 

 

   (5.18) 

where 3,5,7,9,....& 1,2,3,.......i j    

2,1 2,1 1,1 1,1
2,1 1,1;

2 2

i i i i
i i

a a a a
 

   
   

 

 
   is the middle point of the coefficients. 

11
31 31 12 12 22 22

21

, , ,a a a a a a




           
     

      (5.19)

 

The reduced denominator polynomial  kD s for 1k n   coefficients (row 3) 

31 31 1 1 32 32, , ; , , ;.....k k k kc c a a c c a a       
 

        
        `    (5.20) 

Step 6: The first row as shown in Table 5.3 is formed from numerator coefficients of

( )nG s (higher order coefficients). 

Step 7:  The second row is obtained by differentiation of row 1 in Table 5.3. 

2,1
2, 1 2, 1 1, 1 1, 1

1,1

, , ,
i

ij ij i j i j i j i j

i

a a a a a a




     
       



      
     
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Step 8: The third row can be obtained by applying modified Routh approximation 

[166]. This process will give reduced order numerator of order n-2.  

Step 9:  The fourth row can be obtained by differentiation of row 3 in Table 5.3. 

Step 10: The fifth row can be obtained by modified Routh approximation using row 3 

and row 4 in Table 5.3. This will give reduced denominator of order n-3. 

The algorithm is illustrated by the following Table 5.3 for obtaining a reduced order 

numerator. 

Table 5.3: Numerator Table for Continues Time Interval Systems 

row 1 
11 11 1 1, ,n nb b b b   

 
   
     12 12 2 2, ,n na a b b   

 
   
     . . . . 

row 2  21 21 1 1, 1 ,n nb b n a a   
 

    
   

 

 22 22 2 2, 2 ,n nb b n a a   
 

    
   

 

. . . . 

row 3 
31 31,b b  

   32 32,b b  
   . . . . 

row 4  41 41 31 31, 2 ,b b n b b       
      42 42 32 32, 3 ,b b n b b       

     . . . . 

row 5 
51 51,b b  

   52 52,b b  
   . . . . 

row 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   

 

2,1
2, 1 2, 1 1, 1 1, 1

1,1

, , ,
i

ij ij i j i j i j i j

i

b b b b b b




     
       



      
     

    (5.21)

 

where 3,5,7,9,....& 1,2,3,.......i j    

2,1 2,1 1,1 1,1
2,1 1,1;

2 2

i i i i
i i

b b b b
 

   
   

 

 
   is the middle point of the coefficients. 
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11
31 31 12 12 22 22

21

, , ,b b b b b b




           
     

      (5.22)

 

The reduced numerator polynomial  kN s  coefficients (row 3) 

1 1 31 31 2 2 32 32, , ; , , ;.....k k k kd d b b d d b b       
   

        
            (5.23) 

5.4 MODIFIED SCHWARZ APPROXIMATION METHOD FOR 

INTERVAL SYSTEMS. 

In this section, we propose a modified algorithm based on Routh approximation. This 

algorithm can be considered as modification of many existing techniques such as 

Schwarz approximation, Direct Routh Approximation Method (DRAM), and  

approximation. The existing model reduction methods (Routh approximation, 

Modified Routh approximation or Dolgin- Zeheb method,   approximation, 

approximation, DRAM and Schwarz approximation) when extended to interval 

systems cannot guarantees a stable reduced model but the proposed method 

guaranteed the stability of the reduced model if the original system is stable and also 

preserves the characteristics of the original system.  

Algorithm for reduction of interval systems proceeds as follows. 

The denominator table associated with  ˆ
nG s  has the following structure 

1,1 1,1 0 0, ,a a a a           1,2 1,2 1 1, ,a a a a           ......  1, 1 1, 1, ,n n n na a a a   

 
        

11  

1,2 1,2,a a       0  1,4 1,4,a a       ......  
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 2,1 2,1,a a     2,2 2,2,a a      ......   2, 2,,n na a     

21  

 2,2 2,2,a a       0  2,4 2,4,a a     ......  

 ......   ......   ......  

 ......   ......   ......  

