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Chapter 6 

FAULT EVENTS DISTANCE ESTIMATION USING INTELLIGENT 

COMPUTING 

 

6.1 Introduction 

The neural networks are composed of large number of highly interconnected processing 

elements (neurons) working in unison to solve specific task. The performance of the 

network is mainly dependent on the applied connection weights. The designed network 

performs the specific task by regulating the values of the connecting weights in the 

network. In the recent few years, has been comprehensively applied in the different power 

system applications such as forecasting of loads, stability analysis and fault events 

detection [115-118]. In this chapter, an intelligent neural network based methodology has 

been presented for locating the fault events in the transmission system. The extracted 

feature vectors after DWT decomposition are fed to the designed distance estimator models 

for ascertaining the position of the faults in the network. The developed distance estimator 

model predicts the location of events in the transmission circuit as its output. Further, the 

strength and workability of the proposed fault distance estimating approach in the 

compensated transmission circuit is validated for different fault scenarios. 

6.2 Fundamentals of Neural Network Models 

Figure 6.1 shows the diagram of a single input neuron system without and with bias 

element. The input ‘ e ’ applied at the input layer is transmitted via a connection that 

multiplies its value by connecting weight ‘ w ’. The utilized transfer function finally 
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produces the output of the system as ‘ a ’ which is simply function applied on ‘ we ’. In the 

second system, as there is bias element present the final output of the system is transfer 

function applied on ‘ we b ’. 

 a f we                    (6.1) 

 a' f we b                     (6.2)
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Figure 6.1 Single neuron structures (a) without bias (b) with bias 

ANN is collections elementary neurons and it has three layers:  input layer, hidden layer, 

and output layer. The feature vectors are applied to the input layer of the network. The 

second layer represents the key unit of the network. The neurons present in this layer 

processed and compute the applied input according to utilized weight vectors. It sends the 

final estimated values to the final output layer. The connecting weight vectors are regulated 

for mitigating the error between target and predicted value. On the basis of neurons 

interconnection in the model, the networks can be broadly categorized as feed-forward 

networks and feed-back networks. In the present work, following neural network models 

based distance estimator models have been designed for predicting the location of fault 

events in the transmission network- 



CHAPTER 6: FAULT EVENTS DISTANCE ESTIMATION USING INTELLIGENT COMPUTING 

 

 

Department of Electrical Engineering, IIT (BHU)                       Page | 189  
 

i) Feed-forward neural network (FFNN) 

ii) Linear neural network (LNN) 

iii) Cascaded-forward neural network (CFNN) 

iv) Generalized regression neural network (GRNN) 

6.2.1 Feed-Forward Neural Network 

In a feed-forward neural network each neuron in one layer has only directed connections to 

the neurons of the next layer (towards the output layer). The structure of feed-forward 

neural network is shown in Figure 6.2. 
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Figure 6.2 Architecture of feed-forward network 

There are 10 neurons on hidden layer. Levenberg-Marquardt back propagation (trainlm) 

training function is used for the training of the neural network model. Although it requires 

more memory than other training algorithms but this algorithm will have the fastest 

convergence. Hyperbolic tangent sigmoid transfer function (tansig) is used for hidden 

layers and for the output layer linear transfer function (purelin) is used. The output layer 

consists of one output neuron representing fault location of the transmission line. Figure 6.3 

(a) shows the (logsig) log-sigmoid transfer function; it produces output between 0 and 1as 

the neuron’s net input goes negative to positive infinity. In multilayer networks the (tansig) 

tan-sigmoid transfer function shown in Figure 6.3 (b) is used.  
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Figure 6.3 Activation transfer functions (a) log-sigmoid transfer function; (b) Tan-sigmoid 

transfer function; (c) purelin transfer function 

The purelin transfer function shown in Figure 6.3 (c) is a linear function which estimates 

the neuron’s output simply returning the value passed through it as given below- 

   a purelin we b we b                   (6.3) 

6.2.2 Linear Neural Network 

LNN is similar to perceptron model; the only difference is it has linear transfer function 

instead of hard-limiting transfer function. This allows their outputs to take on any value, 

whereas the perceptron output is limited to either 0 or 1. The purelin transfer function is 

utilized in the output layer and it computes neurons output by returning the values passed to 

it. The extracted feature vectors are applied as input to the designed linear network and it 

predict the location of shunt fault event in the power transmission network as its output 

layer. The architecture of LNN is shown in Figure 6.4.  
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Figure 6.4 Architecture of linear neural network 

