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CHAPTER 2 

STABILITY OF INTERVAL SYSTEMS 

2.1 INTRODUCTION 

 

Before 1980s, studying the stability analysis of uncertain systems was mostly not 

considered because lack of general theories for the purpose of analysing and 

designing of control systems with uncertain parameters. After introducing 

Kharitononv’s theorem [192] most of the researchers involved for analysis of 

uncertain parametric approaches. Kharithonov’s theorem was introduced by 

Kharitonov, which was published in 1979. However, this theorem remains unknown 

for many years due to published in Russian Literature and also it difficult to 

understand the theorem. Later, Barmish [194] simplified the proof and introduced to 

the western literature.  

A polynomial where each coefficient varies in a given interval is called as interval 

polynomial. The Kharitonov theorem is an extension of the Routh stability criterion to 

interval polynomials. The Kharitonov theorem states that an interval polynomial 

family, which has an infinite number of members, is Hurwitz stable if and only if a 

finite small subset of four polynomials known as the Kharitonov polynomials of the 

family are Hurwitz stable. 

The most significant results following this theorem have been the edge theorem [203] 

and the generalised Kharitonov theorem [198]. The edge theorem considers a family 

of polynomials with affine linear uncertainty structure which means that coefficients 

are not independent as in the case of interval; polynomials. It provided that the whole 

family is stable if and only if all the exposed edges of the polytopic family are stable. 

Furthermore, the edge theorem is not restricted to Hurwitz stability and it can be 

applied to the general problem of robust Ɗ stability. A polynomial is said to be robust 

Ɗ stable if all its lie in the region Ɗ, which is a region in the complex plane. Similar 

to the edge theorem, the generalized Kharitonov theorem studies the stability problem 

of polynomials with affine linear uncertainty. However, the advantage of the 

generalised Kharitonov theorem over the edge theorem is that the number of edges 

which are required to be studied for stability is dependent on a number of interval 

polynomials not on the number of uncertain parameters. Later, many researchers 
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developed proofs to simply the Kharitonov’s theorem. The complete concept and 

developments of the generalised Kharitonov theorem has been discussed in the book 

written by Bhattacharyya et al., [203].  

 

Lemma1: Let  

   
     

     

1 1

2 2

even odd

even odd

Q s Q s Q s

Q s Q s Q s

 

 
           (2.1) 

denote same degree of the two stable polynomials with the same even part  evenQ s

and differing odd parts  1

oddQ s  and  2

oddQ s satisfying 

   0

1 2

oQ Q  , for all  0,        (2.2) 

Then,      even oddQ s Q s Q s   is stable for every polynomial  Q s with odd part 

 oddQ s satisfying 

     1 2

o o oQ Q Q    , for all  0,       (2.3) 

Proof: Since  1Q s and  2Q s  are stable,  1

oQ s  and  2

oQ s  both satisfy the 

interlacing property with  eQ s . In particular,  1

oQ   and  2

oQ  are not only one of 

the same degree, but the sign of their highest coefficients is also the same since it is in 

fact the same as that of the highest coefficients of  eQ  . Given this is easy to see 

that  oQ   cannot satisfy Eq. (2.3) unless it also has the same degree and the same 

sign for the highest coefficient. Then, the condition in Eq. (2.3) forces the roots of 

 oQ  to interlace with those of  eQ  .  Therefore, according to the Hermite- 

Biehler theorem,    even oddQ s Q s is stable. Here we considered 

0 ;odd e evenQ Q Q Q  . 

 

Lemma2: Let  

   
     

     

1 1

2 2

even odd

even odd

Q s Q s Q s

Q s Q s Q s

 

 
    (2.4) 
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denote same degree of the two stable polynomials with the same odd part  oddQ s and 

differing even parts  1

evenQ s  and  2

evenQ s satisfying 

   1 2

e eQ Q  , for all  0,        (2.5) 

Then,      even oddQ s Q s Q s   is stable for every polynomial  Q s with even part 

 evenQ s satisfying 

     1 2

e e eQ Q Q    , for all  0,       (2.6) 

Proof: Since  1Q s and  2Q s  are stable,  1

eQ s  and  2

eQ s  both satisfy the 

interlacing property with  oQ s . In particular,  1

eQ   and  2

eQ  are not only one of 

the same degree, but the sign of their highest coefficients is also the same since it is in 

fact the same as that of the highest coefficients of  oQ  . Given this is easy to see 

that  eQ   cannot satisfy Eq. (2.2) unless it also has the same degree and the same 

sign for the highest coefficient. Then, the condition in Eq. (2.2) forces the roots of 

 eQ  to interlace with those of  oQ  .  Therefore, according to the Hermite-Biehler 

theorem,    even oddQ s Q s is stable. 

