CHAPTER 2
STABILITY OF INTERVAL SYSTEMS

2.1 INTRODUCTION

Before 1980s, studying the stability analysis of uncertain systems was mostly not
considered because lack of general theories for the purpose of analysing and
designing of control systems with uncertain parameters. After introducing
Kharitononv’s theorem [192] most of the researchers involved for analysis of
uncertain parametric approaches. Kharithonov’s theorem was introduced by
Kharitonov, which was published in 1979. However, this theorem remains unknown
for many years due to published in Russian Literature and also it difficult to
understand the theorem. Later, Barmish [194] simplified the proof and introduced to
the western literature.

A polynomial where each coefficient varies in a given interval is called as interval
polynomial. The Kharitonov theorem is an extension of the Routh stability criterion to
interval polynomials. The Kharitonov theorem states that an interval polynomial
family, which has an infinite number of members, is Hurwitz stable if and only if a
finite small subset of four polynomials known as the Kharitonov polynomials of the
family are Hurwitz stable.

The most significant results following this theorem have been the edge theorem [203]
and the generalised Kharitonov theorem [198]. The edge theorem considers a family
of polynomials with affine linear uncertainty structure which means that coefficients
are not independent as in the case of interval; polynomials. It provided that the whole
family is stable if and only if all the exposed edges of the polytopic family are stable.
Furthermore, the edge theorem is not restricted to Hurwitz stability and it can be
applied to the general problem of robust D stability. A polynomial is said to be robust
D stable if all its lie in the region D, which is a region in the complex plane. Similar
to the edge theorem, the generalized Kharitonov theorem studies the stability problem
of polynomials with affine linear uncertainty. However, the advantage of the
generalised Kharitonov theorem over the edge theorem is that the number of edges
which are required to be studied for stability is dependent on a number of interval

polynomials not on the number of uncertain parameters. Later, many researchers
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developed proofs to simply the Kharitonov’s theorem. The complete concept and
developments of the generalised Kharitonov theorem has been discussed in the book
written by Bhattacharyya et al., [203].

Lemmal: Let

Q(5)=Q" (5)+Q (5) } on

Q2 (S) — Qeven (S)-i—did (S)
denote same degree of the two stable polynomials with the same even part Q' (s)
and differing odd parts Q' (s) and Q;* (s)satisfying

Q(0)<Q (@), forall we[0,x] (2.2)

Then, Q(s)=Q""(s)+Q™ (s) is stable for every polynomial Q(s)with odd part
Q™ (s) satisfying

Q' (0)<Q°(w)<Q; (w), forall @e[0,] (2.3)

Proof: Since Q(s)andQ,(s) are stable, Q’(s) andQ;(s) both satisfy the

interlacing property withQ°(s). In particular, Q7 (@) andQ; (w)are not only one of
the same degree, but the sign of their highest coefficients is also the same since it is in
fact the same as that of the highest coefficients of Q°(w). Given this is easy to see

thatQ"(co) cannot satisfy Eq. (2.3) unless it also has the same degree and the same

sign for the highest coefficient. Then, the condition in Eq. (2.3) forces the roots of
Q°(a))to interlace with those one(a)). Therefore, according to the Hermite-

Biehler ~ theorem,  Q®*(s)+Q*“(s)is  stable. ~Here we considered

QO — Qodd ;Qe _ Qeven )
Lemma2: Let
__(even odd
Q.(5)= Q5™ (5)+Q (5)
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denote same degree of the two stable polynomials with the same odd part Q°* (s) and

differing even parts Q"' (s) and Q;*" (s) satisfying
Q (@)<Q; (@), forall we[0,x] (2.5)

Then, Q(s)=Q"(s)+Q*“(s) is stable for every polynomial Q(s)with even part
Q°*"(s) satisfying

Q (0)<Q°(w)<Q; (@), forall @e[0,] (2.6)

Proof: Since Q(s)andQ,(s) are stable, Q;(s) andQ;(s) both satisfy the

interlacing property withQ°(s). In particular, Q; () andQ; ()are not only one of
the same degree, but the sign of their highest coefficients is also the same since it is in
fact the same as that of the highest coefficients of Q° (@). Given this is easy to see

thath(a)) cannot satisfy Eq. (2.2) unless it also has the same degree and the same

sign for the highest coefficient. Then, the condition in Eq. (2.2) forces the roots of
Q° (a)) to interlace with those of Q° (a)) Therefore, according to the Hermite-Biehler

theorem, Q®*"(s)+Q* (s)is stable.