 ,1 ,1,n na a     ,2 ,2,n na a     

1n  

 ,2 ,2,n na a     

where  

1, 1 1, 1

1, 1 1, 1 1,1 1, 2 1, 2

, , ;

, , , ;

ij ij i j i j

ij ij i j i j i i j i j

a a a a j odd

a a a a a a j even

   
   

     
        

    
   

       
     

  (5.24) 

for 2,3,4,....,i n    

 

,1 ,1

,1
,1

,2,2 ,2

2

; 1, 2,3, 4,....,

2

i i

i
i

ii i

a a

a
i n

aa a


 

 

  
  

 
   
  
  

 
 

      (5.25) 

where ,1i  is the midpoint of the interval . 

To calculate ,1i  midpoints of the interval was used suggested by Dolgin [166] to 

ensure and preserve each row of the point by point properties. 
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The numerator table for  ˆ
nG s  is formed with the even numbered rows the same as 

the denominator table and has the following form 

    1,1 1,1 0 0, ,b b b b            1,2 1,2 1 1, ,b b b b              ......

 1, 1, 1 1, ,n n n nb b b b   

 
        

11  

     1,2 1,2,a a          0    1,4 1,4,a a       0 ......  

2,1 2,1,b b     2,2 2,2,b b     ......   2, 1 2, 1[ , ]n nb b 

   

21  

 2,2 2,2,a a      0 2,4 2,4,a a     ......  

 ......   ......   ......  

 ......   ......   ......  

 ,1 ,1,n nb b     ,2 ,2,n nb b     

1n  

 ,2 ,2,n na a     

 

where  

1, 1 1, 1

1, 1 1, 1 1,1 1, 2 1, 2

, , ;

, , , ;

ij ij i j i j

ij ij i j i j i i j i j

b b b b j odd

b b b b a a j even

   
   

     
        

    
   

       
     

   (5.26)          

for 2,3,4,....,i n    
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,1 ,1

,1
,1

,2,2 ,2

2

; 1, 2,3, 4,....,

2

i i

i
i

ii i

b b

b
i n

aa a


 

 

  
  

 
   
  
  

 
 

     (5.27) 

where ,1i  is the midpoint of the interval . 

The numerator and denominator polynomial of the reduced order model are obtained 

from the above array by deleting an even number of top rows i.e third row will give 

polynomial of degree  1n and so on. The block diagram of the modified Schwarz 

approximation is shown in Fig.5.2. 

We noticed that dependency problem is a major complicated problem to the 

application of interval arithmetic. For example squaring an interval. The evident 

definition
2

, , ,y y y y y y           
     

 seems to work in some cases, such as

   
2

3,4 9,16 . But what about   
2

4,4 16,16    the square of a real number cannot 

be a negative. The correct answer is    
2

4,4 0,16  . We introduced midpoint in the 

algorithm to overcome the dependency problem. 

 

Proposed system framework: The procedure to obtain reduced order polynomials via 

the proposed method named as modified Schwarz approximation (MSA) is as follows. 

Step 1: Reciprocal transformation of the higher order interval system ( )nG s . 

Step 2:  The denominator table is obtained from the reciprocal transformation of 

original denominator interval system as defined in the proposed method. In each even 

numbered row, the denominator coefficients are separated by the inclusion of zero, at 

every even numbered column. 
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Step 3: The numerator table is obtained from the reciprocal transformation of original 

numerator interval system together with the denominator table. The even row 

elements are the same as those in the denominator table. 

Step 4:  The reduced order of the system is obtained from the reciprocal 

transformation of the coefficients, corresponding to odd numbered rows in the 

numerator and denominator tables. 

 nG s  ˆ
kR s  kR s

Higher 

Order TF

Apply reciprocal 

transformation

Apply modified 

Schwarz 

approximation

Apply reciprocal 

transformation Reduced 

order TF

 ˆ
nG s

 

Fig. 5.2. Block diagram of modified Schwarz approximation for continuous time interval systems 

5.5  COMPARISON OF METHODS 

The proposed method leads to obtain a stable reduced order interval system (ROIS), if 

the original high-order interval system is stable. The significant features of the 

proposed method can be summarized as follows 

(i) The stability preservation of non-interval Routh based approximations 

cannot be claimed for the interval Routh based approximation. The 

chances of Routh based approximation [156, 157,161, 162, 169, 172] 

failure increase with the order of the approximation. The proposed 

methods guarantees the stability of the reduced order system. 

(ii) The modified Schwarz approximation (MSA) is easily calculated 

alternative to the Routh based approximation for producing stable reduced 

order interval system.  