 

2.2 KHARITONOV’S THEOREM FOR REAL POLYNOMIALS 

Consider the family  s of real polynomials of the degree n of the form

  2

0 1 2

n

ns x x s x s x s     , where the coefficients lie within given ranges

0 0 0 1 1 1, , , , , ,n n nx x x x x x x x x                    

The Kharitonov's theorem provides a surprisingly simple necessary and sufficient 

condition for the Hurwitz stability of the entire family. 

Theorem 2.1 (Kharitonov’s Theorem): 

Every polynomial in the family  s  is Hurwitz if and only if the four polynomials 

are Hurwitz. 

 

    

    (2.7) 

 

 

 

 

1 2 3 4 5

0 1 2 3 4 5

2 2 3 4 5

0 1 2 3 4 5

3 2 3 4 5

0 1 2 3 4 5

4 2 3 4 5

0 1 2 3 4 5

s x x s x s x s x s x s

s x x s x s x s x s x s

s x x s x s x s x s x s

s x x s x s x s x s x s

     

     

     

     

        

        

        

        
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Proof: [192], [203] The proof given allows for the interpretation of Kharitonov’s 

theorem as a generalization of the interlacing property of Hurwitz polynomials. 

Let us introduce the hyper rectangle or box  of coefficients of the perturbed 

polynomials 

 1, , 0,1, ,n

i i ix x x x x i n               (2.8) 

The four Kharitonov’s polynomials are built from two different even parts  max

even s

and  min

odd s  and two different odd parts  max

odd s and  min

odd s defined below 

 

 

2 4 6

max 0 2 4 6

2 4 6

min 0 2 4 6

....

....

even

even

s x x s x s x s

s x x s x s x s

   

   

     

     
     (2.9) 

and 

 

 

3 5 7

max 1 3 5 7

3 5 7

min 1 3 5 7

....

....

odd

odd

s x s x s x s x s

s x s x s x s x s

   

   

     

     
     (2.10) 

The motivation of the subscripts “max” and “min” is as follows. Let  x s be an 

arbitrary polynomial with its coefficients lying in the box   and let  evenx s be its 

even part. Then 

 

 

 

2 4 6

max 0 2 4 6

2 4 6

0 2 4 6

2 4 6

min 0 2 4 6

e

e

e

x x x x

x x x x x

x x x x

   

   

   

   

   

      

     

      

     (2.11) 

so that 

         2 4

max 0 0 2 2 4 4

e ex x x x x x x               

and 

         2 4

min 0 0 2 2 4 4

e ex x x x x x x              

Therefore  

       min max ; 0,e e ex              (2.12) 
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Similarly, if  oddx s denotes the odd parts of  x s , it can be verified that 

       min max ; 0,o o ox              (2.13) 

To proceed, note that the Kharitonov polynomials in Eq. (7) can be rewritten as 

     

     

     

     

1

min min

2

min max

3

max min

1

max max

even odd

even odd

even odd

even odd

s s s

s s s

s s s

s s s

    

    

    

    

       (2.14) 

If all the polynomials with the coefficients in the box are stable, it is clear that the 

Kharitonov polynomials in Eq. (2.1) must also be stable since their coefficients lie in 

 . For the conserve assume that the Kharitonov polynomials are stable, and let 

     even oddx s x s x s  be an arbitrary polynomial with coefficients in the box  

with its even part  evenx s and its odd part  oddx s . 

Since  1 s and  2 s are stable and Eq.(2.13) holds, we conclude from Lemma 1 

applied to  1 s and  2 s  in Eq. (2.14) that    min

even odds x s  is stable. 

Similarly Lemma 1 applied to  3 s and  4 s  in Eq. (2.14), we conclude that

   max

even odds x s  is stable. 