2.2  KHARITONOV’S THEOREM FOR REAL POLYNOMIALS

Consider the family IF(s)of real polynomials of the degree n of the form
A(S) =X, +XS+X,5° +----+x,8", where the coefficients lie within given ranges
X €[ %% | % €[ XX e, €[ %%

The Kharitonov's theorem provides a surprisingly simple necessary and sufficient
condition for the Hurwitz stability of the entire family.

Theorem 2.1 (Kharitonov’s Theorem):

Every polynomial in the faminIF(s) is Hurwitz if and only if the four polynomials
are Hurwitz.

A(S)=X; +X S+ X" +X8%+ X, 8" + X 8"+

S) =X + X S+X,8% + X8 + Xt +x;8° 4 (2.7)

s :xg+xfs+x2‘sz+x;33+xjs4+x;s;1+----

(s)
AZ(S):Xf;+X1+3+X2+SZ+X3_S3+x;s4+x;55+....

(s)

(s)



Proof: [192], [203] The proof given allows for the interpretation of Kharitonov’s
theorem as a generalization of the interlacing property of Hurwitz polynomials.

Let us introduce the hyper rectangle or box W of coefficients of the perturbed
polynomials

‘I’:{X‘XGD”“,xi‘SX(SXf,izo,l,----,n} (2.8)

The four Kharitonov’s polynomials are built from two different even parts Aje; ()

max

and Ay (s) and two different odd parts Aj, (s)and Ay (s) defined below

A (8) = X5 +%,5% + X5 +x5° +.... 29)
AN (S) =Xy +%; 8" + %, 8" +x° +.... } '
and

A% (5) = X5+ X 8% + XS+ X8 +.. } 2.10)
At (8) =X S+X;8° +X;8° + %87 +.... '

The motivation of the subscripts “max” and “min” is as follows. Let x(s) be an

arbitrary polynomial with its coefficients lying in the box ¥ and let x™*(s)be its

even part. Then

Aso (@) =X = X,0° + X0 = Xg@° +----

X* (@) =X, — X%,0° + X,0" = X;@° +--+- (2.11)
Ae

min

(0)=X; X 0" +X;0" =X @° +--+-
so that

Aro (0)=X (@

N—"
I
—~
S
|

<
SN~
+
—_
Rl
|
l\)><|
SN——"
SN
+
—_
-J>><+
|
e
A ——
S.b
+

and
X° (a))_A(:nin (a)):(xo —X5)+(x; —Xz)a)z +(X4 —X;)a)"' eene
Therefore

AE

min

(0) < x* (@) <AL (@);0€[0,0] (2.12)

max
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Similarly, if x* (s)denotes the odd parts of x(s), it can be verified that

A (@) <X (@) <A, (0);0e[0,0] (2.13)
To proceed, note that the Kharitonov polynomials in Eq. (7) can be rewritten as
=AS(S)+ A (S)

(2.14)

If all the polynomials with the coefficients in the box W are stable, it is clear that the
Kharitonov polynomials in Eq. (2.1) must also be stable since their coefficients lie in
Y. For the conserve assume that the Kharitonov polynomials are stable, and let

X(s)=x**"(s)+x>“(s)be an arbitrary polynomial with coefficients in the box ¥

with its even part ™" (s)and its odd part x°* (s).

Since A'(s)and A*(s)are stable and Eq.(2.13) holds, we conclude from Lemma 1
applied toA'(s)and A®(s) in Eq. (2.14) that A (s)+X™ (s) s stable.

min

Similarly Lemma 1 applied toA’(s)and A*(s) in Eg. (2.14), we conclude that

Aper (8)+x° (s)is stable.

