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CHAPTER 3 

EXISTING TECHNIQUES ON MODEL ORDER 

REDUCTION OF INTERVAL SYSTEMS 

3.1  INTRODUCTION 

The model reduction techniques for both continuous and discrete time interval 

systems [156]- [184] have received a great deal of attention. Bandyopadhyay et al., 

[156] has extended Routh-Pade approximation to interval systems for reducing 

higher-order continuous interval systems. The reduced order denominator polynomial 

is obtained by direct truncation of the Routh table, and the lower-order numerator 

polynomial is obtained by matching the coefficients of the power series expansions of 

the interval systems. Later the concept of γ-δ Routh approximation has been extended 

to continuous interval systems by Bandyopadhyay et al., [157]. The following is the 

limitations of above two Routh based approximations claimed by Hwang and Yang 

[159]: (i) Interval Routh extension formula cannot guarantee the successes in 

generating a full interval Routh array. (ii) Some interval Routh approximation may 

not be robustly stable, even if the original interval system is stable. To reduce the 

computational effort, γ Table formulation [161] has been introduced, instead of γ-δ 

Table formulation [157]. However, the limitation of this method is that, they obtained 

reduced interval model may be unstable for the stable original interval model. Later, 

Dolgin and Zeheb [162] have proven that generalized Routh algorithm to interval 

systems does not guarantee the stability of the reduced order system. To overcome 

this problem, Dolgin and Zeheb [162] modified the generalized Routh array and 

claimed that this method could guarantee the stability of the reduced order system. 

Later, Yang [165] proved that Dolgin and Zeheb [162] method does not guarantee the 

stability of the reduced order interval system.  To overcome this problem, Dolgin 

[166] has proposed a modified method of Routh algorithm for obtaining stable 

reduced order models. It is noted that there is a limitation in this method, that the 

interval arithmetic subtraction rule has been changed to obtain stable reduced order 

models. To overcome the limitation of the existing methods [156]-[157], [162], [166] 

Bandyopadhyay et al., [170] introduced a new method based on stable   Routh 
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approximation of interval systems using Khartitonov polynomials, which guarantee 

the stability of the reduced order systems. However, this method does not require any 

interval arithmetic rules. Another alternative method has also been proposed to 

overcome the limitation of the    Routh approximation, which is based on stable 

Routh- Pade approximation [171]. Ismail [157] and Shingare [167] extended some 

fixed model reduction techniques to interval systems. In this chapter only few existing 

techniques has been discussed which are highly motivated for this to develop new 

algorithms in this thesis. 

3.2 PROBLEM FORMULATION 

Let the transfer function of a higher order continuous interval systems be  
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where 1, 1,[ , ]i ib b 
for i = 1 to n and 1, 1,[ , ]i ia a 

for i = 1 to n+1 are the uncertain parameters. 

The reduced order model ( )kR s is expressed as 
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where k = 1 to n-1 

The rules of the interval arithmetic have been defined in Chapter 1. 

3.3 ROUTH BASED APPROXIMATIONS 

3.3.1 Direct Routh Approximation for Interval Systems  

This method is used for the model reduction of the order of interval systems. The 

denominator of the reduced model is obtained by a direct truncation of the Routh table 

of the interval systems. The numerator of the reduced polynomial is obtained by 

matching the coefficients of power series expansions of the interval system [156]. 
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The denominator of model order transfer function can be constructed from the Routh 

stability array of the denominator of the system transfer function  kD s as follows. 

The Routh Table of the denominator of the interval system is given below 

Table 3.1: The Routh table for the denominator of the interval system 
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From the above Table 3.1, the first two rows can be obtained from original systems. 

The remaining rows can be obtained from Eq. (3.3) 
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3.3.2    Approximation for Interval Systems  

The method represents the    Routh approximation [157] for interval systems. The 

higher order interval systems are evaluated for the intervals ' s  and 's and then 

reduced order approximant is obtained by retaining the first k, interval ' s  and 's .  

For reducing the higher order denominator interval polynomial form Eq. (3.1), 

construct   Table 3.2. 

Table 3.2:   table 
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The elements for denominator polynomial
, ,,i j i jx x  

   can be obtained by applying the 

algorithm as shown in Eq. (3.4) 
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where 2,3,4,..., 1i n  and 0,1,2,3,...., 1j n   
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The interval parameters can be defined as the ratios of the first column elements of 

the above Routh like table as given in 
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For reducing the higher order numerator interval polynomial form Eq. (3.1), construct 

   table. 

Table 3.3:   table 
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The elements for numerator polynomial
, ,,i j i jy y  

   can be obtained by applying the 

algorithm as shown in Eq. (3.6) 
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where 2,3,4,..., 1i n  and 0,1,2,3,...., 1j n   



 

42 
 

The interval parameters can be defined as the ratios of the first column elements of 

the above Routh like table as given in 
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The reduced order model  kR s  can be written as 
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The expression for  kD s  and  kN s  is the same as for the fixed system with the 

exception that ' s  and 's  are intervals.  The first and second order Routh 

approximates are 
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3.3.3   Approximation for Interval Systems 

This method is computationally simple and it requires only  table [161] instead of 

both   table [157]. 

The reduced denominator is 

For k = 1 
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For k = 2 
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Therefore the generalised algorithm is 
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The reduced numerator polynomial with k n
 

For k =1 
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For k = 2 
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The generalised algorithm is 
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The interval coefficients ,k k   
 where k = 1, 2, 3, .. . . , n-1 are obtained from the 

proposed ,      Routh type interval table.  