(iii) The values of the integral square error (ISE) and integral absolute error 

(IAE) are compared for the proposed methods and other well know 
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existing order reduction techniques as given in Table 5.10 and showed 

better accuracy with the original system. 

 

5.6  ILLUSTRATIVE EXAMPLES 

Example 5.1: Consider the higher order system reported in Shih feng Yang [165] 

       

     

6 5 4 3

2

( ) 2.1,2.6 76.1,76.7 119.1,119.6 111.0,111.6

                                              71.8,72.3 31.0,31.7 9.0,9.9

P s s s s s

s s

   

    (5.28) 

Case1: Modified differentiation method 

Following the algorithm, Table 5.4 is constructed 

Table 5.4: Modified Differentiation Method of example 5.1 

row 

1 

Higher  

order 

[2.1, 2.6] [76.1, 76.7] [119.1,119.6] . . . . 

. 

[9,9.9] 

row 

2 

Differentiation  [12.6, 

15.6] 

[380.5, 

383.5] 

[476.4,478.4] . . . . 

. 

 

row 

3 

5
th

order 

Modified 

Routh 

[12.17,13.

27] 

[39.35,40.18] [55.18, 

56.08] 

. . . . 

.  

 

row 

4 

Differentiation [60.85, 

66.35] 

[157.40,160.7

3] 

[165.56,168.2

6] 

. . . . 

.  

 

row 

5 

4
th

order 

Modified 

Routh 

[7.20, 

8.70] 

[21.53, 

22.97] 

[28.41, 

29.11] 

. . . . 

.  

 

row 

6 

Differentiation [28.81, 

34.81] 

[64.60, 

68.92] 

[56.83, 

58.23] 

. . . . 

.  
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row 

7 

3
rd

order 

Modified 

Routh 

[4.30, 

6.82] 

[13.85, 

14.90] 

[15.06, 

16.28] 

. . . . 

.  

 

row 

8 

Differentiation [12.91, 

20.47] 

[27.71, 

29.81] 

[15.06, 

16.28] 

  

row 

9 

2
nd

order 

Modified 

Routh 

[3.92, 

5.67] 

[9.63, 11.26] [9,9.9]   

 

The fifth order reduced order polynomial is formed from the third row of Table 5.4 

     

     

5 4 3

5

2

( ) 12.1706,13.2707 39.3507,40.1841 55.1888,56.0889

                                       47.6952,48.1952 25.7156,26.5223 9,9.9

P s s s s

s s

  

  
  (5.29)

 

The second order reduced order polynomial is formed from the ninth row of Table 5.4 

     2

2 ( ) 3.9205,5.6705 9.6356,11.2632 9,9.9p s s s  
    (5.30)

 

The reduced order polynomial stability can be verified by Kharitonov theorem [192]. 

For above problem some of the existing methods [156, 157, 161, 162, 169, 172] fails 

to give the stable reduced order polynomial. It is reported by Yang [165] that Dolgin 

and Zeheb method [162] will result in an unstable reduced order model. Without 

applying a modified Routh approximation, i.e extending directly differentiation 

method proposed by Lucas [116] to interval systems. The reduced order system 

cannot give any stability guarantee. 

Case 2: Modified Schwarz approximation 

The reciprocal transformation on ( )P s  yields  
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       

     

6 5 4 3

2

ˆ( ) 9,9.9 31,31.7 71.8,72.3 111.0,111.6

                                     119.1,119.6 76.1,76.7 2.1,2.6

P s s s s s

s s

   

  
  (5.31)

 

Following the algorithm in section 5.4, Table 5.5 is constructed 

Table 5.5: Modified Schwarz Approximation of example 5.1 

[9,9.9] [31,31.7] [71.8,72.3] [111,111.6] ….. 

[31,31.7] 0 [111,111.6] 0 …. .  

[31,31.7] [38.1638, 

38.8446] 

[111,111.6] [95.9826, 

96.6635] 

…… 

[38.1638,38.8446] 0 [95.9826, 

96.6635] 

0 ……. 