6.2.3 Cascaded-Forward Neural Network 

The CFNN model consists of three layers, i.e. input, hidden and output layer as same as 

feed-forward networks, but it has an additional weight connection from input to the 

consecutive layer and so on. The utilization of additional connection enhances the learning 

speed capability of the network. In the present work, Levenberg-Marquardt back 

propagation (trainlm) function has been used as the training function. The extracted feature 

vectors set are used as input to the designed CFNN model. Tansig transfer function has 

been used in the hidden layer for estimating hidden layer’s output. In the output layer, 

purelin transfer function has been utilized. The output layer of the CFNN predicts the 

position of fault in the transmission network as its final output. Figure 6.5 shows the 

architecture of CFNN system. 
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Figure 6.5 Architecture of CFNN 

6.2.4 Generalized Regression Neural Network 

GRNN is a type of radial basis network that is often used for function approximation. A 

feed-forward neural network with a single hidden layer that use a radial bias activation 

function for hidden neurons are called as radial basis function network. The architecture of 

GRNN is a combination of radial basis layer and a special linear layer. The first layer has as 

many radbas (Radial basis transfer function) neurons as there are input/target vector. It 

estimates the weighted inputs with || dist || and net input with netprod (net input function). 

The second layer has purelin neurons, it calculates weighted input with nprod (Normalized 

dot product), and net inputs with netsum (Sum net input function). The architecture for the 

GRNN is shown in Figure 6.6. The output layer, on the other hand consists of one output 

neuron representing fault location of the transmission line [119-120]. 
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Figure 6.6 Architecture of GRNN 

The radial basis function produces maximum of 1 when its input is 0. Hence a radial basis 

neuron acts as a detector which produces 1 whenever the input is identical to its weight 

vector. The bias b helps the sensitivity of the radbas neuron to be regulated. Figure 6.7 

shows the radbas transfer function which gives output as- 

  2nradbas n e                 (6.4) 
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Figure 6.7 radbas transfer function 
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6.3 Proposed Intelligent Computing Based Fault Distance Estimation Methodology 

The flow chart of the proposed integrated DWT and intelligent neural network model based 

scheme for ascertain the position of the fault events in the series compensated transmission 

system is shown in Figure 6.8. The extracted fault features after post fault current signal 

decomposition in terms of SD of detail coefficients (cD), norm entropy of the DWT 

coefficients, minimum and maximum value of the wavelet coefficients are utilized as the 

training and testing dataset in the designed neural network models. The detailed description 

of the applied mechanism and expressions for extracting the critical fault feature from the 

retrieved 3-phase post fault current signal is already discussed in second chapter. In the 

training phase, the computed feature vectors corresponding to various considered training 

fault scenarios in the simulated test systems are fed to the designed neural network based 

distance estimator models as the training dataset. Later on, during the testing the feature 

vectors associated with new unfamiliar fault events (considered testing cases) with varying 

circumstances are applied to the trained distance estimator models. The model predicts the 

estimated distance of the fault in the transmission system as its final output. In the present 

work, four distinct distance estimator models i.e. FFNN, LNN, CFNN, and GRNN are 

designed for predicting the location of fault events in the simulated series compensated 

power transmission system.  
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Figure 6.8 Flow-chart of the proposed fault location scheme 

6.3.1 Training and Testing Mechanism 

In the training phase, the computed fault features in terms of standard deviation of detailed 

coefficients (cD), norm entropy of the DWT coefficients, minimum and maximum value of 

the wavelet coefficients for various considered training fault scenarios in the simulated test 

system are applied to the designed distance estimator model. The considered training cases 

and conditions in the simulated test networks described in next section. The size of 

extracted input feature vector is 15 i.e. standard deviation of detail coefficients (cD) of 1st 
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and 5th decomposition level, norm entropy value of the wavelet coefficients and minimum 

and maximum value of the wavelet coefficients of each phase. The working details of the 

designed neural network based distance estimator models are already described in section 

6.2. Levenberg-Marquardt back propagation (trainlm) function is utilized as the training 

function during the training. The tansig transfer function is utilized in the hidden layer for 

estimating hidden layer’s output and purelin transfer function has been employed in the 

output layer. The output layer, of the distance estimator models has one neuron which 

represents the location of the fault events in the transmission lines. During the testing, the 

feature vectors corresponding to new unknown cases of fault events are applied to the 

trained classifier models. The trained distance estimator model predicts the particular 

location of the fault event in the transmission section on the basis of trained pattern set. The 

expression given in equation (6.2) has been utilized for assessing the fault distance 

estimation error in percentage.  