Now, since Eq. (2.12) holds, we can apply Lemma 2 to the two stable polynomials
Aper (8)+x°* (s)and Apr (s)+x* (s) and we conclude that

X" (8)+x*(s) = Xx(s)is stable.

Example 2.1: Consider the higher order system reported in [165] and determine the
stability of the interval polynomial

P(s)=[2.1,2.6]s® +[76.1,76.7]s® +[119.1,119.6]s" (2.15)
+[111.0,111.6]s® +[71.8,72.3]s* +[31.0,31.7]s +[9.0,9.9]

The interval polynomial has been divided into four fixed polynomials.

A 2.6s° +76.1s° +119.1s* +111.65° + 72.3s* + 315 +9

(s)=

A*(s)=2.15°+76.7s° +119.65" +111s° + 71.8s* + 31.75+9.9
(s)=
(s)=

(2.16)
A¥(s)=2.6° +76.7s° +119.1s* +1115> + 72.35? +31.75 +9

A*(s)=2.1s% +76.1s° +119.65* +111.65° +71.85* +315+9.9
23
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Apply Routh- Hurwitz criterion to each of these four polynomials.

Table 2.1: Routh table for the first polynomial Al(s) of example 2.1

2.6 119.1 72.3 9
76.1 111.6 31
115.28712 | 71.24086 |9

64.57454 25.05918

26.50186 9

3.1294

9

Table 2.2: Routh table for the second polynomial A (s) of example 2.1

2.1 119.6 71.8 9.9
76.7 111 31.7
116.56089 | 70.93207 9.9
64.32491 | 25.18355
25.29423 9.9
0.00919
9.9

Table 2.3: Routh table for the third polynomial A*(s) of example 2.1

2.6 119.1 72.3 9
76.7 111 31.7
115.33729 | 71.22542 |9

63.63466 25.71494

24.61730 9

2.45033

9

Table 2.4: Routh table for the fourth polynomial A* (s) of example 2.1

2.1 119.6 71.8 9.9
76.1 111.6 31

116.52037 | 70.94455 |9.9

65.26578 24.53426

27.14301 9.9

0.72956

9.9
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The first column of the Routh table for each Kharitonov polynomial has zero sing
changes. It shows that all the roots of the given interval polynomial P,(s) lie in the
left half of the s- plane. Therefore the system is stable.

Example 2.2: Consider a numerical example reported by Hwang and Yang [159],
determine the stability of the sixth order interval polynomial

P,(s) =[9,9.5]s° +[31,31.5]s° +[71,71.5]s*

+[111.0,111.5]s° +[119,119.5]s* +[76,76 5]s +[2,2.5] (2.17)
The interval polynomial has been divided into four fixed polynomials.
A'(s)=9.55° +31s° + 71s* +111.55° +119.55° + 765 + 2
A?(s)=9s°+31.5s° +71.5s" +111s° +119s’ + 76.55 + 2.5 (2.18)
A*(s)=9.55° +31.55° + 71s* +111s° +119.55% +76.55 + 2 '
A*(s)=9s°+31s° +71.55" +111.5s° +119s’ + 765+ 2.5

Apply Routh- Hurwitz criterion to each of these four polynomials.

Table 2.5: Routh table for the first polynomial A’ (s) of example 2.2

9.5 71 119.5 2
31 1115 76

36.83065 96.20968 |2

30.52124 74.31662

6.53019 2

64.96889

2

Table 2.6: Routh table for the second polynomial A (s) of example 2.2

9 715 119 2.5
315 111 76.5

39.78571 97.14286 | 2.5

34.08797 74.52065

10.16622 2.5

66.13799

2.5
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Table 2.7: Routh table for the third polynomial A® (s) of example 2.2

9.5 71 119.5 2
315 111 76.5
37.52381 96.42857 |2
30.05134 74.82106
3.00291 2
54.80624
2

Table 2.8: Routh table for the fourth polynomial A* (s) of example 2.2

9 715 119 2.5
31 1115 76
39.12903 96.93548 | 2.5
34.70280 74.01937
13.47518 2.5

67.58109
2.5

The first column of the Routh table for each Kharitonov polynomial has zero sign
changes. It shows that all the roots of the given interval polynomial Pz(s) lie in the

left half of the s- plane. Therefore the system is stable.