[38.1638,38.8446] [40.3966, 

41.451] 

[95.9826, 

96.6635] 

[73.9831, 

74.9902] 

…… 

[40.3966,41.451] 0 [73.9831,74.990

2] 

0  

[40.3966,41.451] [25.4243, 

27.0528] 

[73.9831, 

74.9902] 

[2.1,2.6]  

[25.4243,27.0528] 0 [2.1,2.6]   

[25.4243,27.0528] [69.9279, 

71.7148] 

[2.1,2.6]   

[69.9279,71.7148] 0    

[69.9279,71.7148] [2.1,2.6]    
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[2.1,2.6]     

 

The italic elements in the table are required to be calculated. 

From Table 5.5, we obtain the following polynomials (coefficients of the odd row in 

reverse order) 

The fifth order reduced order polynomial is formed from the third row of Table 5.5 

       

   

5 4 3 2

5( ) 2.1,2.6 76.1,76.7 95.9826,96.6635 111,111.6

                                                                  38.1638,38.8446 31,31.7

P s s s s s

s

   

 
  (5.32) 

The fourth order reduced order polynomial is formed from the third row of Table 5.5 

     

   

4 3 2

4 ( ) 2.1,2.6 73.9831,74.9902 95.9826,96.6635

                                          40.3996,41.451 38.1638,38.8446

P s s s s

s

  

     (5.33)
 

The third order reduced order polynomial is formed from the third row of Table 5.5 

       3 2

3( ) 2.1,2.6 73.9831,74.9902 25.4243,27.0528 40.3996,41.451P s s s s      (5.34) 

The second order reduced order polynomial is formed from the ninth row of Table 5.5 

     2

2( ) 2.1,2.6 69.9279,71.7148 25.4243,27.0528P s s s  
   (5.35)

 

The reduced order polynomial stability can be verified by Kharitonov theorem [192]. 

For above problem some of the existing methods [156, 157, 161, 162, 169, 172] fails 

to give the stable reduced order polynomial. 

Example 5.2: We consider a numerical example reported by Hwang and Yang [159], 

where the   method of interval system proposed by Bandyopadhyay et al., [157] 

fails to produce a fifth order reduced model. The proposed method successfully 

provides a stable reduced order system. The sixth order polynomial is as follows 

       

     

6 5 4 3

2

( ) 9,9.5 31,31.5 71,71.5 111.0,111.5

                                                 119,119.5 76,76.5 2,2.5

P s s s s s

s s

   

  
  (5.36) 



 

144 
 

Case1: Modified differentiation method 

The fifth order reduced order polynomial is  

     

     

5 4 3

5

2

( ) 4.7448,5.6615 23.3238,24.1572 55.2389,55.9889

                                        79.1587,79.8254 63.2475,63.8008 2,2.5

P s s s s

s s

  

  
  (5.37)

 

The second order reduced order polynomial is  

     2

2( ) 6.7646,9.1468 24.8576,25.9643 2,2.5p s s s  
   (5.38)

 

The reduced order polynomial stability can be verified by Kharitonov theorem [192].  

Case2 : modified Schwarz approximation 

The reciprocal transformation on ( )P s  yields  

       

     

6 5 4 3

2

ˆ( ) 2,2.5 76,76.5 119,119.5 111.0,111.5

                                                  71,71.5 31,31.5 9,9.5

P s s s s s

s s

   

      (5.39)
 

Following the algorithm in section 5.4, Table 5.6 is constructed 

Table 5.6: Modified Schwarz Approximation of example 5.2 

[2,2.5] [76,76.5] [119,119.5] [111,111.5] ….. 

[76,76.5] 0 [111,111.5] 0 …… 

[76,76.5] [115.710, 

116.225] 

[111,111.5] [70.0708, 

70.5855] 

…… 

[115.710,116.225] 0 [70.0708, 

70.5855] 

0 ……

. 

[115.710,116.225] [87.7986, 

88.4677] 

[70.0708, 

70.5855] 

[27.8774, 

28.5416] 

…… 
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[87.7986,88.4677] 0 [27.8774, 

28.5416] 

0  

[87.7986,88.4677] [32.5156,33.9044] [27.8774,28.5416] [9,9.5]  

[32.5156,33.9044] 0 [9,9.5]   

[32.5156,33.9044] [2.6663,4.6575] [9,9.5]   

[2.6663,4.6575,] 0    

[2.6663,4.6575] [9,9.5]    

[9,9.5]     

 

The italic elements in the table are required to be calculated. 