Now, since Eq. (2.12) holds, we can apply Lemma 2 to the two stable polynomials 

   max

even odds x s  and    min

even odds x s   and we conclude that  

   ( )even oddx s x s x s  is stable.  

Example 2.1: Consider the higher order system reported in [165] and determine the 

stability of the interval polynomial 

     

       

6 5 4

1

3 2

( ) 2.1,2.6 76.1,76.7 119.1,119.6

          111.0,111.6 71.8,72.3 31.0,31.7 9.0,9.9

P s s s s

s s s

  

   

 (2.15) 

The interval polynomial has been divided into four fixed polynomials. 

 

 

 

 

1 6 5 4 3 2

2 6 5 4 3 2

3 6 5 4 3 2

4 6 5 4 3 2

2.6 76.1 119.1 111.6 72.3 31 9

2.1 76.7 119.6 111 71.8 31.7 9.9

2.6 76.7 119.1 111 72.3 31.7 9

2.1 76.1 119.6 111.6 71.8 31 9.9

s s s s s s s

s s s s s s s

s s s s s s s

s s s s s s s

       

       

       

       

  (2.16) 
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Apply Routh- Hurwitz criterion to each of these four polynomials. 

Table 2.1: Routh table for the first polynomial  1 s  of example 2.1 

2.6 119.1 72.3 9 

76.1 111.6 31  

115.28712 71.24086 9  

64.57454 25.05918   

26.50186 9   

3.1294    

9    

 

Table 2.2: Routh table for the second polynomial  2 s  of example 2.1 

2.1 119.6 71.8 9.9 

76.7 111 31.7  

116.56089 70.93207 9.9  

64.32491 25.18355   

25.29423 9.9   

0.00919    

9.9    

 

Table 2.3: Routh table for the third polynomial  3 s  of example 2.1 

2.6 119.1 72.3 9 

76.7 111 31.7  

115.33729 71.22542 9  

63.63466 25.71494   

24.61730 9   

2.45033    

9    

 

Table 2.4: Routh table for the fourth polynomial  4 s  of example 2.1 

2.1 119.6 71.8 9.9 

76.1 111.6 31  

116.52037 70.94455 9.9  

65.26578 24.53426   

27.14301 9.9   

0.72956    

9.9    
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The first column of the Routh table for each Kharitonov polynomial has zero sing 

changes. It shows that all the roots of the given interval polynomial  1P s  lie in the 

left half of the s- plane. Therefore the system is stable.  

Example 2.2: Consider a numerical example reported by Hwang and Yang [159], 

determine the stability of the sixth order interval polynomial 

     

       

6 5 4

2

3 2

( ) 9,9.5 31,31.5 71,71.5

          111.0,111.5 119,119.5 76,76.5 2,2.5

P s s s s

s s s

  

       (2.17)
 

The interval polynomial has been divided into four fixed polynomials. 

 

 

 

 

1 6 5 4 3 2

2 6 5 4 3 2

3 6 5 4 3 2

4 6 5 4 3 2

9.5 31 71 111.5 119.5 76 2

9 31.5 71.5 111 119 76.5 2.5

9.5 31.5 71 111 119.5 76.5 2

9 31 71.5 111.5 119 76 2.5

s s s s s s s

s s s s s s s

s s s s s s s

s s s s s s s

       

       

       

       

   (2.18) 

Apply Routh- Hurwitz criterion to each of these four polynomials. 

Table 2.5: Routh table for the first polynomial  1 s  of example 2.2 

9.5 71 119.5 2 

31 111.5 76  

36.83065 96.20968 2  

30.52124 74.31662   

6.53019 2   

64.96889    

2    

 

Table 2.6: Routh table for the second polynomial  2 s  of example 2.2 

9 71.5 119 2.5 

31.5 111 76.5  

39.78571 97.14286 2.5  

34.08797 74.52065   

10.16622 2.5   

66.13799    

2.5    
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Table 2.7: Routh table for the third polynomial  3 s  of example 2.2 

9.5 71 119.5 2 

31.5 111 76.5  

37.52381 96.42857 2  

30.05134 74.82106   

3.00291 2   

54.80624    

2    

 

Table 2.8: Routh table for the fourth polynomial  4 s  of example 2.2 

9 71.5 119 2.5 

31 111.5 76  

39.12903 96.93548 2.5  

34.70280 74.01937   

13.47518 2.5   

67.58109    

2.5    

 

The first column of the Routh table for each Kharitonov polynomial has zero sign 

changes. It shows that all the roots of the given interval polynomial  2P s  lie in the 

left half of the s- plane. Therefore the system is stable.  