 

   Distance Estimator Model output Actual location of fault
Distance Estimation % 100

Length of line in km 
error


 

(6.2) 

6.4 Case Study and Results 

For assessing the feasibility of the proposed DWT and intelligent neural network based 

fault locating scheme in the series compensated transmission system, it has been 

extensively analysed for different fault scenarios in the simulated test networks. For 

training, the feature vectors corresponding to multiple fault events in a step of 5 km at 

different inception angles (0, 75, and 150 degree) and two level of line compensation are 

fed to the designed distance estimator model. In the testing phase, for tracing of the faults 
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position in the network, the features associated with different fault events at ten unknown 

places in the network, with varying conditions such as 4 different inception angles, two 

distinct line compensation levels have been applied to the trained distance estimator 

models. The neural network based distance estimator predicts the location of fault events in 

the network by comparing the input test feature instances with the trained pattern.  

6.4.1 Test Case I: Two-Bus Series Compensated Transmission Test Network 

For appraising the practicability of the proposed fault distance estimating scheme in series 

compensated transmission lines, it has been validated for various fault cases in the first test 

network. Figure 6.10 represents the 3-phase post fault current samples retrieved during 

different fault cases in the first simulated test network at 30 km from the sending side. 

During the testing, the feature vectors (i.e. SD of detail coefficients (cD) of 1st and 5th 

decomposition level, norm entropy of DWT coefficients and minimum and maximum value 

of the wavelet coefficients of each phase) corresponding to all considered testing cases are 

fed to the trained distance estimator models for ascertaining the location of events in the 

transmission network. The distance estimator models predict the location of the test 

instance from the sending side as its output based on the trained pattern set. The fault 

distance estimation error has been computed using the expression given in equation 6.2.  
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Figure 6.9 Two-bus mid-point compensated network (first test system) 
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(c) 

 

(d) 

Figure 6.10 Three phase current signals during line different fault event at 30 km, 120 

degree inception angle: (a) AG fault; (b) AB fault; (c) ABG fault; (d) ABC fault 

 

Table 6.1-6.3 summarizes the fault distance estimation results and corresponding 

estimation error percentage provided by the FFNN, LNN and GRNN based distance 

estimator model during testing. It has been observed that the proposed scheme is well 

effective in ascertaining the location of the fault events in series compensated transmission 

system. Figure 6.11-6.13 represents the obtained error percentage during the tracing of 

different fault events in the simulated test network using FFNN, LNN, and GRNN 

respectively. The maximum distance assessment error is within 0.9 % for FFNN, 1.8 % for 

LNN, and 1.0 % for GRNN during testing in the transmission circuit. 
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   Table 6.1 Fault events distance estimation using FFNN based distance estimator model  

Type of fault Actual 
location 
of fault 

FFNN Model 
Output 

 

Distance estimation 
Error 
(%) 

 
Single line to ground 

fault 

50 52.4752 0.8250 

90 91.9752 0.6584 

130 131.3797 0.4599 

190 190.6708 0.2236 

250 251.6981 0.5660 

 
Double line  fault 

50 49.5927 0.1357 

90 91.8596 0.6198 

130 130.1578 0.0526 

190 190.4098 0.1366 

250 251.1506 0.3835 

 
Double line to ground 

fault 

50 52.5534 0.8511 

90 91.5159 0.5053 

130 131.9413 0.6471 

190 192.0037 0.6679 

250 251.7376 0.5792 

 
Three-phase fault 

50 51.2668 0.4222 

90 90.9403 0.3134 

130 128.7527 0.4157 

190 189.7336 0.0888 

250 249.8460 0.0513 
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   Table 6.2 Fault events distance estimation using LNN based distance estimator model 

Type of fault Actual 
location 
of fault 

LNN Model 
Output 

 

Distance estimation 
Error 
(%) 

 
Single line to ground 

fault 

50 50.5040 0.168 

90 88.7912 0.4029 

130 129.5939 0.1353 

190 190.6367 0.2122 

250 250.8810 0.2936 

 
Double line  fault 

50 48.7419 0.4193 

90 94.8953 1.6317 

130 133.8041 1.2680 

190 192.9698 0.9899 

250 250.0561 0.0187 

 
Double line to ground 

fault 

50 49.0408 0.3197 

90 88.4754 0.5082 

130 134.6198 1.5399 

190 195.3332 1.7777 

250 249.2739 0.2420 

 
Three-phase fault 

50 52.0097 0.6699 

90 88.3858 0.5380 

130 134.7701 1.5900 

190 186.4056 1.1981 

250 252.8415 0.9471 
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Table 6.3 Fault events distance estimation using GRNN based distance estimator model 