Example 2.3: Consider a numerical example reported by Bandyopadhyay et al. [157],
determine the stability of the third order interval transfer function.

[2,3]s% +[17.5,18.5]s + [15,16]

= : _ (2.19)
[2,3]s® +[17,18]s* +[35, 36]s +[20.5, 21.5]

G, (9)

The characteristic polynomial of the given third order transfer function by considering
unity feedback

P,(5)=1+G,(s)H (s)=[2,3]s° +[19,21]s? +[52.5,54.5]s +[35.5,37.5] (2.20)

The interval polynomial has been divided into four fixed polynomials.
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A'(s)=35°+21s% +52.55+35.5
A?(s)=2s°+19s” +54.55+37.5
(2.21)
A®(s)=2s"+21s* +54.55+35.5
A*(s)=3s>+19s” +52.55+37.5

Apply Routh- Hurwitz criterion to each of these four polynomials.

Table 2.9: Routh table for the first polynomial Al(s) of example 2.3

3 52.5
21 35.5
47.42857

355

Table 2.10: Routh table for the first polynomial A?(s) of example 2.3

2 54.5
19 37.5
50.55263

37.5

Table 2.11: Routh table for the first polynomial A® (s) of example 2.3

2 54.5
21 355
51.11905

355

Table 2.12: Routh table for the first polynomial A* (s)of example 2.3

3 52.5
19 37.5
46.57895

37.5
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The first column of the Routh table for each Kharitonov polynomial has zero sing
changes. It shows that all the roots of the given interval transfer functionG, (s) lie in

the left half of the s- plane. Therefore the system is stable.

Example 2.4: Consider a numerical example reported by Selvaganesan [169],
determine the stability of the seventh order interval transfer function.

[1.9,2.1]s° +[24.7,27.3]s° +[157.7,174.3]s* +[542,599]s° +
[930,1028]s* +[721.8,797.8]s +[187.1,206.7
[0.95,1.05]s" +[8.779,9.703]s° +[52.23,57.73]s° +[182.9,202.1] s* +
[429.1,474.2]s° +[572.5,632.7]s* +[325.3,359.5] s + [57.35,63.93]
(2.22)

G7 (S) =

The characteristic polynomial of the given seventh order transfer function by
considering unity feedback
P.(s)=1+G; (s)H(s)
= [0.95,1.05]s7 +[1O.679,11.803]s6 +[76.93, 85.03]55 +[340.6,376.4] s+
[971.1,1073.2]s° +[1502.5,1660.7]s° +[1047.1,1157.3]s +[ 244.45, 270.63]
(2.23)

The interval polynomial has been divided into four fixed polynomials.

A'(s)=1.05s" +11.803s® + 76.95° + 340.65* +1073.2s° +1660.75° +1047.1s + 244.5
A*(s)=0.95s" +10.679s° +85.03s° +376.4s" +971.1s° +1502.5s” +1157.3s + 270.63
A®(s)=0.95s" +11.803s° +85.03s" +340.65* +971.1s° +1660.7s* +1157.35 + 244.5
A*(s)=1.05s" +10.679s° + 76.9s° + 376.4s* +1073.25* +1502.55° +1047.1s + 270.63
(2.24)

Apply Routh- Hurwitz criterion to each of these four polynomials.

Table 2.13: Routh table for the first polynomial A*(s) of example 2.4

1.05 76.93 1073.2 1047.1
11.803 340.6 1660.7 244.45
46.63008 925.46341 | 1025.35362
106.34680 | 1401.1626 | 244.5

311.09307 | 918.16918

1087.28755 | 244.5

848.22752

244.5
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Table 2.14: Routh table for the first polynomial A?(s) of example 2.4

0.95 85.03 971.1 1157.3
10.679 376.4 1502.5 270.63
51.54559 837.43814 | 1133.22485
202.90307 | 1267.72321 | 270.63

515.38514 | 1064.47388

848.64823 | 270.63

900.11994

Table 2.15: Routh table for the first polynomial A® (s) of example 2.4

0.95 85.03 971.1 1157.3
11.803 340.6 1660.7 244.45
57.61578 837.43356 | 1137.6247
169.04582 | 1427.64955 | 244.5