Example 2.3: Consider a numerical example reported by Bandyopadhyay et al. [157], 

determine the stability of the third order interval transfer function. 

2

3 3 2

[2,3] [17.5,18.5] [15,16]
( )

[2,3] [17,18] [35,36] [20.5,21.5]

s s
G s

s s s

 


  
    (2.19) 

The characteristic polynomial of the given third order transfer function by considering 

unity feedback 

             3 2

3 31 2,3 19,21 52.5,54.5 35.5,37.5P s G s H s s s s       (2.20) 

The interval polynomial has been divided into four fixed polynomials. 
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 

 

 

 

1 3 2

2 3 2

3 3 2

4 3 2

3 21 52.5 35.5

2 19 54.5 37.5

2 21 54.5 35.5

3 19 52.5 37.5

s s s s

s s s s

s s s s

s s s s

    

    

    

    

      (2.21) 

Apply Routh- Hurwitz criterion to each of these four polynomials. 

Table 2.9: Routh table for the first polynomial  1 s  of example 2.3 

3 52.5 

21 35.5 

47.42857  

35.5  

 

Table 2.10: Routh table for the first polynomial  2 s  of example 2.3 

2 54.5 

19 37.5 

50.55263  

37.5  

 

Table 2.11: Routh table for the first polynomial  3 s of example 2.3 

2 54.5 

21 35.5 

51.11905  

35.5  

 

Table 2.12: Routh table for the first polynomial  4 s of example 2.3 

3 52.5 

19 37.5 

46.57895  

37.5  
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The first column of the Routh table for each Kharitonov polynomial has zero sing 

changes. It shows that all the roots of the given interval transfer function  3G s  lie in 

the left half of the s- plane. Therefore the system is stable.  

Example 2.4: Consider a numerical example reported by Selvaganesan [169], 

determine the stability of the seventh order interval transfer function. 

          

       

     
       

       

6 5 4 3

2

7 7 6 5 4

3 2

1.9,2.1 24.7,27.3 157.7,174.3 542,599

930,1028 721.8,797.8 187.1,206.7
( )

0.95,1.05 8.779,9.703 52.23,57.73 182.9,202.1

429.1,474.2 572.5,632.7 325.3,359.5 57.35,63.93

s s s s

s s
G s

s s s s

s s s

   

 


   

  

          

(2.22) 

The characteristic polynomial of the given seventh order transfer function by 

considering unity feedback 

     

       

       

4 7

7 6 5 4

3 2

1

        0.95,1.05 10.679,11.803 76.93,85.03 340.6,376.4

            971.1,1073.2 1502.5,1660.7 1047.1,1157.3 244.45,270.63

P s G s H s

s s s s

s s s

 

    

  

          

(2.23)

 The interval polynomial has been divided into four fixed polynomials. 

 

 

 

1 7 6 5 4 3 2

2 7 6 5 4 3 2

3 7 6 5 4 3 2

1.05 11.803 76.9 340.6 1073.2 1660.7 1047.1 244.5

0.95 10.679 85.03 376.4 971.1 1502.5 1157.3 270.63

0.95 11.803 85.03 340.6 971.1 1660.7 1157.3 244.5

s s s s s s s s

s s s s s s s s

s s s s s s s s

        

        

        

  4 7 6 5 4 3 21.05 10.679 76.9 376.4 1073.2 1502.5 1047.1 270.63s s s s s s s s       

          

(2.24) 

Apply Routh- Hurwitz criterion to each of these four polynomials. 