Type of fault Actual 
location 
of fault 

GRNN Model 
Output 

 

Distance estimation 
Error 
(%) 

 
Single line to ground fault 

50 51.8718 0.6239 

90 91.0893 0.3613 

130 130.0397 0.0132 

190 189.8104 0.0632 

250 249.6502 0.1166 

 
Double line  fault 

50 50.3350 0.1116 

90 91.9999 0.6666 

130 128.7360 0.4213 

190 189.6397 0.1201 

250 250.0680 0.0226 

 
Double line to ground 

fault 

50 51.7718 0.5906 

90 92.0000 0.6666 

130 130.6284 0.2094 

190 191.9984 0.6661 

250 249.6107 0.1096 

 
Three-phase fault 

50 51.0673 0.3556 

90 91.2470 0.4156 

130 132.8541 0.9513 

190 189.7142 0.0952 

250 248.9360 0.3546 
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Figure 6.11 Distance estimation error percentage with respect to location of faults using 

FFNN 

 

Figure 6.12 Distance estimation error percentage with respect to location of faults using 

LNN 
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Figure 6.13 Distance estimation error percentage with respect to location of faults using 

GRNN 

Table 6.4-6.5 summarizes the fault distance estimation results and corresponding 

estimation error percentage provided by the CFNN based distance estimator model during 

testing. It has been tested for various faults with varying inception angle and level of line 

compensation at ten different locations in the simulated test network. It shows that the 

proposed CFNN model based methodology is well effectual in ascertaining the location of 

the fault events in series compensated transmission system with high accuracy percentage. 

Figure 6.14 represents the obtained error percentage during the localization of different 

fault events in the 35 % compensated simulated test network on different inception angles. 

Similarly, Figure 6.15 represents the obtained error percentage during the tracing of 

different fault events in the 45 % compensated simulated test network on different 

inception angles. The maximum distance assessment error is within 1 % for all considered 

test events.  



CHAPTER 6: FAULT EVENTS DISTANCE ESTIMATION USING INTELLIGENT COMPUTING 

 

 

Department of Electrical Engineering, IIT (BHU)                       Page | 205  
 

Table 6.4 Fault events distance estimation using CFNN model on different fault inception 

angles at 35 % of line compensation 

Type of 
fault 

Actual 
location 
of fault 

CFNN 
Output 
30-deg 

Error 
(%) 

CFNN 
output 
60-deg 

Error 
(%) 

CFNN 
output 
90-deg 

Error 
(%) 

CFNN 
output 

120-deg 

Error 
(%) 

L-G 30 29.492 0.169 29.886 0.038 29.964 0.012 29.735 0.088 
 50 50.307 0.102 49.840 0.053 50.027 0.009 49.868 0.044 
 70 69.349 0.217 69.402 0.199 70.049 0.016 69.971 0.009 
 90 89.722 0.092 90.212 0.070 90.154 0.051 89.304 0.232 
 110 109.598 0.134 109.658 0.114 110.450 0.150 110.462 0.154 
 130 129.512 0.162 129.853 0.049 130.578 0.192 130.270 0.090 
 170 169.135 0.288 170.050 0.016 170.207 0.069 170.168 0.056 
 190 190.151 0.050 189.692 0.102 189.958 0.014 189.623 0.125 
 230 228.087 0.637 229.261 0.246 230.416 0.138 230.175 0.058 
 250 250.867 0.289 249.421 0.193 249.586 0.138 250.971 0.323 
 

L-L 
 

30 
 

30.097 
 

0.032 
 

29.570 
 

0.143 
 

29.263 
 

0.345 
 

30.428 
 

0.142 
 50 50.884 0.294 50.380 0.126 50.353 0.117 50.750 0.250 
 70 70.251 0.083 69.783 0.072 67.827 0.724 69.472 0.176 
 90 91.378 0.459 89.488 0.170 92.136 0.712 88.393 0.535 
 110 109.212 0.262 110.858 0.286 109.748 0.084 110.364 0.121 
 130 131.272 0.424 131.501 0.500 128.823 0.392 129.447 0.184 
 170 169.550 0.150 170.859 0.286 169.186 0.271 171.392 0.464 
 190 190.359 0.119 189.754 0.82 189.473 0.175 189.952 0.016 
 230 229.226 0.258 231.622 0.540 227.594 0.802 228.493 0.502 
 250 250.589 0.196 250.056 0.018 250.728 0.260 249.747 0.084 
 