350.84865 | 1054.30896

919.66262 | 2445

961.05199

244.5

Table 2.16: Routh table for the first polynomial A* (s) of example 2.4

1.05 76.93 1073.2 1047.1
10.679 376.4 1502.5 270.63
39.92092 925.46847 | 1020.49063
128.8336 1229.5148 | 270.63

544.48587 | 936.63208

1007.89348 | 270.63

790.4319

270.63

The first column of the Routh table for each Kharitonov polynomial has zero sign
changes. It shows that all the roots of the given interval transfer function G, (s) lie in

the left half of the s- plane. Therefore the system is stable.

2.3 KHARITONOV’S THEOREM FOR COMPLEX POLYNOMIALS

Consider the family IF*(s)of all complex polynomials of degree n of the form
A(s)=(a+if)+(en+ipB)s++(a, +ipB,)s" (2.25)
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withe, €| oo | B €[ BB |.i=01,..n

The complex polynomials arise in the study of time delay systems and phase margin
of control systems. Kharitonov developed his result for real polynomials to the above
complex interval family by introducing two sets of complex polynomials as follows

A (s)=(ag + 0B )+(ar + B )s+(as + i85 )s* +(a5 + i35 )S*+ (s + JBi )+
A (s)=(ay + iy )+(a + B )s+(as + 1B, )s* +(as + iB; )S°+ (s + JBi )+
A;(s):(ag+j/3(;)+(al +ip )s+(a +jﬂ2+)52+(a +j,83)s3+( jﬂ4)s Foe
AZ(S):(ag+jﬂo*)+(a + B )s+( +jﬂ2)32+(0{ jﬁ;)53+(a4 +Jﬂ4)s e
(2.26)

and

A (s)=(ay + iy )+ (o + i )s+(as + By )S* + (a5 + i85 )S° + (s + JBy )s* +
A;(s):(ao‘+ Jﬂg)+(a‘+ jﬂl‘)s+(a§+ J,B‘)sz+(a;+ jﬂ;)s3+(a;+ jﬁj)s4+

A (s)=(ag + B )+ + B )s+(ay + 0B )" +(as + 5 )$° +(a; + (B, )s* +
A;(s):(ag+ jﬂo*)+(a1 + j,Bf)s+(oc2 + jﬂ;)sz+(a3 + jﬂ;)53+(a;+ j,B;)s4+

Theorem 2.2 The family of polynomials F(s)is Hurwitz if and only if the eight
Kharitonov polynomials A (s),A;(s),A5(s),A; (5).A;(5),A;(5).A5(s), A, (s)are
all Hurwitz.

Proof: [203] The requirement of the condition is apparent because the eight

Kharitonov polynomials are in IF(S) The proof of sufficiency follows again from

Hemite- Biehler Theorem for complex polynomials.

Observe that the Kharitonov polynomials in Egs. (2.26) and (2.27) are composed of
the following extremal polynomials.

For the “positive” Kharitonov polynomials define as
R+ :053 + jﬁ[5+a2’sz + jﬁ;ss+a234+....

Riw =g + s +oys® + | B +aps +--o-

I =B o s+ jBs* +a, s + jB s+

I =10, +a S+ iBrs ;s + jBst e

so that
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Af =R!

min

(8)+Trin ()

Ay =R (8)+ 1 (5)
(8)+ Iin (3)
(s)

Angr:ax S +Ir:r1in S
A, =R, (s)+ 1. (s)

For the “negative” Kharitonov polynomials define as

_ ] . A
Rmax2%++1ﬂf8+azs +JB;s +a;“5 4oeeen
~ - 13~ 2 s ota3 -4
Rmin:ao+1ﬂls+a;3 +jﬂ3s +a, 8"+
- 13+ - e +.3 s ot od
Imax:Jﬂo +a15+]ﬂ25 +a,S +Jﬂ4s 4

| =B +a's+jBs +a;s*+ B,  +-

so that

AL =Ruin (8)+ in ()
Ay =Roin (8)+ 1a (5)
A =R (8)+ 1in ()
Ay = R (8) + 1 (5)