Table 3.4: ,   
  -table 
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for i odd : 

 , , ; 1,3,5,....i i i iQ Q P P i            
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3.3.4 Modified Routh Approximation for Interval Systems 

This method is an alternative method for direct Routh approximation (refer 3.3.1). It 

is shown that the existing generalization of the direct Routh approximation fails to 

produce a stable system. The modified Routh approximation pioneered by Dolgin and 

Zeheb [162]. 

The method is similar to the 3.3.1, but considers the following changes. Firstly, 

rewrite the formula (Eq. (3.3)) as follows 
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Example 3.1: Consider a seventh order polynomial 

      7 6 5 4 3 2

7 9 31,34 71 111 109 76,83 12P s s s s s s s s       
 (3.22)

 

Case1: Direct Routh Approximation [156] 

Based on Table 3.1, construct direct Routh approximation for example 3.1 
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Table 3.5: Direct Routh Approximation of example 3.1 

 1,1   31,34   111,111   76,83  

 9,9   71,71   109,109   12,12  

 23.11,26.11   98.89,98.89   74.67,81.67   

 28.76,41.71   68.33,94.07   12,12   

 9.3,88.51   43.98,108.81

 

  

 419.68,759.28

 

 12,12    

 196.60,111.34

 

                

 12,12
 

   

 

The first column of the last two rows consists of two negative elements. The reduced 

order polynomial will not be stable. 

Case2: Modified Routh Approximation [162] 

Based on Eq. (3.21) construct Table 3.6. 

Table 3.6: Modified Routh Approximation of example 3.1 

 1,1   31,34   111,111   76,83  

 9,9   71,71   109,109   12,12  

 23.11,26.11   98.89,98.89   74.67,74.67   

 34.84,34.84   79.14,81.70   12,12   

 41.18,42.98   66.19,73.19    

 18.54,26.90   12,12    

 43.96,50.96
 

                

 12,12
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From Table 3.6, we can obtain 6
th

 order and 5
th

 order polynomials  
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(3.24) 

The stability of the above polynomial can be verified by Kharitonov’s theorem [192]. 

Example 3.2: Consider a sixth order polynomial [165] and reduced the system using 

modified Routh approximation 
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6
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2.1,2.6 76.1,76.7 119.1,119.6 111.0,111.6

                                             71.8,72.3 31.0,31.7 9.0,9.9

P s s s s s

s s

   

   (3.25) 

Table 3.7: Modified Routh Approximation of example 3.2 

 2.1,2.6   119.1,119.6   71.8,72.3   9.0,9.9  

 76.1,76.7   111.0,111.6   31.0,31.7   

 115.28,116.57   70.72,71.45   9.0,9.9   

 63.46,65.43   24.41,25.83    

 23.28,28.45   9.0,9.9    

 3.42,5.76     

 9.0,9.9
 

                

 

From Table 3.7, we see that the sixth row of first columns have negative element. 

Therefore the reduced order polynomial will not be stable. 

Remark 3.1: From the above two example problems we can conclude that direct 

Routh approximation and modified approximation cannot give the guarantee the 

stability of reduced order interval systems. To overcome this problem Dolgin [166] 

suggested some conditions to improve the modified Routh approximation. 
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3.3.5 Improved Modified Routh Approximation for Interval Systems 

From the previous method it is shown that the generalization of direct Routh 

approximation and modified Routh approximation for interval fails to produce stable 

systems. So to improve the modified Routh approximation, Dolgin [166] formulated 

additional conditions. The failure causes due to the coefficients of the member 

polynomials of the high-order original stable interval polynomial through the Routh 

table generated algorithm for fixed coefficients polynomials. Therefore, the stability 

of the reduced order interval polynomials cannot be guaranteed. 

Condition : To Shrink the uncertainty of the elements  
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     (3.27) 

2,1i  and 1,1i  are the midpoints of the coefficients. 

This condition is present to ensure the consistency of all elements of each pair of 

rows, except the first elements of each pair of rows, expect the first element of the 

first row of each pair, which is treated in the second condition. 

The condition is easily satisfied by the following redefinition of interval subtraction in 

Eq. (3.26) to be 

, , ,e e f f e f e f               
           (3.28) 

Example 3.3: Consider a seventh order polynomial 

 
           

     

7 6 5 4 3

7

2

1,2 9,10 31,35 71,72 111,112

                                       109,110 76,84 12,13

P s s s s s s

s s

    

    (3.29)
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Using the algorithm 3.3.5, we obtain 

Table 3.8: Improved Modified Routh Approximation of example 3.3 

 1,2   31,35   111,112   76,84  

 9,10   71,72   109,110   12,13  

 19.79,23.63   93.86,94.56   77.73,78.33   

 29.93,30.62   75.16,75.56   12,13   

 39.97,40.38   68.95,69.18    

 23.19,23.42   12,13    

 47.48,47.56
 

                

 12,13
 

   

 

The fifth order reduction of the higher order polynomial is 

       

   

5 4 3 2

5 21.71 29.93,30.62 93.86,94.56 75.16,75.56

                                                                  77.73,78.33 12,13

P s s s s s

s

   

 
(3.30) 

The stability of the above polynomial can be verified by Kharitonov’s theorem [192] 

has shown in chapter 2. 

3.4 LIMITATION USING INTERVAL ROUTH APPROXIMATION 

• Unlike the non-interval Routh approximate, the interval Routh 

approximations don’t preserve intervals of the first time moments and 

markov parameters. 

• The drawback of the interval Routh based approximations fails to obtain 

stable reduced order models 

All these five methods given motivation to develop new techniques in this thesis, 

explained in chapter 4 and chapter 5. 

  