LL-G 
 

30 
 

29.211 
 

0.263 
 

30.603 
 

0.201 
 

29.405 
 

0.198 
 

29.717 
 

0.094 
 50 50.565 0.188 50.260 0.086 50.445 0.148 49.230 0.256 
 70 71.954 0.651 70.002 0.0006 71.446 0.482 69.316 0.228 
 90 89.523 0.159 90.688 0.229 92.908 0.964 90.676 0.225 
 110 109.189 0.270 111.399 0.466 111.267 0.422 110.261 0.087 
 130 132.249 0.749 131.355 0.451 131.294 0.431 130.875 0.291 
 170 169.725 0.091 171.702 0.567 169.869 0.043 169.426 0.191 
 190 189.628 0.124 190.343 0.114 191.075 0.358 190.140 0.046 
 230 229.429 0.190 230.878 0.292 229.840 0.053 229.858 0.047 
 250 249.429 0.190 250.306 0.102 250.233 0.077 249.546 0.151 
 

LLL 
 

30 
 

30.518 
 

0.172 
 

30.350 
 

0.116 
 

30.225 
 

0.075 
 

30.3724 
 

0.124 
 50 50.885 0.295 49.263 0.245 48.942 0.352 49.584 0.138 
 70 70.651 0.217 70.769 0.256 69.373 0.209 70.503 0.167 
 90 92.846 0.948 89.031 0.323 89.310 0.230 90.910 0.303 
 110 110.338 0.112 109.705 0.098 109.150 0.283 110.093 0.031 
 130 131.021 0.340 127.306 0.898 130.066 0.022 128.649 0.450 
 170 170.171 0.057 170.213 0.071 169.957 0.014 170.527 0.175 
 190 191.242 0.414 190.705 0.235 191.336 0.445 190.343 0.114 
 230 230.293 0.097 228.858 0.380 230.183 0.061 230.022 0.007 
 250 250.305 0.101 249.581 0.139 251.485 0.495 250.255 0.085 
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(a) 

 

(b) 
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(c) 

 

(d) 

Figure 6.14 Distance estimation error percentage with respect to location of faults using 

CFNN at 35 % compensation of line on different inception angles: (a) 30 degree (b) 60 

degree (c) 90 degree and (d) 120 degree 
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Table 6.5 Fault events distance estimation using CFNN model on different fault inception 

angles at 45 % of line compensation 

Type of 
fault 

Actual 
location 
of fault 

CFNN 
Output 
30-deg 

Error 
(%) 

CFNN 
output 
60-deg 

Error 
(%) 

CFNN 
output 
90-deg 

Error 
(%) 

CFNN 
output 

120-deg 

Error 
(%) 

L-G 30 30.278 0.092 30.264 0.088 29.019 0.327 29.797 0.067 
 50 49.727 0.091 50.613 0.204 49.209 0.263 50.664 0.221 
 70 69.722 0.092 69.781 0.073 69.722 0.092 69.861 0.046 
 90 89.278 0.240 89.281 0.239 89.248 0.250 89.321 0.226 
 110 110.181 0.060 110.053 0.017 109.278 0.240 110.637 0.212 
 130 130.193 0.064 129.258 0.247 130.319 0.106 130.186 0.062 
 170 169.397 0.201 170.666 0.222 170.342 0.114 169.741 0.086 
 190 189.504 0.165 190.453 0.151 189.590 0.136 189.295 0.235 
 230 229.812 0.062 229.593 0.135 229.066 0.311 229.485 0.171 
 250 249.130 0.29 249.714 0.095 250.023 0.007 251.210 0.403 
 

