LIST OF FIGURES

Figure No.	Figure Caption	Page No.
Figure 1.1	Simplified representation of power transmission network	2
Figure 1.2	Simplified representation of series-compensated power	3
	network	
Figure 1.3	Modification in seen impedance due to CD in the	5
	transmission network	
Figure 1.4	A case of current inversion due to CD in the transmission	6
	network	
Figure 2.1	Frequency and Time resolution representation of STFT	33
	and WT	
Figure 2.2	Haar wavelet function	35
Figure 2.3	Db wavelet function	36
Figure 2.4	Symlet wavelet function	36
Figure 2.5	Meyer wavelet function	36
Figure 2.6	Wavelet frequency decomposition tree	39
Figure 2.7	Empirical mode decomposition of post fault current	42
	signal during A-G fault in the simulated network at 50 km	
	from sending side.	
Figure 3.1	Work flow of the proposed events classification scheme	48
Figure 3.2	Functioning of Machine learning	50
Figure 3.3	Classification of machine learning techniques	50
Figure 3.4	Categories of machine learning algorithms	52
Figure 3.5	Two class separation using SVM	56
Figure 3.6	Architecture of PNN	57
Figure 3.7	Flow-chart of the proposed fault events classification	59
	scheme	
Figure 3.8	Two-bus mid-point compensated network (first test	63
	system)	
Figure 3.9	Three phase current signals during line to ground fault	64
	event at 30 km on different inception angles ((a) 30	

	degree; (b) 60 degree; (c) 90 degree; (d) 120 degree	
Figure 3.10	Classification of different types of fault events using PNN	73
	classifier model-(a) to (j)	
Figure 3.11	Confusion matrix during events classification using PNN	73
	classifier model	
Figure 3.12	Simulated modified WSCC 9-Bus IEEE network (second	76
	test system)	
Figure 3.13	Three phase current signals during line to ground fault	78
	event at 50 km on different inception angles ((a) 30	
	degree; (b) 60 degree; (c) 90 degree; (d) 120 degree	
Figure 3.14	Confusion matrix during events classification using PNN	82
	classifier model	
Figure 3.15	3-phase current samples during evolving fault in the test	85
	network	
Figure 3.16	Confusion matrix during classification of evolving fault	88
	events	
Figure 3.17	Fault current signals at 40 % line compensation with and	90
	without considering CTs saturation	
Figure 4.1	Structure of EMD and ML based events classification	94
	scheme	
Figure 4.2	Work-flow of the proposed fault events classification	96
	scheme	
Figure 4.3	Two-bus mid-point compensated network (first test	100
	system)	
Figure 4.4	Three phase current signals during line to ground fault	101
	event at 30 km on different inception angles	
Figure 4.5	Post-fault phase 'A' current signal decomposition using	102
	EMD	
Figure 4.6	FFT responses of different acquired IMFs	103
Figure 4.7	Confusion matrix during events classification using PNN	108
	classifier model	
Figure 4.8	Simulated modified WSCC 9-Bus IEEE network (second	112
	test system)	

Figure 4.9	Three phase current signals during line to ground fault	113
	event at 50 km on different inception angles	
Figure 4.10	Post-fault phase 'A' current signal decomposition using	114
	EMD	
Figure 4.11	FFT responses of different acquired IMFs	115
Figure 4.12	Confusion matrix during events classification using PNN	119
	classifier model	
Figure 4.13	Three-phase current samples during evolving fault in the	122
	test network	
Figure 4.14	Evolving fault (phase 'A') current signal decomposition	123
	using EMD	
Figure 4.15	FFT responses of different acquired IMFs for phase 'A'	124
Figure 4.16	Evolving fault (phase 'B') current signal decomposition	125
	using EMD	
Figure 4.17	FFT responses of different acquired IMFs for phase 'B'	126
Figure 4.18	Confusion matrix during classification of evolving fault	129
	events	
Figure 5.1	Ensemble learning mechanism	133
Figure 5.2	Flow-chart of Ensemble Learning (Bagging) based event	138
	classification scheme	
Figure 5.3	Two-bus mid-point compensated network (first test	142
	system)	
Figure 5.4	Three phase current signals during line to ground fault	143
	event at 30 km on different inception angles	
Figure 5.5	Simulated modified WSCC 9-Bus IEEE network (second	148
	test system)	
Figure 5.6	Three phase current signals during line to ground fault	149
	event at 50 km on different inception angles	
Figure 5.7	Simulated series compensated double circuit transmission	154
	(third test system) network	
Figure 5.8	3-Phase current with respect to time (s) for different Fault	156
	events at 30 km	
Figure 5.9	Fault current signals at 40 % line compensation with and	158

	without considering CTs saturation	
Figure 5.10	Logic diagram form simulating evolving and cross-	161
	country faults	
Figure 5.11	3-phase post fault current samples (a) ABG at 30 km;	162
	(b) cross-country fault current	
Figure 5.12	3-phase current samples during evolving fault in the third	164
	test network	
Figure 5.13	Structure of RNN	167
Figure 5.14	An unfolded (in time) structure of RNN	168
Figure 5.15	Structure of RBM network	169
Figure 5.16	DBN structure	169
Figure 5.17	Architecture of autoencoder network	170
Figure 5.18	One layer structure of an autoencoder	171
Figure 5.19	Stacked autoencoder structure (with 3-hidden layer)	173
Figure 5.20	Work-flow of the proposed deep learning based events	176
	classification scheme	
Figure 5.21	Structure of the utilized autoencoder and softmax layer	179
	based DNN	
Figure 6.1	Single neuron structures (a) without bias (b) with bias	188
Figure 6.2	Architecture of feed-forward network	189
Figure 6.3	Activation transfer functions	190
Figure 6.4	Architecture of linear neural network	191
Figure 6.5	Architecture of CFNN	192
Figure 6.6	Architecture of GRNN	193
Figure 6.7	radbas transfer function	193
Figure 6.8	Flow-chart of the proposed fault location scheme	195
Figure 6.9	Two-bus series compensated (first test system)	198
Figure 6.10	Three phase current signals during line different fault	199
	event at 30 km, 120 degree inception angle	
Figure 6.11	Distance estimation error percentage with respect to	203
	location of faults using FFNN	
Figure 6.12	Distance estimation error percentage with respect to	203
	location of faults using LNN	

Figure 6.13	Distance estimation error percentage with respect to	204
	location of faults using GRNN model	
Figure 6.14	Distance estimation error percentage with respect to	207
	location of faults using CFNN at 35 % compensation of	
	line on different inception angles	
Figure 6.15	Distance estimation error percentage with respect to	210
	location of faults using CFNN at 45 % compensation of	
	line on different inception angles	
Figure 6.16	Simulated modified WSCC 9-Bus network	212
Figure 6.17	Three phase current signals during line to ground fault	213
	event at 50 km on different inception angles	
Figure 6.18	Distance estimation error percentage with respect to	215
	location of faults using CFNN model	
Figure 6.19	Simulated series compensated double circuit transmission	217
	(third test system) network	
Figure 6.20	Logic diagram form simulating evolving and cross-	218
	country faults	
Figure 6.21	3-Phase current with respect to time (s) for different Fault	219
	events at 30 km	
Figure 6.22	Distance estimation error percentage with respect to	221
	location of faults using GRNN model	
Figure 6.23	3-phase current samples during evolving fault in second	222
	test network	
Figure 6.24	3-phase current samples during evolving fault in third test	223
	network	
Figure 6.25	Distance estimation error percentage with respect to	226
	location of faults using CFNN model	
Figure 6.26	Distance estimation error percentage with respect to	226
	location of faults using CFNN model	