Table 2.13: Routh table for the first polynomial  1 s  of example 2.4 

1.05 76.93 1073.2 1047.1 

11.803 340.6 1660.7 244.45 

46.63008 925.46341 1025.35362  

106.34680 1401.1626 244.5  

311.09307 918.16918   

1087.28755 244.5   

848.22752    

244.5    
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Table 2.14: Routh table for the first polynomial  2 s  of example 2.4 

0.95 85.03 971.1 1157.3 

10.679 376.4 1502.5 270.63 

51.54559 837.43814 1133.22485  

202.90307 1267.72321 270.63  

515.38514 1064.47388   

848.64823 270.63   

900.11994    

 

Table 2.15: Routh table for the first polynomial  3 s  of example 2.4 

0.95 85.03 971.1 1157.3 

11.803 340.6 1660.7 244.45 

57.61578 837.43356 1137.6247  

169.04582 1427.64955 244.5  

350.84865 1054.30896   

919.66262 244.5   

961.05199    

244.5    

 

Table 2.16: Routh table for the first polynomial  4 s  of example 2.4 

1.05 76.93 1073.2 1047.1 

10.679 376.4 1502.5 270.63 

39.92092 925.46847 1020.49063  

128.8336 1229.5148 270.63  

544.48587 936.63208   

1007.89348 270.63   

790.4319    

270.63    

 

The first column of the Routh table for each Kharitonov polynomial has zero sign 

changes. It shows that all the roots of the given interval transfer function  7G s  lie in 

the left half of the s- plane. Therefore the system is stable.  

 

2.3 KHARITONOV’S  THEOREM FOR COMPLEX POLYNOMIALS 

Consider the family  * s of all complex polynomials of degree n of the form

       0 0 1 1

n

n ns j j s j s                (2.25) 
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with , , , , 0,1,....,i i i i i i i n                  

The complex polynomials arise in the study of time delay systems and phase margin 

of control systems.  Kharitonov developed his result for real polynomials to the above 

complex interval family by introducing two sets of complex polynomials as follows 

           

           

           

   

2 3 4

1 0 0 1 1 2 2 3 3 4 4

2 3 4

2 0 0 1 1 2 2 3 3 4 4

2 3 4

3 0 0 1 1 2 2 3 3 4 4

4 0 0 1

s j j s j s j s j s

s j j s j s j s j s

s j j s j s j s j s

s j j

         

         

         

   

          

          

          

   

            

            

            

           2 3 4

1 2 2 3 3 4 4s j s j s j s                  

          

(2.26) 

and 

           

           

           

   

2 3 4

1 0 0 1 1 2 2 3 3 4 4

2 3 4

2 0 0 1 1 2 2 3 3 4 4

2 3 4

3 0 0 1 1 2 2 3 3 4 4

4 0 0 1

s j j s j s j s j s

s j j s j s j s j s

s j j s j s j s j s

s j

         

         

         

  

          

          

          

   

            

            

            

           2 3 4

1 2 2 3 3 4 4j s j s j s j s                    

          

(2.27) 

Theorem 2.2 The family of polynomials  * s is Hurwitz if and only if the eight 

Kharitonov polynomials                1 2 3 4 1 2 3 4, , , , , , ,s s s s s s s s               are 

all Hurwitz. 

Proof: [203] The requirement of the condition is apparent because the eight 

Kharitonov polynomials are in  * s . The proof of sufficiency follows again from 

Hemite- Biehler Theorem for complex polynomials. 

Observe that the Kharitonov polynomials in Eqs. (2.26) and (2.27) are composed of 

the following extremal polynomials. 

For the “positive” Kharitonov polynomials define as  

2 3 4

max 0 1 2 3 4

2 3 4

min 0 1 2 3 4

2 3 4

max 0 1 2 3 4

2 3 4

min 0 1 2 3 4

R j s s j s s

R j s s j s s

I j s j s s j s

I j s j s s j s

    

    

    

    

     

     

     

     

      

      

      

      

 

so that 
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   

   

   

   

1 min min

2 min max

3 max min

4 max max

R s I s

R s I s

R s I s

R s I s

  

  

  

  

  

  

  

  

 

For the “negative” Kharitonov polynomials define as 

2 3 4

max 0 1 2 3 4

2 3 4

min 0 1 2 3 4

2 3 4

max 0 1 2 3 4

2 3 4

min 0 1 2 3 4

R j s s j s s

R j s s j s s

I j s j s s j s

I j s j s s j s

    

    

    

    

     

     

     

     

      

      

      

      

 

so that 

   

   

   

   

1 min min

2 min max

3 max min

4 max max

R s I s

R s I s

R s I s

R s I s

  

  

  

  

  

  

  

  