L-L 
 

30 
 

29.608 
 

0.130 
 

30.420 
 

0.14 
 

30.232 
 

0.077 
 

30.203 
 

0.067 
 50 51.169 0.389 50.613 0.204 48.649 0.450 50.419 0.139 
 70 71.910 0.636 70.265 0.088 72.639 0.879 69.214 0.262 
 90 89.600 0.133 91.357 0.452 89.473 0.175 90.267 0.089 
 110 109.349 0.217 110.317 0.105 110.908 0.302 109.296 0.234 
 130 129.379 0.207 131.642 0.547 130.415 0.138 131.573 0.524 
 170 169.536 0.154 169.040 0.32 170.803 0.267 169.584 0.138 
 190 190.379 0.126 190.773 0.257 189.792 0.069 189.601 0.133 
 230 231.670 0.556 230.188 0.062 232.299 0.766 231.573 0.524 
 250 249.454 0.182 250.971 0.323 250.031 0.010 250.774 0.258 
 

LL-G 
 

30 
 

30.345 
 

0.115 
 

29.442 
 

0.186 
 

29.575 
 

0.141 
 

30.153 
 

0.051 
 50 50.264 0.088 49.841 0.053 50.815 0.271 49.475 0.175 
 70 71.028 0.342 72.572 0.857 72.958 0.986 72.602 0.867 
 90 91.573 0.524 87.997 0.667 88.444 0.518 90.380 0.126 
 110 109.255 0.248 110.156 0.052 110.423 0.141 109.669 0.110 
 130 128.948 0.350 131.294 0.431 130.573 0.191 131.066 0.355 
 170 169.574 0.142 170.065 0.021 172.306 0.768 168.934 0.355 
 190 191.044 0.348 189.833 0.055 190.144 0.048 190.290 0.096 
 230 229.228 0.257 231.803 0.601 230.226 0.088 230.910 0.303 
 250 249.397 0.201 249.864 0.045 249.405 0.198 250.841 0.280 
 

LLL 
 

30 
 

30.715 
 

0.238 
 

29.692 
 

0.102 
 

30.568 
 

0.189 
 

29.894 
 

0.035 
 50 50.671 0.223 49.210 0.263 48.976 0.341 49.911 0.029 
 70 68.905 0.365 70.412 0.137 70.472 0.157 71.312 0.437 
 90 89.249 0.250 88.280 0.573 90.678 0.226 87.703 0.765 
 110 110.879 0.293 109.139 0.287 107.109 0.963 110.511 0.170 
 130 132.348 0.782 129.912 0.029 130.396 0.132 129.132 0.289 
 170 169.929 0.023 168.911 0.363 171.832 0.610 170.501 0.167 
 190 188.491 0.503 190.281 0.093 192.089 0.696 189.236 0.254 
 230 229.178 0.274 229.218 0.260 231.704 0.568 228.006 0.664 
 250 248.732 0.422 249.513 0.162 250.919 0.306 247.762 0.746 
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(a) 

 

(b) 
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(c) 

 

(d) 

Figure 6.15 Distance estimation error percentage with respect to location of faults using 

CFNN at 45 % compensation of line on different inception angles: (a) 30 degree (b) 60 

degree (c) 90 degree and (d) 120 degree 



CHAPTER 6: FAULT EVENTS DISTANCE ESTIMATION USING INTELLIGENT COMPUTING 

 

 

Department of Electrical Engineering, IIT (BHU)                       Page | 211  
 

6.4.2 Test Case II: Modified IEEE 9-Bus Series Compensated Test Network 

The ability of the proposed CFNN based fault distance estimating scheme has been also 

validated on second simulated test network (shown in Figure 6.16). It has been tested for 

distinct fault cases at five different locations in the transmission network. Figure 6.17 

shows the 3-phase post fault current samples retrieved during different fault cases in the 

first simulated test network at 30 km from the sending side. During the testing, the features 

corresponding to all considered testing cases are fed to the trained distance estimator 

models. It predicts the location of the test instance in the network as its output based on the 

trained pattern set.  
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Figure 6.16 Simulated modified WSCC 9-Bus IEEE network (second test system) 

 

(a) 
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(b) 

 

(c) 

 

(d) 

Figure 6.17 Three phase current signals during line to ground fault event at 50 km on 

different inception angles (a) 30 degree; (b) 60 degree; (c) 90 degree; (d) 120 degree 

 



CHAPTER 6: FAULT EVENTS DISTANCE ESTIMATION USING INTELLIGENT COMPUTING 

 

 

Department of Electrical Engineering, IIT (BHU)                       Page | 214  
 

Table 6.6 summarizes the fault distance estimation results and corresponding estimation 

error percentage acquired by using the proposed CFNN based distance estimating scheme. 