Rr:]ax ( Ja))’ Rr;lax ( Ja))’ RrJTr1in (J(O) and Rr;lin

(jw)are real and
e (10), 110 (§@), 1 (j@)and I, (jew) are imaginary. LetRe[ A( jo) |=A" ()
and Im[A( ja))] = A' (w)denote the real and imaginary parts of A(s) evaluated at

s= jw. Then we have

N (0)=[ag.a; =[5 8 Jo-[a.05 |0 +[ By, 5 |+,
N (0)=[ By, [ a5 Jo-[ B B 0" ~[ @505 | v
It is easy to verify that

Rin (@) < A" (@) <R}, (jo), forall @ <[0,]

MgAi(a))SM,for allw e[0,00] } (2.28)

J J

Ron(j0) <A™ (@) <R (j@), forallw [0, 0]
MSAi(a’)SM,for alla)e[O,oo] } (2.29)

] ]
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The proof of the theorem is now completed as follows. The stability of the four

positive Kharitonov polynomials guarantees interlacing of the “real tube” (bounded
by R (j®)andRy, (j@)) with the “imaginary tube” (bounded by I, (jeo)and
I +

min(ja))) for @>0. The relation in Eqg. (2.28) then guarantees that the real and

imaginary parts of an arbitrary polynomial in F~ (s) are forced to interlace for ®<0.

Analogous arguments, using the bounds in Eg. (2.29) and the “negative” Kharitonov
polynomials forces interlacing for@>0. Thus by the Hermite-Biehler Theorem for

complex polynomialsA(s) is Hurwitz. Since A(s)was arbitrary, it follows that each

and every polynomial inF" (s) is Hurwitz.

Corollary 3.1: For low-order uncertain systems, robust stability can be checked by
testing only one, two, and three Kharitonov polynomials for order n=3,4and5

respectively.

The arrangements of Kharitonov polynomials A*(s),A?(s) andA®(s) in terms of

lower and upper bounds for ordern =3,4 and5 are as given below
For n=3;

AY(S)=x%;8° + X ST +X,5+X; .

For n=4;

A'(S)=x35* + X 8T +X,5" + X5+ X, ,
A?(s)=%3S" +X/'S* +X,5° + X, 5+ X, .

For n=5;

A(S)=x38" + X 8" +X,5° + X;8” + X, 5+ X; ,
A?(S)=%gS" + X8 + %8 + X 8° + X, 5+ X¢ ,

A*(5)=x%8" +%'8* +%,8° + X;* + X, S+ X; .

24  KHARITONOV’S THEOREM FOR DISCRETE TIME INTERVAL
SYSTEMS.

The stability of a polynomial with uncertain coefficients. The polynomial, which may
be the characteristic polynomials of a linear system, is given by

D(z)=c,z"+c, 2" +----+CZ+C, (2.30)
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where the coefficients are unknown, except for box bounds of the formc; <c, <c; for

0<i<n,withc; andc; are known constants.

The Kharitonov polynomial of an n™ order discrete time interval system, D(z) are

handled by mapping the z -plane to the w -plane by w = z_+1 . This transforms D(z) to

D(—xfj which is multiplied by (w—1)" to get the polynomial Q(w),

[c,, ¢ ](w+1) (w-1)"" (2.31)

Note thatw=1 is the image of the point at infinity, which is not a root of D(z)

The terms(w+1)i (w—l)”_i can be rewritten as

(w+1)'( ZS(. Y (2.32)
giving

= %[Cm,cﬂ-(W)m (2.33)
where
[Cm,C;]=VZl‘;[ € ] S (2.34)

The bounds onc, transform into bounds onC; according to

VZ:(; min [CJ “S(um)» G0 S(V,m):| < [C{1 , CH < VZ;: max [CJ SiymCy S(V,m)} (2.35)

Using the transformed bounds, it is easy to obtain the Kharitonov polynomials, Q, (W)

. EachQ,(w) is then tested by the Routh criterion. Because the functionW:Z—Jrl

z-1
maps the unit circle|z|(1 onto the left half of thew - plane, if all the roots of each

Q (w),1<i<4, are in the left half plane, then all the roots D(z) of are within the

unit circle in the plane. This is a sufficiency condition for the stability ofD(z).
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Because of the way the boundsc; andc, are mapped into bounds on the coefficients
of Q[w], if one or more of the Q,(w)are unstable, then it is not possible to decide

whether D(z) is stable or unstable. This is because the bounds onC; do not represent

a hyper rectangle but rather a “wrapped” one. Apply Rouche’s theorem to find the
stability of the higher order discrete polynomial.