 

     max max min, ,R j R j R j    
and  minR j

are real and 

     max max min, ,I j I j I j    
and  minI j

 are imaginary. Let    Re rj       

and    Im ij      denote the real and imaginary parts of  s  evaluated at 

s j . Then we have 

 

 

2 3

0 0 1 1 2 2 3 3

2 3

0 0 1 1 2 2 3 3

, , , , ,

, , , , .

r

i

           

           

       

       

                    

                    

 

It is easy to verify that 

     min max

rR j R j      , for all  0,   

 
 

 min maxi
I j I j

j j

 


 

   , for all  0,   (2.28) 

     min max

rR j R j      , for all  0,   

 
 

 
 min maxi

I j I j

j j

 


 

   ,for  all  0,   (2.29) 
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The proof of the theorem is now completed as follows. The stability of the four 

positive Kharitonov polynomials guarantees interlacing of the “real tube” (bounded 

by  maxR j
and  minR j

) with the “imaginary tube” (bounded by  maxI j
and

 minI j
) for 0  . The relation in Eq. (2.28) then guarantees that the real and 

imaginary parts of an arbitrary polynomial in  * s are forced to interlace for 0  . 

Analogous arguments, using the bounds in Eq. (2.29) and the “negative” Kharitonov 

polynomials forces interlacing for 0  . Thus by the Hermite-Biehler Theorem for 

complex polynomials  s  is Hurwitz. Since  s was arbitrary, it follows that each 

and every polynomial in  * s  is Hurwitz. 

Corollary 3.1: For low-order uncertain systems, robust stability can be checked by 

testing only one, two, and three Kharitonov polynomials for order 3, 4n  and5  

respectively. 

The arrangements of Kharitonov polynomials  1 s ,  2 s  and  3 s  in terms of 

lower and upper bounds for order 3, 4n   and 5  are as given below 

For 3;n   

 1 3 2

0 1 2 3s x s x s x s x        . 

For 4;n   

 

 

1 4 3 2

0 1 2 3 4

2 4 3 2

0 1 2 3 4

,

.

s x s x s x s x s x

s x s x s x s x s x

    

    

     

     
 

For 5;n   

 

 

 

1 5 4 3 2

0 1 2 3 4 5

2 5 4 3 2

0 1 2 3 4 5

3 5 4 3 2

0 1 2 3 4 5

,

,

.

s x s x s x s x s x s x

s x s x s x s x s x s x

s x s x s x s x s x s x

     

     

     

      

      

      

 

 

2.4 KHARITONOV’S THEOREM FOR DISCRETE TIME INTERVAL 

SYSTEMS. 

The stability of a polynomial with uncertain coefficients. The polynomial, which may 

be the characteristic polynomials of a linear system, is given by 

  1

1 1 0

n n

n nD z c z c z c z c

          (2.30) 
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where the coefficients are unknown, except for box bounds of the form i i ic c c    for 

0 i n  , with ic   and ic   are known constants. 

The Kharitonov polynomial of an thn  order discrete time interval system,  D z  are 

handled by mapping the z -plane to the w -plane by
1

1

z
w

z





. This transforms  D z  to

1

1

w
D

w

 
 

 
which is multiplied by  1

n
w  to get the polynomial  Q w , 

     
0

, 1 1
n

i n i

i i

i

Q w c c w w
 



            (2.31) 

Note that 1w  is the image of the point at infinity, which is not a root of  D z  

The terms    1 1
i n i

w w


   can be rewritten as 

    ( , )

0

1 1
n

i n i r

i r

r

w w s w




            (2.32) 

giving 

   
0

,
n

m

m m

m

Q w C C w 



           (2.33) 

where 

 ,
0

, ,
n

m m v v v m
v

C C c c s   



               (2.34) 

The bounds on ic  transform into bounds on iC  according to 

       , , , ,
0 0

min , , max ,
n n

v v m m v vv m v m v m v m
v v

c s c b s C C c s c s     

 

                         (2.35) 

Using the transformed bounds, it is easy to obtain the Kharitonov polynomials,  iQ w

. Each  iQ w    is then tested by the Routh criterion. Because the function
1

1

z
w

z





 

maps the unit circle 1z   onto the left half of the w - plane, if all the roots of each

  ,1 4iQ w i  , are in the left half plane, then all the roots  D z  of are within the 

unit circle in the plane. This is a sufficiency condition for the stability of  D z .  
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Because of the way the bounds ic 
 and ic 

 are mapped into bounds on the coefficients 

of  Q w , if one or more of the  iQ w are unstable, then it is not possible to decide 

whether  D z  is stable or unstable. This is because the bounds on iC  do not represent 

a hyper rectangle but rather a “wrapped” one.  Apply Rouche’s theorem to find the 

stability of the higher order discrete polynomial. 