From Table 5.6, we obtain the following polynomials (coefficients of the odd row in 

reverse order) 

The fifth order reduced order polynomial is  

       

   

5 4 3 2

5( ) 9,9.5 31,31.5 70.0708,70.5855 111,111.5

                                                            115.7108,116.2255 76,76.5

P s s s s s

s

   

 
   (5.40)  

The fourth order reduced order polynomial is formed from the third row of Table 5.6 

     

   

4 3 2

4 ( ) 9,9.5 27.8774,28.5416 70.0708,70.5855

                                     87.7986,88.4677 115.7108,116.2255

P s s s s

s

  

     (5.41)
 

The third order reduced order polynomial is formed from the third row of Table 5.6 

       3 2

3( ) 9,9.5 27.8774,28.5417 32.5156,33.9044 87.7986,88.4677P s s s s   
 (5.42)

 

The second order reduced order polynomial is formed from the ninth row of Table 5.6 

     2

2( ) 9,9.5 2.6663,4.6575 32.5156,33.9044P s s s  
   (5.43)
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The reduced order polynomial stability can be verified by using Kharitonov theorem 

[192].  

 

Example 5.3: We consider an interval system given by [157,161] 

   
       

2

3 2

2,3 17.5,18.5 [15,16]
( )

2,3 17,18 35,36 20.5,21.5

s s
G s

s s s

 


  
    (5.45) 

Case1: Modified differentiation method 

By using proposed method the second order model is obtained as 

 
     2 2

8.25,9.75 [15,16]
( )

5.12,6.78 23.12,24.45 20.5,21.5

s
R s

s s




 
    (5.46) 

The step response of the high-order system and reduced order models by proposed 

method is shown in Fig. 5.3 and Fig. 5.4. A comparison has been made with the 

existing methods 

 

Fig.5.3. Step response for Modified Differentiation method (lower limit TF) 
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Fig.5.4. Step response for Modified Differentiation method (upper limit TF) 

The impulse response of the high-order system and reduced order models by proposed 

method is shown in Fig. 5.5 and Fig. 5.6. A comparison has been made with the 

existing methods 

 

Fig.5.5. Impulse response for Modified Differentiation method (lower limit TF) 
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Fig.5.6. Impulse response for Modified Differentiation method (upper limit TF) 

The bode plot of the high-order system and reduced order models by proposed 

method is shown in Fig. 5.7 and Fig. 5.8. A comparison has been made with the 

existing methods 

 

Fig.5.7. Bode plot for Modified Differentiation method (lower limit TF) 
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Fig.5.8. Bode plot for Modified Differentiation method (upper limit TF) 

The nyquist plot of the high-order system and reduced order models by proposed 

method is shown in Fig. 5.9 and Fig. 5.10. A comparison has been made with the 

existing methods 

 

Fig.5.9. Nyquist plot for Modified Differentiation method (lower limit TF) 
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Fig.5.10. Nyquist plot for Modified Differentiation method (upper limit TF) 

Table 5.7: Comparison of methods 

Methods Overshoot (%) Rise time 

(Sec) 

Settling 

time (Sec) 

Steady state 

Original 

system 

0.413 1.15 1.86 0.732 

Proposed 

method 

0 1.36 2.7 0.732 

Bandyopadhya

y et al., [157] 

2.13 1.36 3.47 0.732 

Sastry et al., 

[161] 

9.93 0.847 4.1 0.564 
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Case 2: Modified Schwarz approximation 

The second order reduced model is obtained directly from third row of Table 5.7 and 

Table 5.8. 

Table 5.8: Construction of denominator array of example 5.3 

[20.5,21.5] [35,36] [17,18] [2,3] 

[35,36] 0 [2,3]  

[35,36] [15.2255,16.817] [2,3]  

[15.2255,16.817] 0   

[15.2255,16.817] [2,3]   

[2,3]    

 

Table 5.9: Construction of numerator array of example 5.3 

[15,16] [17.5,18.5] [2,3] 

[35,36] 0 [2,3] 

[17.5,18.5] [0.6902,2.1268]  

[15.2255,16.817] 0  

[0.6902,2.1268]   

[2,3]   

 

The italic elements in the table are required to be calculated 

   
     2 2

0.6902,2.1268 17.5,18.5
ˆ ( )

2,3 15.2255,16.817 35,36

s
R s

s s




 
     (5.47) 
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The above model has large steady state error in the step response. This can be 

removed by comparing dc gain of the higher order system and reduced order model 

which results in a gain factor  1.32,1.6056K  . Finally the reduced order model is 