The stability test of the uncertain polynomials can also be verified by using
SYSTEMS PACKAGE software.

Example 2.5: Consider a characteristic fourth order polynomial

D, (z)=[11]z" +[0.077,0.354] z* +[0.077,0.354] z* +[0.077,0.354] 2 +[0.077,0.354]

(2.36)
The interval polynomial has been divided into four fixed polynomials.
A'(z)=12"+0.354z° +0.3542° +0.0772 +0.077
A*(z)=2"+0.0772°+0.0772° +0.3542 + 0.354 (2.37)
A*(z)=12"+0.0772° +0.3542% +0.3542 + 0.077 '
A*(z)=12*+0.3542° +0.0772° +0.0772 +0.354

P, (s)=[11]w* +[0.077,0.354]w’ +[0.077,0.354]w* +[0.077,0.354] w+[0.077,0.354]
(2.38)

The interval polynomial in Eq. (2.37) has been divided into four fixed polynomials.

R (W) =1.308W* +4.246W° +7.97W* +2.03w + 0.446
P (s)= 2.416W* +2.03W° +5.754wW° + 4.246wW +1.554
P. (S) =1.308W* +2.03wW° +7.97W* + 4.246w + 0.446
P,(s)= 2.416W* +4.246W° +5.754w° +2.03w +1.554

N

(2.39)

w

Apply Routh- Hurwitz criterion to each of these four polynomials.

Table 2.17: Routh table for the first polynomial B, (w) of example 2.5

1.308 7.97 0.446
4.246 2.03

7.33465 0.446

1.77216

0.446
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Table 2.18: Routh table for the first polynomial P, (w) of example 2.5

2.416 5.75 1.554
2.03 4.246

0.70063 1.554

-0.25653

1.554

Table 2.19: Routh table for the first polynomial P, (w) of example 2.5

1.308 7.97 0.446
2.03 4.246

5.23415 0.446

4.07302

0.446

Table 2.20: Routh table for the first polynomial P, (W) of example 2.5

2.416 5.754 1.554
4.246 2.03

4.59892 1.554

0.59525

1.554

The first column of the Routh Table 2.18 has two sign changes. Because of the way of
the higher order interval parameters transformed to the w -plane, the instability of the

transformed polynomial P4(z)does not give any information about the stability of

D, (z). The stability of P,(w) is only sufficient to ensure the stability of D, (z).
Using Rouche’s theorem for stability, D, (z)= f,(z)+9,(z)
f4(z):0.5><{(c; +c; )zt + (e +cy )2 +(c; + ¢y ) 2+ (o +¢ )2+ (o, +cg)} (2.40)

g4(z):0.5x{t4(c§ —c, )2t +t (e —cs ) 2B+t (¢ ¢ )27+t () —¢ )2+t (s —cg)}
(2.41)
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f,(z)=z"+0.2155z° +0.2155z% +0.2155z + 0.2155 (2.42)
F, (w)=1.862w" +3.138wW° +6.862w” +3.138w+1 (2.43)

Table 2.21: Routh table for the polynomial F, (w) of example 2.5

1.862 6.862 1
3.138 3.138

5.0 1

2.5104

1.0

Number of sign changes in Table 2.21 is zero. All the roots of f4(z) lie inside the

unit disk in the z-plane. f,(z) is stable.
Applying Rouche’s theorem
Min‘ f4(ej€)‘

- W =5.6613 (2.44)

L

All the roots of D, (z) lie inside the unit circle in the z -plane. The system is stable.

D, (z) is also stable if 0<t, <5.6613,where 0<k <4.
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