The stability test of the uncertain polynomials can also be verified by using 

SYSTEMS PACKAGE software. 

Example 2.5: Consider a characteristic fourth order polynomial  

           4 3 2

4 1,1 0.077,0.354 0.077,0.354 0.077,0.354 0.077,0.354D z z z z z    

          
(2.36)

 

The interval polynomial has been divided into four fixed polynomials. 

 

 

 

 

1 4 3 2

2 4 3 2

3 4 3 2

4 4 3 2

0.354 0.354 0.077 0.077

0.077 0.077 0.354 0.354

0.077 0.354 0.354 0.077

0.354 0.077 0.077 0.354

z z z z z

z z z z z

z z z z z

z z z z z

     

     

     

     

    (2.37) 

           4 3 2

4 1,1 0.077,0.354 0.077,0.354 0.077,0.354 0.077,0.354P s w w w w    

          (2.38) 

The interval polynomial in Eq. (2.37) has been divided into four fixed polynomials. 

 

 

 

 

4 3 2

1

4 3 2

2

4 3 2

3

4 3 2

4

1.308 4.246 7.97 2.03 0.446

2.416 2.03 5.754 4.246 1.554

1.308 2.03 7.97 4.246 0.446

2.416 4.246 5.754 2.03 1.554

P w w w w w

P s w w w w

P s w w w w

P s w w w w

    

    

    

    

   (2.39) 

Apply Routh- Hurwitz criterion to each of these four polynomials. 

Table 2.17: Routh table for the first polynomial  1P w  of example 2.5 

1.308 7.97 0.446 

4.246 2.03  

7.33465 0.446  

1.77216   

0.446   
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Table 2.18: Routh table for the first polynomial  2P w  of example 2.5 

2.416 5.75 1.554 

2.03 4.246  

0.70063 1.554  

-0.25653   

1.554   

 

Table 2.19: Routh table for the first polynomial  3P w  of example 2.5 

1.308 7.97 0.446 

2.03 4.246  

5.23415 0.446  

4.07302   

0.446   

 

 

Table 2.20: Routh table for the first polynomial  4P w  of example 2.5 

2.416 5.754 1.554 

4.246 2.03  

4.59892 1.554  

0.59525   

1.554   

 

The first column of the Routh Table 2.18 has two sign changes. Because of the way of 

the higher order interval parameters transformed to the w -plane, the instability of the 

transformed polynomial  4P z does not give any information about the stability of

 4D z . The stability of  4P w  is only sufficient to ensure the stability of  4D z . 

Using Rouche’s theorem for stability,      4 4 4D z f z g z   

            4 3 2

4 4 4 3 3 2 2 1 1 0 00.5f z c c z c c z c c z c c z c c                    (2.40) 

            4 3 2

4 4 4 4 3 3 3 2 2 2 1 1 1 0 0 00.5g z t c c z t c c z t c c z t c c z t c c                   

          (2.41)  
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  4 3 2

4 0.2155 0.2155 0.2155 0.2155f z z z z z        (2.42) 

  4 3 2

4 1.862 3.138 6.862 3.138 1F w w w w w         (2.43) 

Table 2.21: Routh table for the polynomial  4F w  of example 2.5 

1.862 6.862 1 

3.138 3.138  

5.0 1  

2.5104   

1.0   

 

Number of sign changes in Table 2.21 is zero. All the roots of  4f z
 
lie inside the 

unit disk in the z-plane.  4f z  is stable. 

Applying Rouche’s theorem 

 

 
4

4

5.6613

j

j

Min f e
L

Max g e




         (2.44) 

All the roots of  4D z  lie inside the unit circle in the z -plane. The system is stable. 

 4D z  is also stable if 0 5.6613kt  ,where 0 4k  . 

 

 