    
     

   
     

2 2

2

0.6902,2.1268 17.5,18.5
( )

2,3 15.2255,16.817 35,36

0.9111,3.4148 23.1,29.7036

2,3 15.2255,16.817 35,36

K s
R s

s s

s

s s




 




       (5.48)

 

The model obtained by Bandyopadhyay et al., [157] is as follows 

   
   2 2

1.0091,1.2552 0.8409,1.1168
( )

2.0181,2.4430 1.1492,1.5007

s
R s

s s




      (5.49)

 

The model obtained by Sastry et al., [161] is given by 

   
   2 2

0.94,1.35 0.8409,1.168
( )

2.0181,2.4430 1.1492,1.5007

s
R s

s s




      (5.50)

 

A comparison of the step response of the model obtained by proposed method and 

existing methods is shown in Fig. 5.11and 5.12. The comparison of the proposed 

method with existing methods for a reduced model is given Table 5.9. The 

comparison of error for lower limit and upper limit of the proposed method and 

existing methods is given in Table 5.10. 

 

Fig.5.11. Step response for Modified Schwarz Approximation (lower limit TF) 
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Fig.5.12. Step response for Modified Schwarz Approximation (upper limit TF) 

The impulse response of the high-order system and reduced order models by proposed 

method is shown in Fig. 5.13 and Fig. 5.14. A comparison has been made with the 

existing methods 

 

Fig.5.13. Impulse response for Modified Schwarz Approximation (lower limit TF) 
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Fig.5.14. Impulse response for Modified Schwarz Approximation (upper limit TF) 

The bode plot of the high-order system and reduced order models by proposed 

method is shown in Fig. 5.15 and Fig. 5.16. A comparison has been made with the 

existing methods 

 

Fig.5.15. Bode plot for Modified Schwarz Approximation (lower limit TF) 
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Fig.5.16. Bode plot for Modified Schwarz Approximation (upper limit TF) 

The nyquist plot of the high-order system and reduced order models by proposed 

method is shown in Fig. 5.17 and Fig. 5.18. A comparison has been made with the 

existing methods 

 

Fig.5.17. Nyquist plot for Modified Schwarz Approximation (lower limit TF) 
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Fig.5.18. Nyquist plot for Modified Schwarz Approximation (upper limit TF) 

 Table 5.10: Comparison of methods  

Methods Overshoot (%) Rise time (Sec) Settling time 

(Sec) 

Steady state 

 Lower 

limit 

Upper 

limit 

Lower 

limit 

Upper 

limit 

Lower 

limit 

Upper 

limit 

Lower 

limit 

Upper 

limit 

Original system 0.413 0.146 1.15 1.05 1.86 1.68 0.732 0.774 

Proposed 

method 

0.103 1.5 0.693 0.666 1.11 0.954 0.66 0.825 

Bandyopadhyay 

[157] 

0.0873 1.07 2.04 1.14 3.33 1.76 1.09 0.774 

Sastry [161] 9.92 1.49 0.847 1.09 4.1 1.64 0.564 0.778 
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Table 5.11: Comparison of reduced order models of example 5.3 

S.No  Methods  ISE  IAE  

Lower 

limit  

Upper 

limit  

Lower 

limit  

Upper 

limit  

1 

Bandypodayay et 

al., [156] 0.00878538 8.87354E-05 0.264278635 0.009542405 

2 

Bandypodayay et 

al., [157] 2.36319E-05 4.39626E-06 0.005001512 0.002108643 

3 

Dolgin and Zeheb 

[162] 0.008876522 8.01481E-05 0.265977631 0.009118821 

4 Sastry et al., [161] 0.225673362 0.00949689 1.343641109 0.275550326 

5 

Chuan-qing and 

Yang [171] 0.010817047 0.010362791 0.290640962 0.287856756 

6 

Pratheep et al., 

[176] 1.19446E-05 9.93222E-07 0.003594415 0.001092456 

7 

Siva Kumar et. al 

[177] 2.93246E-06 0.001205443 0.002187121 0.098172255 

8 

Proposed Method 

(MDM )  3.43581E-06 6.63119E-08 0.001861249 0.00025824 

9 

Proposed Method 

(MSAM ) 0.041274021 0.052353858 0.574617967 0.647171326 

 

 