The obtained results clearly vindicated that the proposed CFNN based scheme is well 

competent in ascertaining the position of fault events in series compensated transmission 

system. Figure 6.18 represents the obtained error percentage during the tracing of different 

fault events in the simulated test network. The maximum distance assessment error is 

within 0.5 % by the proposed CFNM model based distance estimator model. 

Table 6.6 Fault events distance estimation using CFNN model on second test system 

Type of fault Actual 
location 
of fault 

CFNN Model 
Output 

 

Distance estimation 
Error 
(%) 

 
Single line to ground fault 

50 49.271 0.243 

110 109.643 0.119 

170 170. 325 0.108 

210 209.414 0.195 

250 249.350 0.216 

 
Double line  fault 

50 50.635 0.211 

110 111.320 0.440 

170 169.436 0.188 

210 209.539 0.153 

250 250.424 0.141 

 
Double line to ground fault 

50 49.672 0.109 

110 110.826 0.275 

170 170.628 0.209 

210 211.394 0.464 

250 249.310 0.230 

 
Three-phase fault 

50 51.067 0.355 

110 109.640 0.120 

170 171.254 0.418 
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210 209.214 0.262 

250 248.736 0.421 

 

 

Figure 6.18 Distance estimation error percentage with respect to location of faults using 

CFNN 

 

6.4.3 Test Case III: Series Compensated Parallel Transmission Network (Third test 

system) 

The efficacy of the proposed CFNN model based fault distance estimating scheme has been 

also examined on simulated double circuit transmission system shown in Figure 6.19. It has 

been validated for various fault cases at different location in the simulated test system. 

Figure 6.20 represents the 3-phase post fault current samples retrieved during different fault 

cases in the first simulated test network at 30 km from the sending side. During the testing, 
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the features corresponding to all considered testing cases are fed to the trained distance 

estimator models. It predicts the location of the test fault case in the network as its output.  
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Figure 6.19 Simulated series compensated double circuit transmission (third test system) 

network; (a) single line diagram, (b) simulated test network in RTDS 
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Figure 6.20 Logic diagram form simulating evolving and cross-country faults 
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(d) 

            Figure 6.21 3-Phase current with respect to time (s) for different Fault events at 30 

km (a) A-G event (b) A-B event (c) AB-G event (d) ABC event 
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Table 6.7 summarizes the fault distance estimation results and the corresponding estimation 

error percentage acquired by the proposed CFNN based distance estimating scheme. The 

obtained results clearly vindicated that the proposed CFNN based methodology is well 

competent in ascertaining the position of fault events in series compensated transmission 

system. Figure 6.21 represents the obtained error percentage during the tracing of different 

fault events in the simulated test network. The maximum distance assessment error is 

within 0.5 %.  

        Table 6.7 Fault events distance estimation using CFNN model on third test system 

Type of fault Actual 
location 
of fault 

CFNN Model 
Output 

 

Distance estimation 
Error 
(%) 

 
Single line to ground 

fault 

30 30.471 0.235 

50 49.082 0.459 

70 70.428 0.214 

130 130.339 0.169 

150 149.810 0.095 

170 169.320 0.340 

 
Double line  fault 

30 30.530 0.265 

50 49.621 0.189 

70 70.207 0.103 

130 129. 460 0.270 

150 149. 357 0.321 

170 170.168 0.084 

 
Double line to ground 

fault 

30 30.331 0.165 

50 49.862 0.069 

70 70.426 0.213 

130 130.284 0.142 

150 150.294 0.147 

170 169.417 0.291 
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Three-phase fault 

30 30.421 0.210 

50 49.205 0.397 

70 70.047 0.023 

130 130.653 0.326 

150 149.742 0.129 

170 170.236 0.118 

 

 

Figure 6.22 Distance estimation error percentage with respect to location of faults using 

CFNN model 

6.5 Location of Evolving Fault Events 

The efficacy of the proposed CFNN based model based fault distance estimating scheme is 

also examined for different evolving fault cases on second and third test systems. Authors 

in [121-123] have reported evolving fault localizing scheme in the power transmission 

circuit based on synchronized measurement and application of neural network. Figure 6.22-

6.23 represents the 3-phase post fault current samples retrieved during evolving fault events 
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on simulated on second and third test system respectively. During the testing, the features 

corresponding to all considered evolving fault cases are fed to the trained distance estimator 

models. The CFNN model based distance estimator model predicts the location of the test 

instance in the network as its output.  

 
                                                                                 (a) 

 
                                                                                (b) 

 
                                                                            (c) 

Figure 6.23 3-phase current samples during evolving fault in second test network 
 (a) AG-bg at 50 km, (b) AG-cg at 50 km, (c) AG-abcg at 50 km 
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(b) 

Figure 6.24 3-phase current samples during evolving fault in third test network 

(a) AG-bg at 30 km, (b) AG-cg at 30 km 

Table 6.8-6.9 summarizes the evolving fault distance estimation results and the associated 

estimation error percentage obtained by the proposed CFNN based distance estimating 

scheme during testing on second and third test system. The depicted result shows the 

relevance of the proposed CFNN model based methodology for localization the position of 

the fault events in the series compensated transmission system. Figure 6.24-6.25 represents 

the evolving fault distance estimation error percentage in the simulated test networks. The 

maximum distance assessment error is within 0.4 % for evolving fault events. Table 6.10 
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shows the comparative analysis of evolving fault distance estimation error obtained by the 

proposed scheme on second test system during testing and reported by some existing 

approaches.  The error percentage by the proposed scheme is lowest as compared to that are 

reported in [121] 10 % error, [122] 3.06 % error and  1 % error in [123] respectively. 

Contrary to some already existing schemes for locating the EFE in the transmission 

network based on analytical circuit matrix analysis or communication channel based, the 

proposed scheme is simple and more accurate. 

Table 6.8 Distance estimation of evolving faults CFNN based distance estimator model 

(second test system) 

Evolving 
fault type 

Actual 
location 
of fault 

CFNN model 
Output 

 

location 
estimation error 

(%) 

Primary fault-AG 
Secondary fault-BG 

50 50.146 0.048 

110 110.288 0.096 

170 171.087 0.362 

210 209.439 0.187 

250 250.646 0.215 

Primary fault-AG 
Secondary fault-CG 

50 49.572 0.142 

110 109.372 0.209 

170 170.756 0.252 

210 210.432 0.144 

250 249.150 0.283 

Primary fault-AG 
Secondary fault-

ABCG 

50 50.237 0.079 

110 111.061 0.353 

170 170.713 0.237 

210 210.077 0.025 

250 249.578 0.140 
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Table 6.9 Distance estimation of evolving faults using CFNN based distance estimator 

model (third test system) 

Type of Evolving 
fault 

Actual 
location 
of fault 

CFNN model 
Output 

 

location 
estimation error 

(%) 

 
Primary fault-AG 

Secondary fault-BG 

30 30.168 0.084 

50 49.624 0.188 

70 170.436 0.218 

130 130.848 0.424 

150 149.347 0.326 

170 170.683 0.341 

 
Primary fault-AG 

Secondary fault-CG 

30 29.624 0.188 

50 49.262 0.369 

70 69.347 0.326 

130 130.324 0.166 

150 150.632 0.316 

170 169.350 0.325 
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Figure 6.25 Distance estimation error percentage with respect to location of faults using 

CFNN model 

 

Figure 6.26 Distance estimation error percentage with respect to location of faults using 

CFNN model 
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Table 6.10 Comparision of distance estimation error for locating EFE in the network 

Ref. No Scheme  

applied 

Measurement  

needed 

 

Simulation 

Platform 

Line 

compensation 

Percentage 

error 

[121] Time domain 

analysis of 

primarily (LG) 

and subsequent 

LLG fault 

Existing arc 

voltage during 

abnormality 

events 

Real 

distributio

n system 

- Location 

error 

within 

10% 

[122] Phase domain 

network 

modeling based 

Synchronized 

voltage and 

current signal 

at both ends 

MATLAB - Location 

error 

within 

3.06 % 

[123] DWT and ANN 

based 

Both voltage 

and current 

samples 

MATLAB - Location 

error 

within  1 

% 

Proposed 

scheme 

DWT and 

cascade 

forward back 

propagation 

neural network 

based 

3-phase 

current at one 

end  

MATLAB 35% line 

compensation 

has been 

considered 

Location 

error 

within 0.4 

% 

 

6.6 Conclusion 

An integrated DWT and intelligent neural network based scheme has been presented in this 

chapter for estimating the fault distance in a series compensated transmission lines. The 

architecture and algorithms of the applied neural network based distance estimator models 
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are briefly covered. Later on, the feasibility and competency of the proposed fault distance 

estimating scheme has been validated on different simulated test systems. The results 

obtained by the proposed schemes for all considered test scenarios, has reaffirmed that the 

proposed schemes are well effectual in ascertaining the position of faults in series 

compensated power network. 

 

 


